现代地质 ›› 2023, Vol. 37 ›› Issue (05): 1243-1253.DOI: 10.19657/j.geoscience.1000-8527.2023.023
张一范(), 高远(
), 陈积权, 黄帅, 海伦, 毋正轩, 杨柳, 董甜
收稿日期:
2022-11-19
修回日期:
2023-03-16
出版日期:
2023-10-10
发布日期:
2023-11-14
通讯作者:
高 远,男,教授,博士生导师,1987年出生,古生物学与地层学专业,主要从事沉积学、古气候学、古地理学研究。Email:yuangao@cugb.edu.cn。
作者简介:
张一范,女,硕士研究生,1999年出生,古生物学与地层学专业,主要从事沉积地质学与环境分析研究。Email:zyfan4221@163.com。
基金资助:
ZHANG Yifan(), GAO Yuan(
), CHEN Jiquan, HUANG Shuai, HAI Lun, WU Zhengxuan, YANG Liu, DONG Tian
Received:
2022-11-19
Revised:
2023-03-16
Online:
2023-10-10
Published:
2023-11-14
摘要:
松辽盆地上白垩统青山口组和嫩江组是重要的烃源岩层位,以暗色泥岩为主,夹有数层白云岩层和白云岩结核层。湖泊碳酸盐岩是分布范围最广泛的一类陆相碳酸盐岩,是陆相盆地在特殊环境下的产物,其形成与盆地气候-环境演化密切相关,是深时古地理、古气候、古环境等信息的良好记录载体。另外,白云岩是碳酸盐岩层系中最主要的油气储渗体,因此开展重要含油层系白云岩研究有助于了解陆地古环境演化及烃源岩储层特征。本文对松辽盆地东南缘鸟河剖面青山口组一段和李家坨子剖面嫩江组一段湖泊白云岩开展碳、氧同位素特征分析,探讨其古环境意义。结果表明,松辽盆地晚白垩世白云岩具有重碳(δ13C鸟河=5.89‰~0.78‰,δ13C李家坨子=-8.36‰~6.70‰)、轻氧(δ18O鸟河=-10.03‰~-7.84‰,δ18O李家坨子=-11.30‰~-3.82‰)特征,且δ13C-δ18O相关性较高(R2>0.7),表明松辽盆地晚白垩世白云岩是湖水滞留时间较长的封闭型咸水-半咸水湖泊体系的产物。根据经验判别式Z=2.048×(δ13C+50)+1.498×(δ18O+50)计算,青山口组、嫩江组白云岩Z平均值分别为124和126.5,表明白云岩形成过程中可能受到海水入侵作用影响。进一步通过海水与淡水氧同位素混合模型,估算了海侵作用的规模,综合认为松辽盆地晚白垩世湖相白云岩沉积于海侵背景下、湖水长期滞留的封闭型咸水-半咸水湖泊。
中图分类号:
张一范, 高远, 陈积权, 黄帅, 海伦, 毋正轩, 杨柳, 董甜. 松辽盆地晚白垩世湖相白云岩碳氧同位素特征及其古环境意义[J]. 现代地质, 2023, 37(05): 1243-1253.
ZHANG Yifan, GAO Yuan, CHEN Jiquan, HUANG Shuai, HAI Lun, WU Zhengxuan, YANG Liu, DONG Tian. Carbon and Oxygen Isotope Characteristics of Late Cretaceous Lacustrine Dolomite in the Songliao Basin and their Paleoenvironmental Implications[J]. Geoscience, 2023, 37(05): 1243-1253.
