现代地质 ›› 2022, Vol. 36 ›› Issue (02): 563-573.DOI: 10.19657/j.geoscience.1000-8527.2021.176
收稿日期:
2021-09-30
修回日期:
2022-03-03
出版日期:
2022-04-10
发布日期:
2022-06-01
通讯作者:
郑西来
作者简介:
郑西来,男,教授,1959年出生,环境工程专业,主要从事水文地质及环境污染与防治研究。Email: zhxilai@ouc.edu.cn。基金资助:
YU Lu1,2(), ZHENG Tianyuan1,3, ZHENG Xilai1,3(
)
Received:
2021-09-30
Revised:
2022-03-03
Online:
2022-04-10
Published:
2022-06-01
Contact:
ZHENG Xilai
摘要:
地下水硝酸盐污染已成为世界范围内最严重的环境地质问题之一。全面并准确识别硝酸盐污染源,对地下水的有效管理及污染防治具有重要的指导意义。从地下水硝酸盐来源、同位素检测方法、污染源同位素特征、定量解析模型构建、硝酸盐主要转化过程及同位素分馏效应等方面进行总结,比较不同解析方法在硝酸盐溯源中的应用与发展,建议采用多学科、多方法相结合的方式,提高对硝酸盐污染源的全面理解。同位素富集系数是定量解析硝酸盐污染源的重要参数,在源解析过程中探讨硝酸盐转化及同位素分馏机制,能够更好地诠释地下水硝酸盐来源和迁移转化过程,提高源解析的准确性,为地下水硝酸盐污染的准确溯源与有效防治提供参考。
中图分类号:
于璐, 郑天元, 郑西来. 地下水硝酸盐污染源解析及氮同位素分馏效应研究进展[J]. 现代地质, 2022, 36(02): 563-573.
YU Lu, ZHENG Tianyuan, ZHENG Xilai. Review of Nitrate Source Apportionment and Nitrogen Isotope Fractionation in Groundwater[J]. Geoscience, 2022, 36(02): 563-573.
[1] | BUROW K R, NOLAN B T, RUPERT M G, et al. Nitrate in groundwater of the United States, 1991-2003[J]. Environmental Science & Technology, 2010, 44(13): 4988-4997. |
[2] | 吴雨华. 欧美国家地下水硝酸盐污染防治研究进展[J]. 中国农学通报, 2011, 27(8): 284-290. |
[3] | European Environment Agency. Present concentration of nitrate in groundwater bodies in European countries[EB/OL]. Copenhagen: European Environment Agency, 2008. http://www.eea.europa.eu/data-and-maps/figures/present-concentration-ofnitrate-in-groundwater-bodies-in-european-countries. |
[4] | 中国生态环境状况公报[EB/OL].北京:环境保护部, 2018. https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/. |
[5] | SUBRAMANIAN K S, MANIKANDAN A, THIRUNAVUKKARASU M, et al. Nano-fertilizers for balanced crop nutrition[M]// Nanotechnologies in Food and Agriculture. Cham: Springer International Publishing, 2015: 69-80. |
[6] | 朱兆良, 金继运. 保障我国粮食安全的肥料问题[J]. 植物营养与肥料学报, 2013, 19(2): 259-273. |
[7] | 巨晓棠, 谷保静. 我国农田氮肥施用现状、问题及趋势[J]. 植物营养与肥料学报, 2014, 20(4): 783-795. |
[8] | 栾江, 仇焕广, 井月, 等. 我国化肥施用量持续增长的原因分解及趋势预测[J]. 自然资源学报, 2013, 28(11): 1869-1878. |
[9] | XIE Y X, XIONG Z Q, XING G X, et al. Assessment of nitrogen pollutant sources in surface waters of Taihu lake region[J]. Pedosphere, 2007, 17(2): 200-208. |
[10] | XU G C, CHENG S D, LI P, et al. Soil total nitrogen sources on dammed farmland under the condition of ecological construction in a small watershed on the Loess Plateau, China[J]. Ecological Engineering, 2018, 121: 19-25. |
[11] | HARKER L, HUTCHEON I, MAYER B. Use of major ion and stable isotope geochemistry to delineate natural and anthropogenic sources of nitrate and sulfate in the Kettle River Basin, British Columbia, Canada[J]. Comptes Rendus Geoscience, 2015, 347(7/8): 338-347. |
[12] | WANG Y J, PENG J F, CAO X F, et al. Isotopic and chemical evidence for nitrate sources and transformation processes in a plateau lake basin in Southwest China[J]. Science of the Total Environment, 2020, 711. DOI:10.1016/j.scitotenv.2019.134856. |
