现代地质 ›› 2025, Vol. 39 ›› Issue (03): 715-727.DOI: 10.19657/j.geoscience.1000-8527.2025.022
恽虎1,2,3(), 官军1,4, 王成4,*(
), 林世莉1,4, 费光春1,3
出版日期:
2025-06-10
发布日期:
2025-07-03
通信作者:
*王成,男,高级工程师,1983年出生,主要从事矿产普查与勘探工作。Email:104719830@qq.com。作者简介:
恽虎,男,硕士研究生,1998年出生,主要从事矿产普查与勘探工作。Email:869241522@qq.com。
基金资助:
YUN Hu1,2,3(), GUAN Jun1,4, WANG Cheng4,*(
), LIN Shili1,4, FEI Guangchun1,3
Published:
2025-06-10
Online:
2025-07-03
摘要:
海南岛西部抱板杂岩中广泛发育伟晶岩,但伟晶岩地球化学研究尚未开展,伟晶岩类型、成因及其稀有金属成矿潜力尚不清楚。本文在野外调查和岩石薄片显微观察的基础上,对抱板杂岩中伟晶岩样品开展全岩、单矿物(云母、长石)的主量元素、微量元素和稀土元素分析和长石X射线粉晶衍射分析。划分伟晶岩类型,探讨伟晶岩成因,分析伟晶岩成矿潜力。抱板杂岩中伟晶岩属于白云母钠长石型伟晶岩,具有高硅铝,低钙镁及过铝质等特征;微量元素总体相对富集大离子亲石元素,相对亏损高场强元素;轻稀土元素相对富集,重稀土元素相对亏损。电子探针分析表明伟晶岩中云母主要为白云母,长石主要为钠长石、次为更长石、微斜长石。伟晶岩演化程度低,类型上属于白云母-稀有金属伟晶岩-REE亚类中的褐帘石-独居石子类。伟晶岩全岩和单矿物中的稀有金属含量低,微斜长石晶胞体积小于富铷伟晶岩,不具备形成稀有金属伟晶岩的潜力。
中图分类号:
恽虎, 官军, 王成, 林世莉, 费光春. 海南岛西部抱板杂岩中伟晶岩矿物学与全岩地球化学特征及成因意义[J]. 现代地质, 2025, 39(03): 715-727.
YUN Hu, GUAN Jun, WANG Cheng, LIN Shili, FEI Guangchun. Mineralogy and Whole Rock Geochemical Characteristics and Genetic Implications of Pegmatites in the Baoban Complex, Western Hainan Island[J]. Geoscience, 2025, 39(03): 715-727.
图2 (a)戈枕地区地质简图(据文献[12]修编); (b)冲卒岭地区地质简图(据文献[13]修编)
Fig.2 (a)Geological sketch map of Gezhen area (modified after reference[12]) and (b) Chongzuling area ((modified after reference[13])
图3 海南岛西部抱板杂岩中伟晶岩野外、手标本及镜下照片 “+”:正交偏光; Ab.钠长石; Mic.微斜长石;Ol.更长石;Qtz.石英;Ms.白云母;Tur.电气石
Fig.3 Field, hand specimens and micrographs of pegmatite in the Baoban Complex in western Hainan Island
编号 | HPGZ-9 | HPGZ-10 | HPGZ-11 | HPGZ-20 | HPGZ-21 | HPEW-23 | HPEW-24 | HPEW-25 |
---|---|---|---|---|---|---|---|---|
戈枕村组中伟晶岩 | 片麻状花岗岩中伟晶岩 | 峨文岭组中伟晶岩 | ||||||
SiO2 | 74.55 | 73.20 | 75.08 | 73.94 | 73.07 | 73.57 | 74.67 | 72.67 |
TiO2 | 0.01 | 0.02 | 0.01 | 0.02 | 0.01 | 0.04 | 0.01 | 0.02 |
Al2O3 | 14.39 | 15.72 | 13.76 | 14.7 | 14.92 | 14.81 | 14.17 | 15.9 |
TFe2O3 | 0.37 | 0.71 | 0.41 | 0.74 | 0.75 | 0.50 | 0.40 | 0.73 |