图1 松辽盆地构造分区与研究区剖面位置(a)和松辽盆地综合柱状图(b)(改自Feng 等[26])
Fig.1 Tectonic division of Songliao Basin and location of sections (a) and generalized stratigraphic column of the Songliao Basin (b)(modified from Feng et al.[26])
图3 松辽盆地白云岩碳、氧同位素特征 (a)(c)分别为李家坨子剖面和鸟河剖面白云岩碳、氧同位素特征;(b)为松科1井白云岩碳、氧同位素特征(数据来自Gao等[23])
Fig.3 Carbon and oxygen isotope compositions of dolomites in the Songliao Basin
图4 松辽盆地白云岩δ13C、δ18O交会图 (a)松辽盆地晚白垩世白云岩δ13C、δ18O交会图;(b)(c)(d)分别为李家坨子剖面、鸟河剖面、松科1井白云岩δ13C-δ18O交会图
Fig.4 Crosspolts of δ13C and δ18O of dolomites in the Songliao Basin
样品号 | 剖面 | δ13CVPDB (‰) | δ18OVPDB (‰) | δ18O VSMOW (‰) | δ18Owater (‰) | Z |
---|---|---|---|---|---|---|
LT03 | 李家坨子剖面 | 7.05 | -7.71 | 22.96 | 0-8.75 | 138 |
LT05 | -3.30 | -11.30 | 19.26 | -12.33 | 115 | |
LT12 | -8.36 | -3.82 | 26.97 | -4.87 | 108 | |
LT16 | -4.06 | -11.21 | 19.36 | -12.24 | 113 | |
LT20 | -3.09 | -11.09 | 19.48 | -12.12 | 115 | |
LT23 | 6.70 | -7.15 | 23.54 | -8.20 | 137 | |
LT25 | 6.21 | -7.51 | 23.17 | -8.55 | 136 | |
LT27 | 4.49 | -8.55 | 22.10 | -9.59 | 132 | |
LT29 | 4.72 | -7.79 | 22.88 | -9.83 | 133 | |
LT32 | 2.16 | -8.77 | 21.87 | -9.81 | 127 | |
LT34 | 0.99 | -9.23 | 21.39 | -10.27 | 125 | |
LT38 | 2.84 | -8.13 | 22.53 | -9.17 | 129 | |
LT86 | -2.20 | -10.58 | 20.00 | -11.62 | 118 | |
LT89 | 1.20 | -9.54 | 21.07 | -10.58 | 125 | |
NH02C | 鸟河剖面 | 0.65 | -7.85 | 22.82 | -10.41 | 125 |
NH03C | 0.72 | -7.84 | 22.83 | -10.40 | 125 | |
NH4 | -0.01 | -8.60 | 22.04 | -11.16 | 123 | |
NH04C | -0.17 | -8.57 | 22.08 | -11.13 | 123 | |
NH05C | 0.78 | -7.97 | 22.70 | -10.53 | 125 | |
NH07C | 0.02 | -8.88 | 21.75 | -11.44 | 123 | |
NH10 | 0.65 | -8.18 | 22.48 | -10.73 | 125 | |
NH42 | -4.74 | -10.03 | 20.57 | -12.58 | 113 | |
NH43 | -5.89 | -9.42 | 21.19 | -11.98 | 111 |
表1 松辽盆地白云岩碳氧同位素结果
Table 1 C-O isotope compositions of dolomites in the SongliaoBasin
样品号 | 剖面 | δ13CVPDB (‰) | δ18OVPDB (‰) | δ18O VSMOW (‰) | δ18Owater (‰) | Z |
---|---|---|---|---|---|---|
LT03 | 李家坨子剖面 | 7.05 | -7.71 | 22.96 | 0-8.75 | 138 |
LT05 | -3.30 | -11.30 | 19.26 | -12.33 | 115 | |
LT12 | -8.36 | -3.82 | 26.97 | -4.87 | 108 | |
LT16 | -4.06 | -11.21 | 19.36 | -12.24 | 113 | |
LT20 | -3.09 | -11.09 | 19.48 | -12.12 | 115 | |
LT23 | 6.70 | -7.15 | 23.54 | -8.20 | 137 | |
LT25 | 6.21 | -7.51 | 23.17 | -8.55 | 136 | |
LT27 | 4.49 | -8.55 | 22.10 | -9.59 | 132 | |
LT29 | 4.72 | -7.79 | 22.88 | -9.83 | 133 | |
LT32 | 2.16 | -8.77 | 21.87 | -9.81 | 127 | |
LT34 | 0.99 | -9.23 | 21.39 | -10.27 | 125 | |