[13] | ZHAO Y H, ZHANG L, CHEN Y F, et al. Atmospheric nitrogen deposition to China: A model analysis on nitrogen budget and critical load exceedance[J]. Atmospheric Environment, 2017, 153: 32-40. |
[14] | SONG L, KUANG F H, SKIBA U, et al. Bulk deposition of organic and inorganic nitrogen in southwest China from 2008 to 2013[J]. Environmental Pollution, 2017, 227: 157-166. |
[15] | XIN J, LIU Y, CHEN F, et al. The missing nitrogen pieces: A critical review on the distribution, transformation, and budget of nitrogen in the vadose zone-groundwater system[J]. Water Research, 2019, 165. DOI:10.1016/j.watres.2019.114977. |
[16] | MINNIG M, MOECK C, RADNY D, et al. Impact of urbanization on groundwater recharge rates in Dübendorf, Switzerland[J]. Journal of Hydrology, 2018, 563: 1135-1146. |
[17] | WAKIDA F T, LERNER D N. Non-agricultural sources of groundwater nitrate: A review and case study[J]. Water Research, 2005, 39(1): 3-16. |
[18] | 赵解春, 李玉中, YAMASHITA I, 等. 地下水硝酸盐污染来源的推断与溯源方法概述[J]. 中国农学通报, 2010, 26(18): 374-378. |
[19] | 李政红, 张翼龙, 胡波, 等. 人类活动对内蒙古托克托县浅层地下水N03-N污染的驱动作用[J]. 地球学报, 2018, 39(3): 358-364. |
[20] | MINET E P, GOODHUE R, MEIER-AUGENSTEIN W, et al. Combining stable isotopes with contamination indicators: A me-thod for improved investigation of nitrate sources and dynamics in aquifers with mixed nitrogen inputs[J]. Water Research, 2017, 124: 85-96. |
[21] | 韩知明, 贾克力, 孙标, 等. 呼伦湖流域地表水与地下水离子组成特征及来源分析[J]. 生态环境学报, 2018, 27(4): 744-751. |
[22] | KIM H, KAOWN D, MAYER B, et al. Identifying the sources of nitrate contamination of groundwater in an agricultural area (Haean basin, Korea) using isotope and microbial community analyses[J]. Science of the Total Environment, 2015, 533: 566-575. |
[23] | WANG S Q, ZHENG W B, CURRELL M, et al. Relationship between land-use and sources and fate of nitrate in groundwater in a typical recharge area of the North China Plain[J]. Science of the Total Environment, 2017, 609: 607-620. |
[24] | MILLER M S, FRIEDLANDER S K, HIDY G M. A chemical element balance for the Pasadena aerosol[J]. Journal of Colloid and Interface Science, 1972, 39(1): 165-176. |
[25] | 黄国兰, 萧航, 陈春江, 等. 化学质量平衡法在水体污染物源解析中的应用[J]. 环境科学, 1999, 20(6): 14-17. |
[26] | PAATERO P, TAPPER U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values[J]. Environmetrics, 1994, 5(2): 111-126. |
[27] | PAATERO P. Least squares formulation of robust non-negative factor analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1997, 37(1): 23-35. |
[28] | 王苏蓉, 喻义勇, 王勤耕, 等. 基于PMF模式的南京市大气细颗粒物源解析[J]. 中国环境科学, 2015, 35(12): 3535-3542. |
[29] | LU Z J, LIU Q Y, XIONG Y, et al. A hybrid source apportionment strategy using positive matrix factorization (PMF) and molecular marker chemical mass balance (MM-CMB) models[J]. Environmental Pollution, 2018, 238: 39-51. |
[30] | GAO S, YANG W, ZHANG H, et al. Estimating representative background PM2.5 concentration in heavily polluted areas using baseline separation technique and chemical mass balance model[J]. Atmospheric Environment, 2018, 174: 180-187. |
