现代地质 ›› 2019, Vol. 33 ›› Issue (03): 615-628.DOI: 10.19657/j.geoscience.1000-8527.2019.001
谭聪1(), 袁选俊1(
), 于炳松2, 刘策1, 李雯3, 崔景伟1
收稿日期:
2018-05-14
修回日期:
2019-01-24
出版日期:
2019-06-23
发布日期:
2019-06-24
通讯作者:
袁选俊
作者简介:
袁选俊,男,教授级高级工程师,博士生导师,1963年出生,沉积学专业,主要从事含油气盆地沉积学、储层地质学研究。Email: yxj@petrochina.com.cn。基金资助:
TAN Cong1(), YUAN Xuanjun1(
), YU Bingsong2, LIU Ce1, LI Wen3, Cui Jingwei1
Received:
2018-05-14
Revised:
2019-01-24
Online:
2019-06-23
Published:
2019-06-24
Contact:
YUAN Xuanjun
摘要:
为探索陆相湖泊环境记录中二叠纪—三叠纪之交古气候演化的信息,以鄂尔多斯盆地南缘陕西铜川石川河剖面上二叠统石千峰组(P3s)和三叠系的刘家沟组(T1l)、和尚沟组(T1h)、纸坊组(T2z)为研究对象,对界面上下地层开展了系统的矿物学、岩石学和地球化学研究。通过主量和微量元素、碳氧同位素以及TOC测试对古盐度、古氧化还原环境和古气候演化规律进行分析。测试结果显示在二叠系—三叠系(P/T)界线附近主、微量元素和碳、氧同位素发生较明显的变化,气候环境代用化学指标的波动指示了从晚二叠世至早中三叠世鄂尔多斯盆地的古气候、古环境的变化。研究结果表明上二叠统石千峰组形成于河流-三角洲沉积环境,氧化程度相对低,古气候相对温暖湿润;下三叠统刘家沟组与和尚沟组的紫红色砂泥岩代表水体较浅的河流-三角洲相,强氧化环境,气候干旱炎热;而到中三叠统纸坊组沉积期,湖平面上升,元素的迁移作用加强,氧化程度变弱,气温降低,气候转为半干旱半湿润气候。碳同位素分析结果显示,鄂尔多斯盆地陆相P/T界线上δ13CPDB存在显著负偏,与全球范围内的海相P/T界线具有一致性,说明在华北地台陆相P/T界线上同样存在气候突变和生物灭绝等重大地质事件的沉积记录,与海相地层可对比。
中图分类号:
谭聪, 袁选俊, 于炳松, 刘策, 李雯, 崔景伟. 鄂尔多斯盆地南缘上二叠统—中下三叠统地球化学特征及其古气候、古环境指示意义[J]. 现代地质, 2019, 33(03): 615-628.
TAN Cong, YUAN Xuanjun, YU Bingsong, LIU Ce, LI Wen, Cui Jingwei. Geochemical Characteristics and Paleoclimatic Implications of the Upper Permian and Middle-Lower Triassic Strata in Southern Ordos Basin[J]. Geoscience, 2019, 33(03): 615-628.
图2 鄂尔多斯盆地南缘陕西铜川石川河剖面二叠系—三叠系地层及界线 (a)研究区关庄镇石川河剖面二叠系—三叠系地层界线(下泥岩上砂岩);(b)研究剖面二叠系—三叠系地层界线近景;(c)关庄镇石川河剖面和尚沟组与纸坊组界线;(d)关庄镇石川河剖面石千峰组灰绿色泥岩层
Fig.2 Permian-Triassic stratigraphy and boundary at the Shichuanhe section of Tongchuan, Shaanxi Province in the southern Ordos Basin
主量元素 | P3s | T1l | T1h | T2z |
---|---|---|---|---|
SiO2 | 56.18(47.77~62.35)/10 | 57.44(52.68~77.91)/19 | 51.92(24.92~63.50)/12 | 59.47(47.59~68.44)/5 |
Al2O3 | 16.43(13.00~17.88)/10 | 16.30(10.47~20.09)/19 | 15.30(6.52~20.95)/12 | 13.85(9.61~20.02)/5 |
Fe2O3 | 5.95(4.78~7.98)/10 | 6.54(2.91~8.48)/19 | 6.67(1.75~8.88)/12 | 4.86(2.18~7.83)/5 |
MgO | 4.65(3.17~6.78)/10 | 3.12(1.86~3.58)/19 | 3.18(1.85~3.97)/12 | 4.14(3.48~4.69)/5 |
CaO | 2.25(0.55~5.95)/10 | 3.42(0.42~6.18)/19 | 7.67(1.36~33.67)/12 | 3.12(0.67~7.56)/5 |
Na2O | 0.64(0.39~0.93)/10 | 0.88(0.67~1.41)/19 | 0.93(0.51~2.15)/12 | 0.62(0.56~0.64)/5 |
K2O | 4.03(2.86~4.78)/10 | 4.16(2.35~5.48)/19 | 4.10(3.60~5.57)/12 | 4.42(3.94~4.81)/5 |
MnO | 0.048(0.018~0.131)/10 | 0.043(0.012~0.067)/19 | 0.07(0.033~0.10)/12 | 0.040(0.022~0.075)/5 |
TiO | 0.62(0.55~0.68)/10 | 0.69(0.20~0.80)/19 | 0.70(0.29~0.90)/12 | 0.79(0.66~0.91)/5 |
P2O3 | 0.14(0.11~0.21)/10 | 0.16(0.08~0.21)/19 | 0.16(0.05~0.27)/12 | 0.15(0.07~0.23)/5 |
FeO | 2.10(1.18~3.14)/10 | 1.97(1.51~3.2)/19 | 2.05(1.68~2.75)/12 | 3.07(2.51~4.23)/5 |
表1 石川河剖面晚二叠世—早中三叠世地层主量元素测试分析结果/%
Table 1 Analysis results of major elements for the Permian-Triassic strata in the Shichuanhe section(%)
主量元素 | P3s | T1l | T1h | T2z |
---|---|---|---|---|
SiO2 | 56.18(47.77~62.35)/10 | 57.44(52.68~77.91)/19 | 51.92(24.92~63.50)/12 | 59.47(47.59~68.44)/5 |
