[1] |
WOODCOCK N H. The role of strike-slip fault systems at plate boundaries[J]. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 1986, 317: 13-29.
|
[2] |
AN L J. Development of fault discontinuities in shear experiments[J]. Tectonophysics, 1998, 293(1/2): 45-59.
|
[3] |
DENG S, LI H L, ZHANG Z P, et al. Structural characterization of intracratonic strike-slip faults in the central Tarim Basin[J]. AAPG Bulletin, 2019, 103(1): 109-137.
|
[4] |
许志琴, 曾令森, 杨经绥, 等. 走滑断裂、“挤压性盆-山构造” 与油气资源关系的探讨[J]. 地球科学, 2004, 29(6): 631-643.
|
[5] |
徐长贵. 渤海海域大型伸展-走滑复合断裂特征与控藏作用[J]. 中国海上油气, 2022, 34(6): 1-13.
|
[6] |
王启超, 刘光祥, 吴疆, 等. 鄂尔多斯盆地旬宜地区下古生界走滑断裂特征与油气勘探意义[J]. 石油实验地质, 2024, 46(2):342-353.
|
[7] |
邓尚, 刘雨晴, 刘军, 等. 克拉通盆地内部走滑断裂发育、演化特征及其石油地质意义: 以塔里木盆地顺北地区为例[J]. 大地构造与成矿学, 2021, 45(6): 1111-1126.
|
[8] |
梁瀚, 唐浩, 冉崎, 等. 四川盆地川中地区走滑断裂的分布、类型与成因[J]. 地质学报, 2023, 97(8): 2609-2620.
|
[9] |
马海陇, 蒋林, 姜应兵, 等. 塔里木盆地先巴扎地区走滑断裂特征及石油地质意义[J]. 断块油气田, 2024, 31(2):266-275.
|
[10] |
石司宇, 李毕松, 李让彬, 等. 川东南地区典型走滑断裂带特征及断控缝洞型储层发育潜力[J]. 地学前缘, 2024, 31(5): 288-300.
DOI
|
[11] |
薛一帆, 文志刚, 黄亚浩, 等. 深层—超深层走滑断裂带储层流体来源与油气成藏过程研究——以塔里木盆地富满油田为例[J]. 油气藏评价与开发, 2024, 14(4): 549-559.
|
[12] |
冯建伟, 郭宏辉, 汪如军, 等. 塔里木盆地塔北地区深层走滑断裂分段性成因机制[J]. 地球科学, 2023, 48(7): 2506-2519.
|
[13] |
马永生, 蔡勋育, 云露, 等. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展[J]. 石油勘探与开发, 2022, 49(1): 1-17.
DOI
|
[14] |
左亮, 能源, 黄少英, 等. 哈拉哈塘地区超深层走滑断裂构造变形特征及其石油地质意义[J]. 现代地质, 2023, 37(2): 270-282.
|
[15] |
李云涛, 丁文龙, 韩俊, 等. 顺北地区走滑断裂带奥陶系碳酸盐岩裂缝分布预测与主控因素研究[J]. 地学前缘, 2024, 31(5): 263-287.
DOI
|
[16] |
黄诚, 云露, 曹自成, 等. 塔里木盆地顺北地区中-下奥陶统“断控” 缝洞系统划分与形成机制[J]. 石油与天然气地质, 2022, 43(1): 54-68.
|
[17] |
云露, 邓尚. 塔里木盆地深层走滑断裂差异变形与控储控藏特征: 以顺北油气田为例[J]. 石油学报, 2022, 43(6): 770-787.
DOI
|
[18] |
林波, 张旭, 况安鹏, 等. 塔里木盆地走滑断裂构造变形特征及油气意义: 以顺北地区1号和5号断裂为例[J]. 石油学报, 2021, 42(7): 906-923.
DOI
|
[19] |
张继标, 邓尚, 韩俊, 等. 多期构造应力控制走滑断控储层发育机理与差异性研究——以塔里木盆地顺北地区为例[J]. 石油实验地质, 2024, 46(4):775-785.
|
[20] |
张子亚, 郭召杰, 宋岩, 等. 走滑断裂的生长地层识别与应用:以塔里木盆地西北缘皮芜断裂为例[J]. 西北地质, 2025, 58(3):196-205.
|
[21] |
张银涛, 余一欣, 谢舟, 等. 塔里木盆地富满地区走滑断裂带精细刻画及勘探应用成效[J]. 现代地质, 2024, 38(6): 1417-1430.
|
[22] |
吕海涛, 张哨楠, 马庆佑. 塔里木盆地中北部断裂体系划分及形成机制探讨[J]. 石油实验地质, 2017, 39(4): 444-452.
|
[23] |
TENG C Y, CAI Z X, HAO F, et al. Structural geometry and evolution of an intracratonic strike-slip fault zone: A case study from the north SB5 fault zone in the Tarim Basin, China[J]. Journal of Structural Geology, 2020, 140: 104159.
|
[24] |
刘雨晴, 邓尚, 张继标, 等. 塔里木盆地顺北及邻区走滑断裂体系差异发育特征及成因机制探讨[J]. 地学前缘, 2023, 30(6): 95-109.
DOI
|
[25] |
金峰, 朱秀香, 余一欣, 等. 塔里木盆地顺北地区13号走滑断裂带发育特征[J]. 大地构造与成矿学, 2023, 47(1): 54-65.
|
[26] |
况安鹏, 余一欣, 朱秀香, 等. 塔里木盆地顺北地区11号走滑断裂带变形及其活动特征[J]. 现代地质, 2021, 35(6): 1809-1817.
|
[27] |
QIU H B, DENG S, CAO Z C, et al. The evolution of the complex anticlinal belt with crosscutting strike-slip faults in the central Tarim basin, NW China[J]. Tectonics, 2019, 38(6): 2087-2113.
|
[28] |
韩晓影. 塔里木盆地塔中北坡走滑断层形成与演化研究[D]. 北京: 中国石油大学(北京), 2018.
|
[29] |
KONSTANTINOVSKAYA E, MALAVIEILLE J. Thrust wedges with décollement levels and syntectonic erosion: A view from analog models[J]. Tectonophysics, 2011, 502(3/4): 336-350.
|
[30] |
贾承造. 塔里木盆地板块构造与大陆动力学[M]. 北京: 石油工业出版社, 2004.
|
[31] |
何松高, 李传新, 张义平, 等. 基于构造物理模拟的塔中北坡NE向走滑断裂形成机理[J]. 吉林大学学报(地球科学版), 2023, 53(1):73-87.
|
[32] |
郭春涛, 史江涛, 刘亮, 等. 塔里木盆地塔河地区中下奥陶统沉积特征及其演化模式[J]. 吉林大学学报(地球科学版), 2024, 54(1):68-82.
|