[31] | LI G L, LANG Y H, YANG W, et al. Source contributions of PAHs and toxicity in reed wetland soils of Liaohe estuary using a CMB-TEQ method[J]. Science of the Total Environment, 2014, 490: 199-204. |
[32] | 董騄睿, 胡文友, 黄标, 等. 基于正定矩阵因子分析模型的城郊农田土壤重金属源解析[J]. 中国环境科学, 2015, 35(7): 2103-2111. |
[33] | 薛荔栋, 郎印海, 刘爱霞, 等. 黄海近岸表层沉积物中多环芳烃来源解析[J]. 生态环境, 2008, 17(4): 1369-1375. |
[34] | QIN N, HE W, KONG X Z, et al. Distribution, partitioning and sources of polycyclic aromatic hydrocarbons in the water-SPM-sediment system of Lake Chaohu, China[J]. Science of the Total Environment, 2014, 496: 414-423. |
[35] | 苏丹, 唐大元, 刘兰岚, 等. 水环境污染源解析研究进展[J]. 生态环境学报, 2009, 18(2): 749-755. |
[36] | ZHOU F, HUANG G H, GUO H C, et al. Spatio-temporal patterns and source apportionment of coastal water pollution in eastern Hong Kong[J]. Water Research, 2007, 41(15): 3429-3439. |
[37] | KIM K H, YUN S T, MAYER B, et al. Quantification of nitrate sources in groundwater using hydrochemical and dual isotopic data combined with a Bayesian mixing model[J]. Agriculture, Ecosystems & Environment, 2015, 199: 369-381. |
[38] | 杨学福, 王蕾, 关建玲, 等. 基于多元统计分析的渭河西咸段水质评价[J]. 环境工程学报, 2016, 10(3): 1560-1565. |
[39] | 李步东, 朱长军, 杨少波, 等. 辽河水环境质量评价及其污染源解析[J]. 四川环境, 2019, 38(2): 31-36. |
[40] | SU S L, LI D, ZHANG Q, et al. Temporal trend and source apportionment of water pollution in different functional zones of Qiantang River, China[J]. Water Research, 2011, 45(4): 1781-1795. |
[41] | LIU L L, TANG Z, KONG M, et al. Tracing the potential pollution sources of the coastal water in Hong Kong with statistical models combining APCS-MLR[J]. Journal of Environmental Management, 2019, 245: 143-150. |
[42] | MENG L, ZUO R, WANG J S, et al. Apportionment and evolution of pollution sources in a typical riverside groundwater resource area using PCA-APCS-MLR model[J]. Journal of Contaminant Hydrology, 2018, 218: 70-83. |
[43] | 郑倩玉, 刘硕, 万鲁河, 等. 松花江哈尔滨段水环境质量评价及污染源解析[J]. 环境科学研究, 2018, 31(3): 507-513. |
[44] | 刘冬伟, 图影, 方运霆. 铵盐和硝酸盐稳定同位素丰度测定方法及其应用案例[J]. 应用生态学报, 2017, 28(7): 2353-2360. |
[45] | HOERING T. The isotopic composition of the ammonia and the nitrate ion in rain[J]. Geochimica et Cosmochimica Acta, 1957, 12(1/2): 97-102. |
[46] | MOORE H. Isotopic measurement of atmospheric nitrogen compounds[J]. Tellus, 1974, 26(1/2): 169-174. |
[47] | BROOKS P D, STARK J M, MCINTEER B B, et al. Diffusion method to prepare soil extracts for automated nitrogen-15 analysis[J]. Soil Science Society of America Journal, 1989, 53(6): 1707-1711. |
[48] | SILVA S R, KENDALL C, WILKISON D H, et al. A new me-thod for collection of nitrate from fresh water and the analysis of nitrogen and oxygen isotope ratios[J]. Journal of Hydrology, 2000, 228(1/2): 22-36. |
[49] | TU Y, FANG Y T, LIU D W, et al. Modifications to the azide method for nitrate isotope analysis[J]. Rapid Communications in Mass Spectrometry, 2016, 30(10): 1213-1222. |
[50] | SIGMAN D M, CASCIOTTI K L, ANDREANI M, et al. A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater[J]. Analytical Chemistry, 2001, 73(17): 4145-4153. |