Al2O3 | 16.43(13.00~17.88)/10 | 16.30(10.47~20.09)/19 | 15.30(6.52~20.95)/12 | 13.85(9.61~20.02)/5 |
Fe2O3 | 5.95(4.78~7.98)/10 | 6.54(2.91~8.48)/19 | 6.67(1.75~8.88)/12 | 4.86(2.18~7.83)/5 |
MgO | 4.65(3.17~6.78)/10 | 3.12(1.86~3.58)/19 | 3.18(1.85~3.97)/12 | 4.14(3.48~4.69)/5 |
CaO | 2.25(0.55~5.95)/10 | 3.42(0.42~6.18)/19 | 7.67(1.36~33.67)/12 | 3.12(0.67~7.56)/5 |
Na2O | 0.64(0.39~0.93)/10 | 0.88(0.67~1.41)/19 | 0.93(0.51~2.15)/12 | 0.62(0.56~0.64)/5 |
K2O | 4.03(2.86~4.78)/10 | 4.16(2.35~5.48)/19 | 4.10(3.60~5.57)/12 | 4.42(3.94~4.81)/5 |
MnO | 0.048(0.018~0.131)/10 | 0.043(0.012~0.067)/19 | 0.07(0.033~0.10)/12 | 0.040(0.022~0.075)/5 |
TiO | 0.62(0.55~0.68)/10 | 0.69(0.20~0.80)/19 | 0.70(0.29~0.90)/12 | 0.79(0.66~0.91)/5 |
P2O3 | 0.14(0.11~0.21)/10 | 0.16(0.08~0.21)/19 | 0.16(0.05~0.27)/12 | 0.15(0.07~0.23)/5 |
FeO | 2.10(1.18~3.14)/10 | 1.97(1.51~3.2)/19 | 2.05(1.68~2.75)/12 | 3.07(2.51~4.23)/5 |
微量元素 | P3s | T1l | T1h | T2z |
---|---|---|---|---|
V | 116.9(97.9~150.0)/10 | 91.5(40.4~140.0)/19 | 87.78(33.1~136.0)/12 | 163(139~186)/5 |
Cr | 72.74(58.60~82.50)/10 | 72.03(25.70~90.90)/19 | 68.29(30.0~101.0)/12 | 107.24(90.40~117.00)/5 |
Co | 16.36(13.80~19.70)/10 | 15.83(5.33~19.30)/19 | 16.63(8.09~24.20)/12 | 19.76(16.30~25.10)/5 |
Ni | 29.35(26.70~37.20)/10 | 29.19(9.56~37.10)/19 | 30.7(24.7~46.1)/12 | 35.04(30.50~41.40)/5 |
Cu | 31.25(10.80~59.50)/10 | 14.9(11.3~18.0)/19 | 28.7(13.6~38.8)/12 | 56.06(44.70~72.70)/5 |
Zn | 92.68(77.60~108.00)/10.00 | 91.93(37.50~127.00)/19 | 88.12(37.30~118.00)/12 | 119.6(110.00~135.00)/5 |
Ga | 23.24(18.0~27.10)/10 | 21.54(11.30~29.10)/19 | 20.94(9.71~28.20)/12 | 30.72(25.00~34.70)/5 |
Rb | 157.8(112.0~181.0)/10 | 167.25(74.10~201.0)/19 | 162.32(72.10~192.00)/12 | 211.6(195.00~225.00)/5 |
Sr | 107.28(77.0~140.0)/10 | 89.04(74.00~105.00)/19 | 124.56(101.00~161.00)/12 | 119.24(82.20~134.00)/5 |
Y | 28.49(23.90~31.60)/10 | 24.51(11.1~36.0)/19 | 28.46(19.70~35.80)/12 | 29.26(27.60~31.20)/5 |
Ba | 334(207~584)/10 | 292.75(261.00~324.00)/19 | 313.25(286.00~345.00)/12 | 300(260~318)/5 |
La | 38.61(33.0~42.50)/10 | 41.77(14.00~52.8)/19 | 43.48(35.50~66.80)/12 | 59.26(45.80~70.80)/5 |
Ce | 74.28(60.10~82.20)/10 | 84.98(75.40~102.0)/19 | 84.71(55.00~134.00)/12 | 105.82(85.10~126.00)/5 |
Nd | 31.6(25.4~38.2)/10 | 34.4(12.7~43.1)/19 | 37.55(31.90~48.0)/12 | 45.2(38.0~50.4)/5 |
Tb | 0.93(0.80~1.09)/10 | 0.88(0.41~1.16)/19 | 0.90(0.67~1.08)/12 | 1.24(1.07~1.18)/5 |
W | 1.73(1.44~1.98)/10 | 2.08(1.98~2.20)/19 | 1.99(0.67~2.62)/12 | 2.40(1.97~2.74)/5 |
Tl | 1.34(0.93~1.63)/10 | 0.99(0.57~1.89)/19 | 0.97(0.39~1.73)/12 | 1.92(1.76~2.03)/5 |
Pb | 23.0(10.0~54.4)/10 | 26.57(11.20~46.40)/19 | 23.65(7.48~32.10)/12 | 20.84(13.90~35.40)/5 |
Bi | 0.42(0.24~0.54)/10 | 0.38(0.13~0.59)/19 | 0.61(0.57~0.68)/12 | 0.68(0.37~0.93)/5 |
Th | 13.45(11.70~14.90)/10 | 13.61(11.0~16.8)/19 | 13.91(5.96~20.60)/12 | 20.54(16.4~24.0)/5 |