LT38 | 2.84 | -8.13 | 22.53 | -9.17 | 129 | |
LT86 | -2.20 | -10.58 | 20.00 | -11.62 | 118 | |
LT89 | 1.20 | -9.54 | 21.07 | -10.58 | 125 | |
NH02C | 鸟河剖面 | 0.65 | -7.85 | 22.82 | -10.41 | 125 |
NH03C | 0.72 | -7.84 | 22.83 | -10.40 | 125 | |
NH4 | -0.01 | -8.60 | 22.04 | -11.16 | 123 | |
NH04C | -0.17 | -8.57 | 22.08 | -11.13 | 123 | |
NH05C | 0.78 | -7.97 | 22.70 | -10.53 | 125 | |
NH07C | 0.02 | -8.88 | 21.75 | -11.44 | 123 | |
NH10 | 0.65 | -8.18 | 22.48 | -10.73 | 125 | |
NH42 | -4.74 | -10.03 | 20.57 | -12.58 | 113 | |
NH43 | -5.89 | -9.42 | 21.19 | -11.98 | 111 |
[1] | 陈登辉, 巩恩普, 梁俊红, 等. 辽西下白垩统义县组湖相碳酸盐岩中的燧石成因[J]. 地质学报, 2010, 84(8): 1208-1214. |
[2] |
LI H S, LIU X Q, ARNOLD A, et al. Mass 47 clumped isotope signatures in modern lacustrine authigenic carbonates in Western China and other regions and implications for paleotemperature and paleoelevation reconstructions[J]. Earth and Planetary Science Letters, 2021, 562: 116840.
DOI URL |
[3] | 梁俊红, 巩恩普, 李永杰. 早白垩世义县盆地义县组顶部金刚山层沉积相及其古环境意义[J]. 沉积学报, 2012, 30(4): 689-695. |
[4] | 夏青松, 田景春, 倪新锋. 湖相碳酸盐岩研究现状及意义[J]. 沉积与特提斯地质, 2003, 23(1): 105-112. |
[5] | 王英华, 周书欣, 张秀莲. 中国湖相碳酸盐岩[M].中国矿业大学出版社, 1993. |
[6] | 苏玲, 朱如凯, 崔景伟, 等. 中国湖相碳酸盐岩时空分布与碳氧同位素特征[J]. 古地理学报, 2017, 19(6): 1063-1074. |
[7] |
LENG M J, MARSHALL J D. Palaeoclimate interpretation of stable isotope data from lake sediment archives[J]. Quaternary Science Reviews, 2004, 23(7/8): 811-831.
DOI URL |
[8] | TIERNEY J E, POULSEN C J, MONTAÑEZ I P, et al. Past climates inform our future[J]. Science, 2020, 370: eaay3701. |
[9] |
TAKASHIMA R, NISHI H, HUBER B, et al. Greenhouse world and the Mesozoic Ocean[J]. Oceanography, 2006, 19(4): 82-92.
DOI URL |
[10] | 王成善, 胡修棉. 白垩纪世界与大洋红层[J]. 地学前缘, 2005, 12(2): 11-21. |
[11] |
SCOTESE C R. An atlas of Phanerozoic paleogeographic maps: The Seas come in and the seas go out[J]. Annual Review of Earth and Planetary Sciences, 2021, 49: 679-728.
DOI URL |
[12] | 席党鹏, 万晓樵, 李国彪, 等. 中国白垩纪综合地层和时间框架[J]. 中国科学(地球科学) 2019, 49(1): 257-288. |
[13] | JENKYNS H C. Geochemistry of oceanic anoxic events[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(3): n/a. |
[14] | 王天天, 黄永建, 张之辉, 等. 松辽盆地嫩江组草莓状黄铁矿及其古环境意义[J]. 山东科技大学学报(自然科学版), 2021, 40(5): 1-9. |
[15] | 秦健铭, 陈积权, 高远, 等. 松辽盆地晚白垩世陆表古温度定量重建: 以LD6-7井嫩江组一、二段为例[J]. 沉积学报, 2020, 38(4): 759-770. |
[16] |
GAO Y, WANG C S, WANG P J, et al. Progress on continental scientific drilling project of Cretaceous Songliao Basin (SK-1 and SK-2)[J]. Science Bulletin, 2019, 64(2): 73-75.