[51] | CASCIOTTI K L, SIGMAN D M, HASTINGS M G, et al. Mea-surement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method[J]. Analytical Chemistry, 2002, 74(19): 4905-4912. |
[52] | CHRISTENSEN S, TIEDJE J M. Sub-parts-per-billion nitrate method: Use of an N2O-producing denitrifier to convert N03- or 15N03- to N2O[J]. Applied and Environmental Microbiology, 1988, 54(6): 1409-1413. |
[53] | KENDALL C. Tracing nitrogen sources and cycling in catchments[M]//Isotope Tracers in Catchment Hydrology. Amsterdam: Elsevier, 1998: 519-576. |
[54] | 徐志伟, 张心昱, 于贵瑞, 等. 中国水体硝酸盐氮氧双稳定同位素溯源研究进展[J]. 环境科学, 2014, 35(8): 3230-3238. |
[55] | 周迅, 姜月华. 氮、氧同位素在地下水硝酸盐污染研究中的应用[J]. 地球学报, 2007, 28(4): 389-395. |
[56] | XUE D M, BOTTE J, DE BAETS B, et al. Present limitations and future prospects of stable isotope methods for nitrate source identification in surface and groundwater[J]. Water Research, 2009, 43(5): 1159-1170. |
[57] | NIKOLENKO O, JURADO A, BORGES A V, et al. Isotopic composition of nitrogen species in groundwater under agricultural areas: A review[J]. Science of the Total Environment, 2018, 621: 1415-1432. |
[58] | KENDALL C, ELLIOTT E M, WANKEL S D. Tracing anthropogenic inputs of nitrogen to ecosystems[M]//Stable Isotopes in Ecology and Environmental Science. Oxford: Blackwell Publishing Ltd, 2007: 375-449. |
[59] | 张千千, 缪丽萍, 孙继朝, 等. 稳定同位素识别水体硝酸盐污染来源的研究进展[J]. 长江流域资源与环境, 2015, 24(5): 742-749. |
[60] | LENTZ R D, LEHRSCH G A. Temporal changes in δ18O and δ15N of nitrate nitrogen and H2O in shallow groundwater: Transit time and nitrate-source implications for an irrigated tract in southern Idaho[J]. Agricultural Water Management, 2019, 212: 126-135. |
[61] | XU S G, KANG P P, SUN Y. A stable isotope approach and its application for identifying nitrate source and transformation process in water[J]. Environmental Science and Pollution Research, 2016, 23(2): 1133-1148. |
[62] | YU L, ZHENG T Y, ZHENG X L, et al. Nitrate source apportionment in groundwater using Bayesian isotope mixing model based on nitrogen isotope fractionation[J]. Science of the Total Environment, 2020, 718. DOI:10.1016/j.scitotenv.2020.137242. |
[63] | HOPKINS J B, FERGUSON J M. Estimating the diets of animals using stable isotopes and a comprehensive Bayesian mixing model[J]. PLoS One, 2012, 7(1): e28478. DOI:10.1371/journal.pone.0028478. |
[64] | PHILLIPS D L. Mixing models in analyses of diet using multiple stable isotopes: A critique[J]. Oecologia, 2001, 127(2): 166-170. |
[65] | PHILLIPS D L, GREGG J W. Uncertainty in source partitioning using stable isotopes[J]. Oecologia, 2001, 127(2):171-179. |
[66] | PHILLIPS D L, KOCH P L. Incorporating concentration dependence in stable isotope mixing models[J]. Oecologia, 2002, 130(1): 114-125. |
[67] | KOCH P L, PHILLIPS D L. Incorporating concentration dependence in stable isotope mixing models: A reply to Robbins, Hilderbrand and Farley (2002)[J]. Oecologia, 2002, 133(1): 14-18. |