U | 3.29(2.90~4.2)/10 | 2.45(1.12~3.90)/19 | 2.25(0.89~3.52)/12 | 4.88(2.86~7.48)/5 |
Nb | 14.63(12.60~16.90)/10 | 15.33(5.31~20.90)/19 | 16.23(6.60~20.50)/12 | 23.6(18.8~26.8)/5 |
Zr | 254.5(191.0~282.0)/10 | 129.04(76.6~323.0)/19 | 124.32(40.10~189.00)/12 | 216.6(171.0~259.0)/5 |
Hf | 6.64(5.06~7.37)/10 | 3.46(2.22~8.15)/19 | 3.40(1.10~5.12)/12 | 5.92(4.50~7.21)/5 |
表2 石川河剖面晚二叠世—早中三叠世地层微量元素测试分析结果/(μg/g)
Table 2 Analysis results of trace elements for the Permian-Triassic strata in the Shichuanhe section(μg/g)
微量元素 | P3s | T1l | T1h | T2z |
---|---|---|---|---|
V | 116.9(97.9~150.0)/10 | 91.5(40.4~140.0)/19 | 87.78(33.1~136.0)/12 | 163(139~186)/5 |
Cr | 72.74(58.60~82.50)/10 | 72.03(25.70~90.90)/19 | 68.29(30.0~101.0)/12 | 107.24(90.40~117.00)/5 |
Co | 16.36(13.80~19.70)/10 | 15.83(5.33~19.30)/19 | 16.63(8.09~24.20)/12 | 19.76(16.30~25.10)/5 |
Ni | 29.35(26.70~37.20)/10 | 29.19(9.56~37.10)/19 | 30.7(24.7~46.1)/12 | 35.04(30.50~41.40)/5 |
Cu | 31.25(10.80~59.50)/10 | 14.9(11.3~18.0)/19 | 28.7(13.6~38.8)/12 | 56.06(44.70~72.70)/5 |
Zn | 92.68(77.60~108.00)/10.00 | 91.93(37.50~127.00)/19 | 88.12(37.30~118.00)/12 | 119.6(110.00~135.00)/5 |
Ga | 23.24(18.0~27.10)/10 | 21.54(11.30~29.10)/19 | 20.94(9.71~28.20)/12 | 30.72(25.00~34.70)/5 |
Rb | 157.8(112.0~181.0)/10 | 167.25(74.10~201.0)/19 | 162.32(72.10~192.00)/12 | 211.6(195.00~225.00)/5 |
Sr | 107.28(77.0~140.0)/10 | 89.04(74.00~105.00)/19 | 124.56(101.00~161.00)/12 | 119.24(82.20~134.00)/5 |
Y | 28.49(23.90~31.60)/10 | 24.51(11.1~36.0)/19 | 28.46(19.70~35.80)/12 | 29.26(27.60~31.20)/5 |
Ba | 334(207~584)/10 | 292.75(261.00~324.00)/19 | 313.25(286.00~345.00)/12 | 300(260~318)/5 |
La | 38.61(33.0~42.50)/10 | 41.77(14.00~52.8)/19 | 43.48(35.50~66.80)/12 | 59.26(45.80~70.80)/5 |
Ce | 74.28(60.10~82.20)/10 | 84.98(75.40~102.0)/19 | 84.71(55.00~134.00)/12 | 105.82(85.10~126.00)/5 |
Nd | 31.6(25.4~38.2)/10 | 34.4(12.7~43.1)/19 | 37.55(31.90~48.0)/12 | 45.2(38.0~50.4)/5 |
Tb | 0.93(0.80~1.09)/10 | 0.88(0.41~1.16)/19 | 0.90(0.67~1.08)/12 | 1.24(1.07~1.18)/5 |
W | 1.73(1.44~1.98)/10 | 2.08(1.98~2.20)/19 | 1.99(0.67~2.62)/12 | 2.40(1.97~2.74)/5 |
Tl | 1.34(0.93~1.63)/10 | 0.99(0.57~1.89)/19 | 0.97(0.39~1.73)/12 | 1.92(1.76~2.03)/5 |
Pb | 23.0(10.0~54.4)/10 | 26.57(11.20~46.40)/19 | 23.65(7.48~32.10)/12 | 20.84(13.90~35.40)/5 |
Bi | 0.42(0.24~0.54)/10 | 0.38(0.13~0.59)/19 | 0.61(0.57~0.68)/12 | 0.68(0.37~0.93)/5 |
Th | 13.45(11.70~14.90)/10 | 13.61(11.0~16.8)/19 | 13.91(5.96~20.60)/12 | 20.54(16.4~24.0)/5 |
U | 3.29(2.90~4.2)/10 | 2.45(1.12~3.90)/19 | 2.25(0.89~3.52)/12 | 4.88(2.86~7.48)/5 |
Nb | 14.63(12.60~16.90)/10 | 15.33(5.31~20.90)/19 | 16.23(6.60~20.50)/12 | 23.6(18.8~26.8)/5 |
Zr | 254.5(191.0~282.0)/10 | 129.04(76.6~323.0)/19 | 124.32(40.10~189.00)/12 | 216.6(171.0~259.0)/5 |
Hf | 6.64(5.06~7.37)/10 | 3.46(2.22~8.15)/19 | 3.40(1.10~5.12)/12 | 5.92(4.50~7.21)/5 |
样品编号 | δ13C/‰ | δ18O/‰ | 样品编号 | δ13C/‰ | δ18O/‰ | 样品编号 | δ13C/‰ | δ18O/‰ |