DOI PMID |
[17] | 曹晓萌. 松辽盆地晚白垩世青山口组页岩孔隙特征及其演化规律[D]. 北京: 中国地质大学(北京), 2020. |
[18] | 王国栋, 程日辉, 王璞珺, 等. 松辽盆地嫩江组白云岩形成机理: 以松科1井南孔为例[J]. 地质学报, 2008, 82(1): 48-54, 146. |
[19] | 孙健, 董兆雄, 郑琴. 白云岩成因的研究现状及相关发展趋势[J]. 海相油气地质, 2005, 10(3): 25-30. |
[20] | 刘万洙, 王璞珺. 松辽盆地嫩江组白云岩结核的成因及其环境意义[J]. 岩相古地理, 1997, 17(1): 22-26. |
[21] | 王璞珺, 王东坡, 杜小弟. 松辽盆地白垩系青山口组黑色页岩的形成环境及海水侵入的底流模式[J]. 岩相古地理, 1996, 16(1): 34-43. |
[22] | 王璞珺, 杜小弟, 王东坡. 松辽盆地白垩纪湖侵沉积层序与湖海沟通事件的地球化学记录[J]. 岩相古地理, 1995, 15(4): 14-20. |
[23] |
GAO X, WANG P K, LI D R, et al. Petrologic characteristics and genesis of dolostone from the Campanian of the SK-I Well Core in the Songliao Basin, China[J]. Geoscience Frontiers, 2012, 3(5): 669-680.
DOI URL |
[24] | 高翔, 王平康, 李秋英, 等. 松科1井嫩江组湖相含铁白云石的准确定名和矿物学特征[J]. 岩石矿物学杂志, 2010, 29(2): 213-218. |
[25] |
GAO Y A, IBARRA D E, WANG C S, et al. Mid-latitude terrestrial climate of East Asia linked to global climate in the Late Cretaceous[J]. Geology, 2015, 43(4): 287-290.
DOI URL |
[26] |
FENG Z Q, JIA C Z, XIE X N, et al. Tectonostratigraphic units and stratigraphic sequences of the nonmarine Songliao Basin, northeast China[J]. Basin Research, 2010, 22(1): 79-95.
DOI URL |
[27] | 陈积权, 高远, 秦健铭, 等. 松辽盆地东缘嫩江组一二段黏土矿物和主量元素地球化学特征及其古气候意义[J]. 中国煤炭地质, 2017, 29(8): 17-24. |
[28] | 李娟, 舒良树. 松辽盆地中、新生代构造特征及其演化[J]. 南京大学学报(自然科学版), 2002, 38(4): 525-531. |
[29] |
WANG C S, SCOTT R W, WAN X Q, et al. Late Cretaceous climate changes recorded in Eastern Asian lacustrine deposits and North American Epieric Sea strata[J]. Earth-Science Reviews, 2013, 126: 275-299.
DOI URL |
[30] |
WANG C S. Environmental/climate change in the Cretaceous greenhouse world: Records from terrestrial scientific drilling of Songliao Basin and adjacent areas of China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385: 1-5.
DOI URL |
[31] |
XI D P, WAN X Q, FENG Z Q, et al. Discovery of Late Cretaceous foraminifera in the Songliao Basin: Evidence from SK-1 and implications for identifying seawater incursions[J]. Chinese Science Bulletin, 2011, 56(3): 253-256.