[68] | PHILLIPS D L, GREGG J W. Source partitioning using stable isotopes: Coping with too many sources[J]. Oecologia, 2003, 136(2): 261-269. |
[69] | MOORE J W, SEMMENS B X. Incorporating uncertainty and prior information into stable isotope mixing models[J]. Ecology Letters, 2008, 11(5): 470-480. |
[70] | JACKSON A L, INGER R, BEARHOP S, et al. Erroneous behaviour of MixSIR, a recently published Bayesian isotope mixing model: A discussion of Moore & Semmens (2008)[J]. Ecology Letters, 2009, 12(3): E1-E5. DOI:10.1111/j.1461-0248.2008.01233.x. |
[71] | PARNELL A C, INGER R, BEARHOP S, et al. Source partitioning using stable isotopes: Coping with too much variation[J]. PLoS One, 2010, 5(3): e9672. DOI:10.1371/journal.pone.0009672. |
[72] | XUE D M, DE BAETS B, VAN CLEEMPUT O, et al. Use of a Bayesian isotope mixing model to estimate proportional contributions of multiple nitrate sources in surface water[J]. Environmental Pollution, 2012, 161: 43-49. |
[73] | STOCK B C, JACKSON A L, WARD E J, et al. Analyzing mixing systems using a new generation of Bayesian tracer mixing models[J]. PeerJ, 2018, 6: e5096. DOI:10.7717/peerj.5096. |
[74] | 杜俊杉, 马英, 胡晓农, 等. 基于双稳定同位素和MixSIAR模型的冬小麦根系吸水来源研究[J]. 生态学报, 2018, 38(18): 6611-6622. |
[75] | MING X X, GROVES C, WU X Y, et al. Nitrate migration and transformations in groundwater quantified by dual nitrate isotopes and hydrochemistry in a Karst World Heritage site[J]. Science of the Total Environment, 2020, 735. DOI:10.1016/j.scitotenv.2020.138907. |
[76] | TORRES-MARTÍNEZ J A, MORA A, MAHLKNECHT J, et al. Determining nitrate and sulfate pollution sources and transformations in a coastal aquifer impacted by seawater intrusion-A multi-isotopic approach combined with self-organizing maps and a Bayesian mixing model[J]. Journal of Hazardous Materials, 2021, 417. DOI:10.1016/j.jhazmat.2021.126103. |
[77] | YU J, ZHANG W, TAN Y, et al. Dual-isotope-based source apportionment of nitrate in 30 rivers draining into the Bohai Sea, North China[J]. Environmental Pollution, 2021, 283. DOI:10.1016/j.envpol.2021.117112. |
[78] | DING J T, XI B D, GAO R T, et al. Identifying diffused nitrate sources in a stream in an agricultural field using a dual isotopic approach[J]. Science of the Total Environment, 2014, 484: 10-18. |
[79] | MATIATOS I. Nitrate source identification in groundwater of multiple land-use areas by combining isotopes and multivariate statistical analysis: A case study of Asopos basin (Central Greece)[J]. Science of the Total Environment, 2016, 541: 802-814. |
[80] | ZHANG Y, SHI P, LI F D, et al. Quantification of nitrate sources and fates in rivers in an irrigated agricultural area using environmental isotopes and a Bayesian isotope mixing model[J]. Chemosphere, 2018, 208: 493-501. |
[81] | ZHANG M, ZHI Y Y, SHI J C, et al. Apportionment and uncertainty analysis of nitrate sources based on the dual isotope approach and a Bayesian isotope mixing model at the watershed scale[J]. Science of the Total Environment, 2018, 639:1175-1187. |