---|---|---|---|---|---|---|---|---|
ljg13 | -4.8 | -6.5 | S15 | -2.8 | -11.8 | S59 | -6.4 | -11.4 |
ljg8 | -5.4 | -9.2 | S16 | -1.8 | -10.0 | sjg20 | -1.9 | -6.8 |
L22 | -2.2 | -5.8 | S17 | -2.5 | -9.0 | S62 | -2.2 | -5.1 |
L21 | -5.2 | -5.1 | S19 | -1.3 | -9.6 | sjg17 | -1.8 | -3.7 |
L20 | -1.9 | -7.0 | S20 | -2.8 | -5.2 | S64 | -2.7 | -6.2 |
L18 | -0.6 | -7.0 | S21 | -3.6 | -12.1 | sjg16 | -0.8 | -6.3 |
L17 | -1.0 | -10.2 | S22 | -2.4 | -12.1 | S66 | -2.5 | -6.4 |
L16 | / | / | S23 | -3.5 | -10.5 | S67 | -2.0 | -6.3 |
L15 | -3.2 | -5.5 | S24 | -0.4 | -6.7 | S68 | -2.3 | -6.9 |
L14 | -2.5 | -7.2 | S25 | -3.1 | -11.2 | S69 | -2.2 | -8.2 |
L13 | / | / | S26 | -1.0 | -7.1 | S70 | -2.6 | -6.2 |
L11 | -3.8 | -8.9 | S27 | -1.2 | -10.0 | sjg15 | -2.0 | -8.7 |
L10 | / | / | S28 | -1.9 | -11.7 | sjg14 | -0.2 | -4.5 |
ljg4 | -2.1 | -12.0 | S29 | -2.4 | -12.0 | S72 | -0.9 | -4.9 |
ljg2 | -2.8 | -8.5 | S30 | -2.5 | -10.9 | S73 | -1.0 | -6.5 |
L9 | / | / | S31 | -2.1 | -6.9 | S74 | -0.3 | -6.1 |
L8 | -4.0 | -11.5 | S32 | -1.7 | -7.7 | S75 | -0.5 | -6.8 |
L7 | / | / | S33 | -0.5 | -7.5 | S76 | -1.8 | -8.9 |
L5 | -3.8 | -7.1 | S34 | -1.8 | -10.3 | sjg12 | -1.3 | -6.1 |
L4 | -5.4 | -7.7 | S35 | -1.7 | -6.9 | S78 | -2.1 | -7.9 |
L3 | -3.2 | -11.2 | S36 | -1.4 | -7.3 | sjg11 | -2.1 | -8.1 |
L2 | -8.2 | -6.8 | S38 | -2.3 | -10.3 | S80 | -2.5 | -7.2 |
L1 | -6.8 | -5.9 | S39 | -2.1 | -9.8 | S81 | -2.9 | -10.4 |
ljg1 | -3.6 | -6.4 | S40 | -2.2 | -7.2 | S82 | -3.5 | -12.7 |
S1 | -6.7 | -10.0 | S41 | -2.6 | -6.5 | S83 | -1.0 | -4.8 |
S2 | -3.7 | -8.5 | S43 | -3.3 | -8.5 | S84 | -1.2 | -6.0 |
sjg30 | -0.4 | -6.6 | S44 | -7.7 | -10.2 | sjg9 | -1.9 | -3.3 |
S4 | -3.3 | -5.8 | S45 | -6.6 | -10.2 | S86 | -3.6 | -6.2 |
S5 | -1.0 | -9.5 | S46 | -6.5 | -11.6 | sjg8 | -3.5 | -10.1 |
sjg28 | -1.6 | -9.1 | S47 | -6.7 | -13.0 | sjg6 | -0.8 | -6.6 |
S7 | -0.6 | -8.3 | S48 | -4.9 | -11.1 | S89 | -3.0 | -4.3 |
S8 | -1.4 | -9.4 | S49 | -5.3 | -10.1 | S90 | -2.5 | -5.8 |
S9 | -2.0 | -10.7 | S50 | -5.8 | -13.9 | S93 | -2.5 | -3.8 |
S10 | -1.8 | -10.4 | S52 | -6.2 | -9.7 | S94 | -3.3 | -4.9 |
S11 | -3.7 | -4.5 | S53 | -6.6 | -11.6 | S95 | -5.2 | -6.2 |
S12 | -0.7 | -8.6 | S54 | -6.8 | -11.8 | S96 | -5.6 | -5.4 |
S13 | -3.7 | -9.2 | S56 | -6.5 | -12.2 | S97 | -5.3 | -9.2 |
S14 | -2.0 | -8.2 | S58 | -6.2 | -11.6 | S98 | -5.6 | -8.3 |
表3 石川河剖面上二叠统—中下三叠统碳氧同位素测试分析结果
Table 3 Analysis results of carbon and oxygen isotope for the Permian-Triassic strata in the Shichuanhe section
样品编号 | δ13C/‰ | δ18O/‰ | 样品编号 | δ13C/‰ | δ18O/‰ | 样品编号 | δ13C/‰ | δ18O/‰ |
---|---|---|---|---|---|---|---|---|
ljg13 | -4.8 | -6.5 | S15 | -2.8 | -11.8 | S59 | -6.4 | -11.4 |
ljg8 | -5.4 | -9.2 | S16 | -1.8 | -10.0 | sjg20 | -1.9 | -6.8 |
L22 | -2.2 | -5.8 | S17 | -2.5 | -9.0 | S62 | -2.2 | -5.1 |
L21 | -5.2 | -5.1 | S19 | -1.3 | -9.6 | sjg17 | -1.8 | -3.7 |
L20 | -1.9 | -7.0 | S20 | -2.8 | -5.2 | S64 | -2.7 | -6.2 |
L18 | -0.6 | -7.0 | S21 | -3.6 | -12.1 | sjg16 | -0.8 | -6.3 |