DOI URL |
[32] | 司伟民, 席党鹏, 黄清华, 等. 松辽盆地东部宾县凹陷青山口组介形类生物地层与生态环境[J]. 地质学报, 2010, 84(10): 1389-1400. |
[33] | 高有峰, 王璞珺, 程日辉, 等. 松科1井南孔白垩系青山口组一段沉积序列精细描述: 岩石地层、沉积相与旋回地层[J]. 地学前缘, 2009, 16(2): 314-323. |
[34] | 孙平昌. 松辽盆地东南部上白垩统含油页岩系有机质富集环境动力学[D]. 长春: 吉林大学, 2013. |
[35] |
WANG C S, FENG Z Q, ZHANG L M, et al. Cretaceous paleogeography and paleoclimate and the setting of SKI borehole sites in Songliao Basin, northeast China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385: 17-30.
DOI URL |
[36] |
COPLEN T B, KENDALL C, HOPPLE J. Comparison of stable isotope reference samples[J]. Nature, 1983, 302: 236-238.
DOI |
[37] |
MCCORMACK J, KWIECIEN O. Coeval primary and diagenetic carbonates in lacustrine sediments challenge palaeoclimate interpretations[J]. Scientific Reports, 2021, 11: 7935.
DOI PMID |
[38] |
GARZIONE C N, DETTMAN D L, HORTON B K. Carbonate oxygen isotope paleoaltimetry: Evaluating the effect of diagenesis on paleoelevation estimates for the Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 212(1/2): 119-140.
DOI URL |
[39] | SHARP Z D. Principles of Stable Isotope Geochemistry[M]. 2nd Edi.New Mexico:University of New Mexico:2017. |
[40] | BERNASCONI S M, MCKENZIE J A. Carbonate stable isotopes | lake sediments[M]// Encyclopedia of Quaternary Science. Amsterdam: Elsevier, 2013: 333-340. |
[41] |
GROTZINGER J P, FIKE D A, FISCHER W W. Enigmatic origin of the largest-known carbon isotope excursion in Earth’s history[J]. Nature Geoscience, 2011, 4(5): 285-292.
DOI |
[42] | 王璞珺, 刘万洙, 单玄龙. 事件沉积: 导论·实例·应用[M]. 长春: 吉林科学技术出版社, 2001. |
[43] |
ZHANG C, FAN R, LI J, et al. Carbon and oxygen isotopic compositions: How lacustrine environmental factors respond in northwestern and northeastern China[J]. Acta Geologica Sinica, 2013, 87(5):1344-1354.
DOI URL |
[44] |
LOYD S J, BERELSON W M, LYONS T W, et al. Constraining pathways of microbial mediation for carbonate concretions of the Miocene Monterey Formation using carbonate-associated sulfate[J]. Geochimica et Cosmochimica Acta, 2012, 78: 77-98.
DOI URL |
[45] | 张成君, 张菀漪, 张丽, 等. 中国西部、东北地区湖泊沉积物中碳酸盐碳、氧和有机碳同位素组成及与环境的响应[J]. 矿物岩石地球化学通报, 2016, 35(4): 609-617, 607. |
[46] | HOEFS J. Stable Isotope Geochemistry[M].6th Edi. Washington:Springer:2009. |
[47] |
KEITH M L, WEBER J N. Carbon and oxygen isotopic composition of selected limestones and fossils[J]. Geochimica et Cosmochimica Acta, 1964, 28(10/11): 1787-1816.
DOI URL |
[48] |
HORTON T W, DEFLIESE W F, TRIPATI A K, et al. Evaporation induced 18O and 13C enrichment in lake systems: A global perspective on hydrologic balance effects[J]. Quaternary Science Reviews, 2016, 131: 365-379.
DOI URL |
[49] |
DING L, XU Q, YUE Y H, et al. The andean-type gangdese mountains: Paleoelevation record from the Paleocene-Eocene Linzhou Basin[J]. Earth and Planetary Science Letters, 2014, 392: 250-264.
DOI URL |
[50] |
MORRILL C, KOCH P L. Elevation or alteration? Evaluation of isotopic constraints on paleoaltitudes surrounding the Eocene Green River Basin[J]. Geology, 2002, 30(2): 151-154.
DOI URL |
[51] |
BENNETT C E, WILLIAMS M, LENG M J, et al. Diagenesis of fossil ostracods: Implications for stable isotope based palaeoenvironmental reconstruction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 305(1/2/3/4): 150-161.