MnO | 0.05 | 0.03 | 0.01 | 0.02 | 0.04 | 0.03 | 0.02 | 0.08 |
MgO | 0.11 | 0.09 | 0.09 | 0.07 | 0.07 | 0.12 | 0.10 | 0.14 |
CaO | 0.59 | 1.12 | 0.48 | 0.89 | 0.66 | 0.76 | 0.92 | 0.51 |
Na2O | 3.80 | 6.21 | 3.83 | 4.91 | 4.41 | 4.35 | 3.74 | 4.96 |
K2O | 5.04 | 1.94 | 5.44 | 3.73 | 5.18 | 4.92 | 4.93 | 3.92 |
P2O5 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.01 | 0.02 |
LOI | 0.95 | 0.89 | 0.79 | 0.90 | 0.80 | 0.78 | 0.89 | 0.98 |
Total | 99.89 | 99.94 | 99.91 | 99.93 | 99.93 | 99.88 | 99.85 | 99.92 |
表1 伟晶岩主量元素分析结果(%)
Table 1 Analytical results of major elements of the pegmatite (%)
编号 | HPGZ-9 | HPGZ-10 | HPGZ-11 | HPGZ-20 | HPGZ-21 | HPEW-23 | HPEW-24 | HPEW-25 |
---|---|---|---|---|---|---|---|---|
戈枕村组中伟晶岩 | 片麻状花岗岩中伟晶岩 | 峨文岭组中伟晶岩 | ||||||
SiO2 | 74.55 | 73.20 | 75.08 | 73.94 | 73.07 | 73.57 | 74.67 | 72.67 |
TiO2 | 0.01 | 0.02 | 0.01 | 0.02 | 0.01 | 0.04 | 0.01 | 0.02 |
Al2O3 | 14.39 | 15.72 | 13.76 | 14.7 | 14.92 | 14.81 | 14.17 | 15.9 |
TFe2O3 | 0.37 | 0.71 | 0.41 | 0.74 | 0.75 | 0.50 | 0.40 | 0.73 |
MnO | 0.05 | 0.03 | 0.01 | 0.02 | 0.04 | 0.03 | 0.02 | 0.08 |
MgO | 0.11 | 0.09 | 0.09 | 0.07 | 0.07 | 0.12 | 0.10 | 0.14 |
CaO | 0.59 | 1.12 | 0.48 | 0.89 | 0.66 | 0.76 | 0.92 | 0.51 |
Na2O | 3.80 | 6.21 | 3.83 | 4.91 | 4.41 | 4.35 | 3.74 | 4.96 |
K2O | 5.04 | 1.94 | 5.44 | 3.73 | 5.18 | 4.92 | 4.93 | 3.92 |
P2O5 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.01 | 0.02 |
LOI | 0.95 | 0.89 | 0.79 | 0.90 | 0.80 | 0.78 | 0.89 | 0.98 |
Total | 99.89 | 99.94 | 99.91 | 99.93 | 99.93 | 99.88 | 99.85 | 99.92 |
图4 (a)伟晶岩样品TAS图解和(b)A/CNK-A/NK图解(a底图据文献[14],b底图据文献[15],二长花岗岩数据引自文献 [4][16], 花岗闪长岩数据引自文献[4][16])
Fig.4 (a) TAS diagram and (b) A/CNK-A/NK diagram for pegmatite samples((a) base map from reference[14], (b) base map from reference[15], the data of monzonitic granite from references [4][16], the data of granodiorite from references [4][16])
样品编号 | HPGZ-9 | HPGZ-10 | HPGZ-11 | HPGZ-20 | HPGZ-21 | HPEW-23 | HPEW-24 | HPEW-25 |