L17 | -1.0 | -10.2 | S22 | -2.4 | -12.1 | S66 | -2.5 | -6.4 |
L16 | / | / | S23 | -3.5 | -10.5 | S67 | -2.0 | -6.3 |
L15 | -3.2 | -5.5 | S24 | -0.4 | -6.7 | S68 | -2.3 | -6.9 |
L14 | -2.5 | -7.2 | S25 | -3.1 | -11.2 | S69 | -2.2 | -8.2 |
L13 | / | / | S26 | -1.0 | -7.1 | S70 | -2.6 | -6.2 |
L11 | -3.8 | -8.9 | S27 | -1.2 | -10.0 | sjg15 | -2.0 | -8.7 |
L10 | / | / | S28 | -1.9 | -11.7 | sjg14 | -0.2 | -4.5 |
ljg4 | -2.1 | -12.0 | S29 | -2.4 | -12.0 | S72 | -0.9 | -4.9 |
ljg2 | -2.8 | -8.5 | S30 | -2.5 | -10.9 | S73 | -1.0 | -6.5 |
L9 | / | / | S31 | -2.1 | -6.9 | S74 | -0.3 | -6.1 |
L8 | -4.0 | -11.5 | S32 | -1.7 | -7.7 | S75 | -0.5 | -6.8 |
L7 | / | / | S33 | -0.5 | -7.5 | S76 | -1.8 | -8.9 |
L5 | -3.8 | -7.1 | S34 | -1.8 | -10.3 | sjg12 | -1.3 | -6.1 |
L4 | -5.4 | -7.7 | S35 | -1.7 | -6.9 | S78 | -2.1 | -7.9 |
L3 | -3.2 | -11.2 | S36 | -1.4 | -7.3 | sjg11 | -2.1 | -8.1 |
L2 | -8.2 | -6.8 | S38 | -2.3 | -10.3 | S80 | -2.5 | -7.2 |
L1 | -6.8 | -5.9 | S39 | -2.1 | -9.8 | S81 | -2.9 | -10.4 |
ljg1 | -3.6 | -6.4 | S40 | -2.2 | -7.2 | S82 | -3.5 | -12.7 |
S1 | -6.7 | -10.0 | S41 | -2.6 | -6.5 | S83 | -1.0 | -4.8 |
S2 | -3.7 | -8.5 | S43 | -3.3 | -8.5 | S84 | -1.2 | -6.0 |
sjg30 | -0.4 | -6.6 | S44 | -7.7 | -10.2 | sjg9 | -1.9 | -3.3 |
S4 | -3.3 | -5.8 | S45 | -6.6 | -10.2 | S86 | -3.6 | -6.2 |
S5 | -1.0 | -9.5 | S46 | -6.5 | -11.6 | sjg8 | -3.5 | -10.1 |
sjg28 | -1.6 | -9.1 | S47 | -6.7 | -13.0 | sjg6 | -0.8 | -6.6 |
S7 | -0.6 | -8.3 | S48 | -4.9 | -11.1 | S89 | -3.0 | -4.3 |
S8 | -1.4 | -9.4 | S49 | -5.3 | -10.1 | S90 | -2.5 | -5.8 |
S9 | -2.0 | -10.7 | S50 | -5.8 | -13.9 | S93 | -2.5 | -3.8 |
S10 | -1.8 | -10.4 | S52 | -6.2 | -9.7 | S94 | -3.3 | -4.9 |
S11 | -3.7 | -4.5 | S53 | -6.6 | -11.6 | S95 | -5.2 | -6.2 |
S12 | -0.7 | -8.6 | S54 | -6.8 | -11.8 | S96 | -5.6 | -5.4 |
S13 | -3.7 | -9.2 | S56 | -6.5 | -12.2 | S97 | -5.3 | -9.2 |
S14 | -2.0 | -8.2 | S58 | -6.2 | -11.6 | S98 | -5.6 | -8.3 |
图5 石川河剖面上二叠统—中三叠统古氧化还原条件演化特征 (a)U/Th值变化趋势图;(b)V/Cr变化趋势;(c)Fe2+/Fe3+变化趋势
Fig.5 Paleoredox condition fluctuation of the Permian-Triassic strata in the Shichuanhe section
图6 石川河剖面晚二叠世—早中三叠世地球化学、气候环境演变综合柱状图
Fig. 6 Comprehensive diagram of geochemistry and paleoclimate for the Permian-Triassic strata in the Shichuanhe section
图7 石川河剖面与卡鲁盆地、煤山剖面P/T界线碳氧同位素对比图
Fig.7 Carbon oxygen isotope comparison diagram of P/T boundary among Shichuanhe section, Karoo Basin and Meishan section
[1] | NECHAEV V P. Heavy-mineral assemblages of continental margins as indicators of plate-tectonic environments[J]. Journal of Sedimentary Petrology, 1993,63(6):1110-1117. |
[2] | 熊小辉, 肖加飞. 沉积环境的地球化学示踪[J]. 地球与环境, 2011,39(3):405-414. |
[3] | 陈衍景, 杨忠芳, 赵太平, 等. 沉积物微量元素示踪物源区和地壳成分的方法和现状[J]. 地球与环境, 1996,24(3):7-11. |
[4] | 李被, 刘池洋, 黄雷, 等. 东濮凹陷北部沙河街组三段中亚段沉积环境分析[J]. 现代地质, 2018,32(2):227-239. |
[5] |
XIE S, PANCOST R D, YIN H, et al. Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction[J]. Nature, 2005,434:494-497.