[82] | KRUK M K, MAYER B, NIGHTINGALE M, et al. Tracing nitrate sources with a combined isotope approach (δ15$N_{N0_{3}}$δ18 $0_{N0_{3}}$ and δ11B) in a large mixed-use watershed in southern Alberta, Canada[J]. Science of the Total Environment, 2020, 703. DOI:10.1016/j.scitotenv.2019.135043. |
[83] | NAKAGAWA K, AMANO H, TAKAO Y J, et al. On the use of coprostanol to identify source of nitrate pollution in groundwater[J]. Journal of Hydrology, 2017, 550: 663-668. |
[84] | SHOWERS W J, GENNA B, MCDADE T, et al. Nitrate contamination in groundwater on an urbanized dairy farm[J]. Environmental Science & Technology, 2008, 42(13): 4683-4688. |
[85] | VITÒRIA L, SOLER A, CANALS À, et al. Environmental isotopes (N, S, C, O, D) to determine natural attenuation processes in nitrate contaminated waters: Example of Osona (NE Spain)[J]. Applied Geochemistry, 2008, 23(12):3597-3611. |
[86] | MEGHDADI A, JAVAR N. Quantification of spatial and seasonal variations in the proportional contribution of nitrate sources using a multi-isotope approach and Bayesian isotope mixing model[J]. Environmental Pollution, 2018, 235: 207-222. |
[87] | BIDDAU R, CIDU R, DA PELO S, et al. Source and fate of nitrate in contaminated groundwater systems: Assessing spatial and temporal variations by hydrogeochemistry and multiple stable isotope tools[J]. Science of the Total Environment, 2019, 647: 1121-1136. |
[88] | YU L, ZHENG T Y, HAO Y J, et al. Determination of the nitrogen isotope enrichment factor associated with ammonification and nitrification in unsaturated soil at different temperatures[J]. Environmental Research, 2021, 202. DOI:10.1016/j.envres.2021.111670. |
[89] | BEDARD-HAUGHN A, VAN GROENIGEN J W, VAN KESSEL C. Tracing 15N through landscapes: Potential uses and precautions[J]. Journal of Hydrology, 2003, 272(1/2/3/4): 175-190. |
[90] | HÖGBERG P. Tansley review No.95 15N natural abundance in soil-plant systems[J]. New Phytologist, 1997, 137(2): 179-203. |
[91] | DENK T R A, MOHN J, DECOCK C, et al. The nitrogen cycle: A review of isotope effects and isotope modeling approaches[J]. Soil Biology and Biochemistry, 2017, 105: 121-137. |
[92] | MÖBIUS J. Isotope fractionation during nitrogen remineralization (ammonification): Implications for nitrogen isotope biogeochemistry[J]. Geochimica et Cosmochimica Acta, 2013, 105: 422-432. |
[93] | SONG G, ZHAO X, WANG S Q, et al. Nitrogen isotopic fractionation related to nitrification capacity in agricultural soils[J]. Pedosphere, 2014, 24(2): 186-195. |
[94] | MARIOTTI A, GERMON J C, HUBERT P, et al. Experimental determination of nitrogen kinetic isotope fractionation: Some principles illustration for the denitrification and nitrification processes[J]. Plant and Soil, 1981, 62(3): 413-430. |
[95] | YUN S I, RO H M, CHOI W J, et al. Interpreting the temperature-induced response of ammonia oxidizing microorganisms in soil using nitrogen isotope fractionation[J]. Journal of Soils and Sediments, 2011, 11(7): 1253-1261. |