DOI URL |
[52] |
BINI M, ZANCHETTA G, PERŞOIU A, et al. The 4.2 ka BP event in the Mediterranean region: An overview[J]. Climate of the Past, 2019, 15(2): 555-577.
DOI |
[53] |
ZHANG P Y, WANG Y L, ZHANG X J, et al. Carbon, oxygen and strontium isotopic and elemental characteristics of the Cambrian Longwangmiao Formation in South China: Paleoenvironmental significance and implications for carbon isotope excursions[J]. Gondwana Research, 2022, 106: 174-190.
DOI URL |
[54] |
王淑丽, 郑绵平, 张震, 等. 四川盆地寒武系含盐盆地演化及其找钾意义: 来自碳氧同位素的证据[J]. 地学前缘, 2016, 23(5): 202-220.
DOI |
[55] |
QING H R, VEIZER J. Oxygen and carbon isotopic composition of Ordovician brachiopods: Implications for coeval seawater[J]. Geochimica et Cosmochimica Acta, 1994, 58(20): 4429-4442.
DOI URL |
[56] | TALBOT M R. A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates[J]. Chemical Geology, 1990, 80(4): 261-279. |
[57] |
LI H C, KU T L. δ13C-δ18C covariance as a paleohydrological indicator for closed-basin lakes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 133(1/2): 69-80.
DOI URL |
[58] | TALBOT M, KELTS K. Paleolimnological signatures from carbon and oxygen isotopic ratios in carbonates from organic carbon-rich lacustrine sediments[M]// Lacustrine Basin Exploration. Washington: American Association of Petroleum Geologists, 1990: 99-112. |
[59] |
WU H C, ZHANG S H, JIANG G Q, et al. Astrochronology of the Early Turonian-Early Campanian terrestrial succession in the Songliao Basin, northeastern China and its implication for long-period behavior of the Solar System[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385: 55-70.
DOI URL |
[60] |
YU Z Q, HE H Y, DENG C L, et al. New geochronological constraints for the Upper Cretaceous Nenjiang Formation in the Songliao Basin, NE China[J]. Cretaceous Research, 2019, 102: 160-169.
DOI URL |
[61] | 曹文心, 席党鹏, 黄清华, 等. 松辽盆地海侵事件: 松科1井钙质超微化石新证据[J]. 地质通报, 2016, 35(6): 866-871. |
[62] | 冯子辉, 霍秋立, 王雪, 等. 松辽盆地松科1井晚白垩世沉积地层有机地球化学研究[J]. 地学前缘, 2009, 16(5): 181-191. |
[63] |
HU J F, PENG P A, LIU M Y, et al. Seawater incursion events in a Cretaceous paleo-lake revealed by specific marine biological markers[J]. Scientific Reports, 2015, 5: 9508.
DOI PMID |
[64] |
GREGG J M, BISH D L, KACZMAREK S E, et al. Mineralogy, nucleation and growth of dolomite in the laboratory and sedimentary environment: A review[J]. Sedimentology, 2015, 62(6): 1749-1769.
DOI URL |
[65] |
WARREN J. Dolomite: Occurrence, evolution and economically important associations[J]. Earth-Science Reviews, 2000, 52(1/2/3): 1-81.
DOI URL |
[66] |
LAND L S. The origin of massive dolomite[J]. Journal of Geological Education, 1985, 33(2): 112-125.
DOI URL |
[67] |
VASCONCELOS C, MCKENZIE J A, WARTHMANN R, et al. Calibration of the δ18O paleothermometer for dolomite precipitated in microbial cultures and natural environments[J]. Geology, 2005, 33(4): 317.
DOI URL |
[68] |
POULSEN C J, POLLARD D, WHITE T S. General circulation model simulation of the δ18O content of continental precipitation in the Middle Cretaceous: A model-proxy comparison[J]. Geology, 2007, 35(3): 199.