DOI URL |
[6] | 殷鸿福, 鲁立强. 二叠系—三叠系界线全球层型剖面——回顾和进展[J]. 地学前缘, 2006,13(6):11-32. |
[7] | 戎嘉余, 方宗杰. 生物大灭绝与复苏:来自华南古生代和三叠纪的证据[M]. 合肥: 中国科学技术大学出版社, 2004: 34-45. |
[8] |
KIDDER D L, WORSLEY T R. Causes and consequences of extreme Permo-Triassic warming to globally equable climate and relation to the Permo-Triassic extinction and recovery[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004,203(3):207-237.
DOI URL |
[9] |
KIEHL J T, SHIELDS C A. Climate simulation of the latest Permian: Implications for mass extinction[J]. Geology, 2005,33(9):757-760.
DOI URL |
[10] | 柴之芳, 马淑兰, 毛雪瑛, 等. 浙江长兴二叠系/三叠系界线剖面的元素地球化学特征[J]. 地质学报, 1986,60(2):27-38. |
[11] |
KATO Y, NAKAO K, ISOZAKI Y. Geochemistry of Late Permian to Early Triassic pelagic cherts from southwest Japan: implications for an oceanic redox change[J]. Chemical Geology, 2002,182(1):15-34.
DOI URL |
[12] |
JANOS H, ATTILA D, KINGA H, et al. Carbon isotope excursions and microfacies changes in marine Permian-Triassic boundary sections in Hungary[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006,237(2/4):160-181.
DOI URL |
[13] |
KORTE C, Kozur H W. Carbon-isotope stratigraphy across the Permian-Triassic boundary: A review[J]. Journal of Asian Earth Sciences, 2010,39(4):215-235.
DOI URL |
[14] | HERMANN E, HOCULI P A, BUCHER H, et al. A close-up view of the Permian-Triassic boundary based on expanded organic carbon isotope records from Norway (Trøndelag and Finnmark Platform)[J]. Global & Planetary Change, 2010,74(3/4):156-167. |
[15] | 彭元桥, 高勇群, 杨逢清, 等. 南非陆相二叠系—三叠系界线研究进展[J]. 地质科技情报, 2006,25(1):769-776. |
[16] | WANG S, PENG Y, YIN H. Study on a terrestrial Permian-Triassic boundary section-Zhejue Section, Weining County, Guizhou Province, China[J]. Journal of Earth Science, 2002,13(2):163-171. |
[17] | SMITH R, BOTHA J. The recovery of terrestrial vertebrate diversity in the South African Karoo Basin after the end-Permian extinction[J]. Comptes Rendus-Palevol, 2005,6:623-636. |
[18] | TABOR N J. Permo-Pennsylvanian palaeotemperatures from Fe-Oxide and phyllosilicate δ18O values[J]. Earth & Planetary Science Letters, 2007,253(1):159-171. |
[19] |
WILLIAMS M L, JONES B G, CARR P F. Geochemical consequences of the Permian-Triassic mass extinction in a non-marine succession, Sydney Basin, Australia[J]. Chemical Geology, 2012,326/327:174-188.
DOI URL |
[20] |
REY K, AMIOT R, FOUREL F, et al. Global climate perturbations during the Permo-Triassic mass extinctions recorded by continental tetrapods from South Africa[J]. Gondwana Research, 2015,37:384-396.
DOI URL |
[21] | 殷鸿福, 林和茂. 陕西渭北地区三叠纪海相化石层并论石千峰群的时代[J]. 地层学杂志, 1979,3(4):3-11. |
[22] |
MACLEOD K G, SMITH R M H, KOCH P L, et al. Timing of mammal-like reptile extinctions across the Permian-Triassic boundary in South Africa[J]. Geology, 2000,28(3):227-230.
DOI URL |
[23] | 楚道亮, 缪雪, 呈玉祥, 等. 陕西渭北二叠纪—三叠纪之交叶肢介化石及其地层对比[J]. 地球科学, 2018,43(11):3910-3921. |
[24] | 朱志才, 柳永清, 旷红伟, 等. 山西陆相晚二叠世-早、中三叠世时期的沉积环境[M] //中国地质学会沉积地质专业委员会.2015年全国沉积学大会沉积学与非常规资源论文摘要集.武汉:长江大学, 2015: 2. |
[25] | 何自新. 鄂尔多斯盆地演化与油气[M]. 北京: 石油工业出版社, 2003: 3-12. |
[26] | 杨友运. 鄂尔多斯盆地南部延长组沉积体系和层序特征[J]. 地质通报, 2005,24(4):369-372. |
[27] | 王宏波, 郑希民, 冯明. 鄂尔多斯盆地三叠系延长组层序地层与生储盖组合特征[J]. 天然气地球科学, 2006,17(5):35-40. |
[28] | 白云来, 王新民, 刘化清, 等. 鄂尔多斯盆地西部边界的确定及其地球动力学背景[J]. 地质学报, 2006,80(6):792-813. |
[29] | 邓军, 王庆飞, 高帮飞, 等. 鄂尔多斯盆地演化与多种能源矿产分布[J]. 现代地质, 2005,19(4):538-545. |
[30] | 张福礼. 鄂尔多斯盆地天然气地质[M]. 北京: 地质出版社, 1994: 4-13. |
[31] | 杨俊杰. 鄂尔多斯盆地构造演化与油气分布规律[M]. 北京: 石油工业出版社, 2002: 3-16. |
[32] | 赵重远. 华北克拉通沉积盆地形成与演化及其油气赋存[M]. 西安: 西北大学出版社, 1990: 1-5. |
[33] | 谢渊. 鄂尔多斯盆地东南部延长组湖盆致密砂岩储层层序地层与油气勘探[M]. 北京: 地质出版社, 2004: 1-15. |
[34] | 杨遵仪, 殷鸿福, 林和茂. 陕西渭北石千峰群的海相化石[J]. 古生物学报, 1979,18(5):53-62. |
[35] | 张抗. 鄂尔多斯盆地南缘三叠纪海相层及有关问题的讨论[J]. 科学通报, 1983,28(1):41. |
[36] |
GALDBERG E D, ARRHENIUS G O S. Chemistry of Pacific pelagic sediments[J]. Geochimica et Cosmochimica Acta, 1958,13(2/3):153-212.