[96] | YUN S I, RO H M. Can nitrogen isotope fractionation reveal ammonia oxidation responses to varying soil moisture?[J]. Soil Biology and Biochemistry, 2014, 76: 136-139. |
[97] | CHOI W J, RO H M. Differences in isotopic fractionation of nitrogen in water-saturated and unsaturated soils[J]. Soil Biology and Biochemistry, 2003, 35(3): 483-486. |
[98] | DENG Y Y, LI Y Z, LI L. Experimental investigation of nitrogen isotopic effects associated with ammonia degassing at 0-70℃[J]. Geochimica et Cosmochimica Acta, 2018, 226: 182-191. |
[99] | KAWASHIMA H, ONO S. Nitrogen isotope fractionation from ammonia gas to ammonium in particulate ammonium chloride[J]. Environmental Science & Technology, 2019, 53(18):10629-10635. |
[100] | RIVETT M O, BUSS S R, MORGAN P, et al. Nitrate attenuation in groundwater: A review of biogeochemical controlling processes[J]. Water Research, 2008, 42(16): 4215-4232. |
[101] | FUKADA T, HISCOCK K M, DENNIS P F, et al. A dual isotope approach to identify denitrification in groundwater at a river-bank infiltration site[J]. Water Research, 2003, 37(13): 3070-3078. |
[102] | WANG A, FANG Y T, CHEN D X, et al. High nitrogen isotope fractionation of nitrate during denitrification in four forest soils and its implications for denitrification rate estimates[J]. Science of the Total Environment, 2018, 633: 1078-1088. |
[1] | 何云龙, 张国宾, 杨言辰, 冯玥, 孔金贵, 陈兴凯. 锡霍特—阿林造山带那丹哈达地体四平山金矿床成因与构造背景:锆石U-Pb年代学、岩石和流体地球化学制约[J]. 现代地质, 2024, 38(01): 128-153. |
[2] | 刘青占, 蒋孝君, 王果, 李天瑜, 李东鹏. 内蒙古南炮台花岗斑岩成因与构造环境:锆石U-Pb年代学、Hf同位素和全岩元素组成制约[J]. 现代地质, 2024, 38(01): 154-168. |
[3] | 宋彦博, 王建平, 沈存利, 车东, 杨文华, 郭海蛟. 内蒙古扎拉格阿木铜矿床成矿岩体地质地球化学及其成矿学意义[J]. 现代地质, 2023, 37(06): 1482-1494. |
[4] | 杨元江, 邓昌州, 李成禄, 杨文鹏, 符安宗, 郑博, 袁茂文, 张立东. 小兴安岭翠峦地区早侏罗世A型花岗岩成因与动力学背景[J]. 现代地质, 2023, 37(06): 1597-1608. |
[5] | 张一范, 高远, 陈积权, 黄帅, 海伦, 毋正轩, 杨柳, 董甜. 松辽盆地晚白垩世湖相白云岩碳氧同位素特征及其古环境意义[J]. 现代地质, 2023, 37(05): 1243-1253. |
[6] | 梁乾坤, 陈岳龙, 王善辉, 于洋, 杨帆. 嫩江河漫滩沉积物碎屑锆石U-Pb年龄、Hf同位素组成及其地质意义[J]. 现代地质, 2023, 37(03): 529-546. |
[7] | 薛仲凯, 范堡程, 黄豪擎, 唐卫东, 葛战林, 李朋伟, 胡建辉, 杨晓奇, 郭永超, 李空. 内蒙古北山地区中基性岩脉年代学和地球化学特征:对塔里木板块北缘构造演化的启示[J]. 现代地质, 2023, 37(03): 627-644. |
[8] | 杜古尔·卫卫, 石海涛, 邢浩, 娄雪聪, 胡宏利, 布龙巴特. 新疆戈壁荒漠区典型露天煤矿土壤重金属来源解析及空间分布[J]. 现代地质, 2023, 37(03): 790-800. |
[9] | 邓科, 王金贵, 董玉杰, 何林武, 袁仁华, 张泽国, 陈守关, 辛堂. 西藏桑耶地区晚白垩世中性侵入岩的成因及对新特提斯板块北向俯冲的指示意义[J]. 现代地质, 2023, 37(02): 375-389. |
[10] | 张红雨, 杨立明, 苏犁, 宋述光, 王大川. LA-ICP-MS独居石的U(Th)-Pb年龄精确测定方法及地质意义探究[J]. 现代地质, 2023, 37(02): 443-462. |
[11] | 任程昊, 佘宏全, 柯昌辉, 孙衍东, 周群茂, 焦天龙, 李保亮. 福建平和钟腾铜矿床成岩成矿时代研究[J]. 现代地质, 2022, 36(06): 1447-1464. |
[12] | 唐名鹰, 华磊, 丁正江, 董振昆, 王炜晓, 翟孝志, 王汝杰, 郑成龙. 东昆仑祁漫塔格地区乌腊德石墨矿床地球化学特征及成矿机制研究[J]. 现代地质, 2022, 36(06): 1475-1485. |
[13] | 李文霞, 赵志丹, 王晓丽, 严溶, 路远发. 西藏日喀则蛇绿岩镁铁质岩石Re-Os同位素特征及意义[J]. 现代地质, 2022, 36(06): 1503-1512. |
[14] | 刘思逸, 高平, 肖贤明, 刘若冰, 秦婧, 袁桃, 王旭. 四川盆地五峰—龙马溪组黑色页岩有机岩石学特征研究[J]. 现代地质, 2022, 36(05): 1281-1291. |
[15] | 李二庭, 马万云, 李际, 马新星, 潘长春, 曾立飞, 王明. 准噶尔盆地南缘侏罗系煤生烃热模拟实验研究[J]. 现代地质, 2022, 36(05): 1313-1323. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||