DOI URL |
[1] | 谭聪, 刘策, 王铜山, 李秋芬, 朱玺, 付景龙, 姜华. 局部白云岩化作用研究:以塔里木盆地阿克苏地区蓬莱坝剖面鹰山组为例[J]. 现代地质, 2023, 37(05): 1182-1193. |
[2] | 张改侠, 孙金佳杰, 龚庆杰, 江彪, 严桃桃. 云南潞西上芒岗金矿区白云岩风化的地球化学基因[J]. 现代地质, 2023, 37(03): 801-812. |
[3] | 蒋中发, 江梦雅, 陈海龙, 刘龙松, 王学勇, 卞保力, 李娜. 准噶尔盆地玛湖凹陷下二叠统风城组烃源岩热演化及沉积古环境评价[J]. 现代地质, 2022, 36(04): 1118-1130. |
[4] | 白翔宇, 马郡伟, 夏清萍, 谭先锋, 李开开. 北京西山下苇甸第三统/芙蓉统界线附近碳酸盐岩地球化学特征及古环境意义[J]. 现代地质, 2022, 36(02): 729-741. |
[5] | 高阳东, 林鹤鸣, 汪旭东, 邱欣卫, 阙晓铭, 李敏, 赵泽颖, 陈艳. 珠江口盆地陆丰凹陷文昌组沉积地球化学特征及古环境意义[J]. 现代地质, 2022, 36(01): 118-129. |
[6] | 黄清华, 席党鹏, 王辉, 张文婧, 王建伟, 曹维福, 贾卧, 王丽静. 松辽盆地北部中二叠统碳酸盐岩元素和稳定同位素地球化学特征与古环境[J]. 现代地质, 2021, 35(05): 1282-1295. |
[7] | 刘洋, 方念乔, 强萌麟, 贾磊, 宋超杰. 粤桂地区白垩纪中期安山岩年代学、地球化学特征及其构造意义[J]. 现代地质, 2021, 35(04): 968-980. |
[8] | 张海华, 李晓海, 张健, 郑月娟, 陈树旺, 张德军, 苏飞, 卞雄飞, 孙雷. 松辽盆地北部上二叠统林西组古生物年代学、地球化学特征及地质意义[J]. 现代地质, 2021, 35(02): 568-578. |
[9] | 蒋苏扬, 黄文辉, 张永生. 鄂尔多斯盆地西缘中奥陶统地球化学特征及古环境意义[J]. 现代地质, 2020, 34(03): 545-553. |
[10] | 黎霆, 诸丹诚, 李海平, 杨明磊, 李涛, 李平平, 邹华耀. 中二叠统茅口组白云岩发育机理:以川中-川东地区为例[J]. 现代地质, 2020, 34(02): 345-355. |
[11] | 马佳怡, 谢淑云, 张默海, 焦存礼, 韩俊, 鲍征宇, 邬铁, 张海. 湖北秭归地区震旦系灯影组白云岩地球化学特征及其成因意义[J]. 现代地质, 2020, 34(01): 74-87. |
[12] | 王宏语, 李瑞磊, 朱建峰, 徐文. 陆相裂谷盆地构造沉积学特征:以松辽盆地伏龙泉断陷为例[J]. 现代地质, 2019, 33(06): 1151-1162. |
[13] | 谭聪, 袁选俊, 于炳松, 刘策, 李雯, 崔景伟. 鄂尔多斯盆地南缘上二叠统—中下三叠统地球化学特征及其古气候、古环境指示意义[J]. 现代地质, 2019, 33(03): 615-628. |
[14] | 贾鹏,李伟,卢远征,樊茹,李鑫, 李明,曾乙洋,刘鑫. 四川盆地中南部地区洗象池群沉积旋回的碳氧同位素特征及地质意义[J]. 现代地质, 2016, 30(6): 1329-1338. |
[15] | 石海岩,苗卫良,马海州,李永寿,张西营,严玲琴,马维明,王振东. 云南思茅盆地白垩纪—古新世碎屑岩地球化学特征及地质意义[J]. 现代地质, 2016, 30(3): 541-554. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||