DOI URL |
[37] | NECHAEV V P. Heavy-mineral assemblages of continental margins as indicators of plate-tectonic environments[J]. Journal of Sedimentary Petrology, 1993,63(6):1110-1117. |
[38] | 丁仲礼, 熊尚发. 古气候数值模拟:进展评述[J]. 地学前缘, 2006,13(1):21-31. |
[39] | 陈道公. 地球化学[M]. 合肥: 中国科学技术大学出版社, 2009: 112-154. |
[40] | 高莲凤, 周巍, 张盈, 等. 藏南贡嘎晚侏罗世—早白垩世海相地层地球化学特征与古海洋环境演化[J]. 地学前缘, 2017,24(1):195-204. |
[41] | 贾鹏, 李伟, 卢远征, 等. 四川盆地中南部地区洗象池群沉积旋回的碳氧同位素特征及地质意义[J]. 现代地质, 2016,30(6):1329-1338. |
[42] | 郭来源, 李忠生, 解习农, 等. 湖相富有机质泥页岩地球化学元素高频变化及其地质意义:以泌阳凹陷 BY1井取心段为例[J]. 现代地质, 2015,29(6):1360-1370. |
[43] | 孙勇. 云南西北早白垩世环境与气候分析[D]. 成都:成都理工大学, 2012. |
[44] |
NELSON B W. Sedimentary phosphate method for estimating paleosalinities[J]. Science, 1967,158:917-920.
DOI URL |
[45] | 王敏芳, 黄传炎, 徐志诚, 等. 综述沉积环境中古盐度的恢复[J]. 新疆石油天然气, 2006,2(1):9-12. |
[46] | 赵明, 季峻峰, 陈小明, 等. 古盐度对塔北隆起泥岩中粘土矿物组合和绿泥石成分的影响[J]. 高校地质学报, 2015,21(3):365-375. |
[47] | 王益友, 郭文莹, 张国栋. 几种地球化学标志在金湖凹陷阜宁群沉积环境中的应用[J]. 同济大学学报(自然科学版), 1979,7(2):54-63. |
[48] | ERNST W. Geochemical Facies Analysis[M]. Amsterdam:Elsvier, 1970: 1-5. |
[49] | 曹长群, 王伟, 金玉. 浙江煤山二叠-三叠系界线附近碳同位素变化[J]. 科学通报, 2002,47(4):302-306. |
[50] |
XIE S, PANCOST R D, HUANG J, et al. Changes in the global carbon cycle occurred as two episodes during the Permian-Triassic crisis[J]. Geology, 2007,35(12):1083.
DOI URL |
[51] |
HORACEK M, BRANDNER R, ABART R. Carbon isotope record of the P/T boundary and the Lower Triassic in the Southern Alps: Evidence for rapid changes in storage of organic carbon[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007,252(1/2):347-354.
DOI URL |
[52] | HANDLEY L, PEARSON P N, MCMILLAN I K, et al. Large terrestrial and marine carbon and hydrogen isotope excursions in a new Paleocene/Eocene boundary section from Tanzania[J]. Earth & Planetary Science Letters, 2008,275(1/2):17-25. |
[53] |
FIO K, SPANGENBERG J E, VLAHOVIC I, et al. Stable isotope and trace element stratigraphy across the Permian-Triassic transition: A redefinition of the boundary in the Velebit Mountain, Croatia[J]. Chemical Geology, 2010,278(1/2):38-57.
DOI URL |
[54] |
TAKAHASHI S, KAIHO K, OBA M, et al. A smooth negative shift of organic carbon isotope ratios at an end-Permian mass extinction horizon in central pelagic Panthalassa[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010,292(3/4):532-539.
DOI URL |
[55] |
YIN H F, XIE S, LUO G, et al. Two episodes of environmental change at the Permian-Triassic boundary of the GSSP section Meishan[J]. Earth-Science Reviews, 2012,115(3):163-172.
DOI URL |
[56] | YIN H, YANG F, YU J, et al. An accurately delineated Permian-Triassic boundary in continental successions[J]. Science in China Series D: Earth Sciences, 2007,50(9):1281-1292. |
[57] |
JIN Y G. Pattern of marine mass extinction near the Permian-Triassic boundary in South China[J]. Science, 2000,289:432-436.
DOI URL |
[58] |
TAKAHASHI S, OBA M, KAIHO K, et al. Panthalassic oceanic anoxia at the end of the Early Triassic: A cause of delay in the recovery of life after the end-Permian mass extinction[J]. Palaeogeography, Palaeoclimatology,Palaeoecology, 2009,274(3):185-195.
DOI URL |
[59] | ERWIN D H, BOWRING S A, JIN Y. End-Permian mass extinctions: A review[J]. Special Paper of the Geological Society of America, 2002,356:1-6. |
[60] |
HIETE M, ROHLING H, HEUNISCH C, et al. Facies and climate changes across the Permian-Triassic boundary in the North German Basin: insights from a high-resolution organic carbon isotope record[J]. Geological Society, London, Special Publications, 2013,376(1):549-574.
DOI URL |
[61] |
SHEN J, ALGEO T J, HU Q, et al. Negative C-isotope excursions at the Permian-Triassic boundary linked to volcanism[J]. Geology, 2012,40(11):963-966.
DOI URL |
[62] |
WANG R, ZHANG S, BRASSELL S, et al. Molecular carbon isotope variations in core samples taken at the Permian-Triassic boundary layers in southern China[J]. International Journal of Earth Sciences, 2012,101(5):1397-1406.
DOI URL |
[63] |
HASEGAWA T. Cretaceous terrestrial paleoenvironments of northeastern Asia suggested from carbon isotope stratigraphy: Increased atmospheric $p_{co_{2}}$-induced climate[J]. Journal of Asian Earth Sciences, 2003,21(8):849-859.
DOI URL |
[64] |
HARRINGTON G J, CLECHENKO E R, CLAY K D. Palynology and organic-carbon isotope ratios across a terrestrial Palaeocene/Eocene boundary section in the Williston Basin, North Dakota, USA[J]. Palaeogeography,Palaeoclimatology, Palaeoecology, 2005,226(3/4):214-232.
DOI URL |
[65] |
MU X, KERSHAW S, LI Y, et al. High-resolution carbon isotope changes in the Permian-Triassic boundary interval, Chongqing, South China: implications for control and growth of earliest Triassic microbialites[J]. Journal of Asian Earth Sciences, 2009,36(6):434-441.
DOI URL |
[66] | 伊海生, 时志强, 惠博, 等. 湖相叠层石纹层的碳氧同位素特征及其生长节律的古环境意义[J]. 地学前缘, 2009,16(6):168-176. |
[67] | 孙国强, 王海峰, 邹开真, 等. 柴北缘九龙山地区侏罗系砂岩中碳酸盐胶结物特征及意义[J]. 天然气地球科学, 2014,25(9):1358-1365. |
[68] | 贾艳艳, 邢学军, 孙国强, 等. 柴北缘西段古—新近纪古气候演化[J]. 地球科学——中国地质大学学报, 2015,40(12):1955-1967. |
[69] | 韩元红, 马海州, 张西营, 等. 老挝龙湖钾盐矿床沉积碳酸盐碳、氧同位素组成及其对成钾环境的初步指示[J]. 大地构造与成矿学, 2015,39(2):334-343. |
[1] | 张一范, 高远, 陈积权, 黄帅, 海伦, 毋正轩, 杨柳, 董甜. 松辽盆地晚白垩世湖相白云岩碳氧同位素特征及其古环境意义[J]. 现代地质, 2023, 37(05): 1243-1253. |
[2] | 师良, 范柏江, 王霞, 李亚婷, 黄飞飞, 戴欣洋. 鄂尔多斯盆地长9页岩烃源岩的元素组成及其古沉积环境[J]. 现代地质, 2023, 37(05): 1254-1263. |
[3] | 陈曦, 肖玲, 王明瑜, 郝晨曦, 王峰, 唐红南. 鄂尔多斯盆地西南缘长8油层组物源与古沉积环境恢复:来自岩石地球化学的证据[J]. 现代地质, 2023, 37(05): 1264-1281. |
[4] | 祝婷, 何政伟, 杨振京, 康桂川, 管森森, 朱昱汀. 川西阿坝盆地南缘阿柯河Ⅲ级阶地晚更新世中期的孢粉记录[J]. 现代地质, 2023, 37(04): 870-880. |
[5] | 刘晓鸿. 克什克腾世界地质公园晚第四纪黄土沉积特征及其古气候意义[J]. 现代地质, 2023, 37(03): 821-833. |
[6] | 崔树辉, 吴鹏, 赵霏, 牛艳伟, 蔡文浙, 王波. 鄂尔多斯盆地东缘临兴区块页岩气成藏因素分析及富集区预测[J]. 现代地质, 2022, 36(05): 1271-1280. |
[7] | 郑庆华, 刘行军, 张小龙, 王洪君, 廖永乐, 安二亮, 刘涛, 张建娜, 左琴. 再论鄂尔多斯盆地延长组长73砂层组与烃源岩相关的高伽马砂岩[J]. 现代地质, 2022, 36(04): 1087-1094. |
[8] | 蒋中发, 江梦雅, 陈海龙, 刘龙松, 王学勇, 卞保力, 李娜. 准噶尔盆地玛湖凹陷下二叠统风城组烃源岩热演化及沉积古环境评价[J]. 现代地质, 2022, 36(04): 1118-1130. |
[9] | 白翔宇, 马郡伟, 夏清萍, 谭先锋, 李开开. 北京西山下苇甸第三统/芙蓉统界线附近碳酸盐岩地球化学特征及古环境意义[J]. 现代地质, 2022, 36(02): 729-741. |
[10] | 朱必清, 陈世加, 白艳军, 雷俊杰, 尹相东. 鄂尔多斯盆地甘泉地区延长组长8段原油地球化学特征及来源[J]. 现代地质, 2022, 36(02): 742-754. |
[11] | 高阳东, 林鹤鸣, 汪旭东, 邱欣卫, 阙晓铭, 李敏, 赵泽颖, 陈艳. 珠江口盆地陆丰凹陷文昌组沉积地球化学特征及古环境意义[J]. 现代地质, 2022, 36(01): 118-129. |
[12] | 王香莲, 黄庭, 肖河, 吴代赦, 张小龙, 程胜高, 毛绪美. 东北哈尼泥炭沉积物磁化率特征及古气候意义[J]. 现代地质, 2021, 35(05): 1323-1331. |
[13] | 师良, 赵彤彤, 查辉, 王妍妍, 霍萍萍, 范柏江. 延安周边地区页岩地球化学特征及页岩油潜力评价[J]. 现代地质, 2021, 35(04): 1043-1053. |
[14] | 崔改霞, 魏钦廉, 肖玲, 王松, 胡榕, 王翀峘. 鄂尔多斯盆地陇东地区二叠系盒8下段致密砂岩储层特征[J]. 现代地质, 2021, 35(04): 1088-1097. |
[15] | 李海学, 程旭学, 马岳昆, 刘伟坡, 周斌. 鄂尔多斯盆地南部马莲河流域地下水中锶富集特征及成因分析[J]. 现代地质, 2021, 35(03): 682-692. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||