---|---|---|---|---|---|---|---|---|
戈枕村组中伟晶岩 | 片麻状花岗岩中伟晶岩 | 峨文岭组中伟晶岩 | ||||||
Li | 4.91 | 11.2 | 4.00 | 9.23 | 6.93 | 4.95 | 3.36 | 5.02 |
Be | 4.13 | 3.77 | 2.47 | 3.03 | 2.80 | 3.69 | 3.95 | 7.03 |
Cs | 5.07 | 3.12 | 4.98 | 3.68 | 4.81 | 2.80 | 4.18 | 3.67 |
Sn | 0.67 | 2.70 | 1.16 | 2.96 | 2.67 | 0.88 | 0.71 | 4.59 |
Rb | 195.00 | 87.20 | 220.00 | 167.00 | 234.00 | 144.00 | 141.00 | 132.00 |
Ba | 508.00 | 48.40 | 299.00 | 173.00 | 95.40 | 480.00 | 878.00 | 225.00 |
Th | 2.30 | 3.97 | 1.67 | 3.11 | 1.66 | 2.78 | 0.22 | 7.14 |
U | 1.66 | 4.83 | 2.21 | 3.15 | 1.95 | 1.73 | 0.29 | 2.24 |
Ta | 0.40 | 0.79 | 3.17 | 0.88 | 0.62 | 1.22 | 0.09 | 0.62 |
Nb | 1.95 | 8.41 | 17.90 | 9.00 | 6.31 | 6.35 | 0.58 | 5.92 |
Sr | 96.90 | 83.90 | 77.70 | 105.00 | 67.60 | 198.00 | 239.00 | 121.00 |
Zr | 25.00 | 111.00 | 36.30 | 31.70 | 23.00 | 44.40 | 4.91 | 20.10 |
Hf | 1.71 | 5.26 | 2.09 | 1.31 | 1.07 | 2.01 | 0.17 | 0.88 |
Y | 36.50 | 29.70 | 10.80 | 18.80 | 29.30 | 15.50 | 2.12 | 38.10 |
La | 8.19 | 3.80 | 2.69 | 8.50 | 10.60 | 6.90 | 1.79 | 14.80 |
Ce | 7.55 | 5.92 | 4.11 | 9.76 | 12.10 | 12.50 | 2.94 | 29.40 |
Pr | 1.89 | 0.84 | 0.72 | 1.84 | 2.99 | 1.59 | 0.34 | 3.85 |
Nd | 7.54 | 3.46 | 3.06 | 7.60 | 12.20 | 6.17 | 1.28 | 15.30 |
Sm | 2.47 | 1.10 | 1.05 | 2.08 | 3.70 | 1.37 | 0.28 | 3.60 |
Eu | 0.28 | 0.17 | 0.18 | 0.24 | 0.13 | 0.47 | 1.17 | 0.40 |
Tb | 0.73 | 0.49 | 0.30 | 0.47 | 0.76 | 0.33 | 0.06 | 0.72 |
Gd | 3.40 | 2.06 | 1.43 | 2.63 | 4.06 | 1.62 | 0.32 | 3.70 |
Dy | 5.16 | 3.68 | 2.21 | 2.92 | 4.93 | 2.24 | 0.36 | 5.51 |
Ho | 1.21 | 0.93 | 0.45 | 0.64 | 1.08 | 0.54 | 0.08 | 1.38 |
Er | 3.84 | 3.11 | 1.32 | 1.93 | 3.32 | 1.81 | 0.22 | 4.96 |
Tm | 0.71 | 0.55 | 0.22 | 0.32 | 0.61 | 0.33 | 0.04 | 1.05 |
Yb | 4.85 | 3.83 | 1.33 | 2.00 | 4.26 | 2.32 | 0.23 | 8.07 |
Lu | 0.76 | 0.62 | 0.19 | 0.33 | 0.69 | 0.38 | 0.04 | 1.32 |
表2 伟晶岩微量元素分析结果(10-6)
Table 2 Analytical results of trace elements of the pegmatite (10-6)
样品编号 | HPGZ-9 | HPGZ-10 | HPGZ-11 | HPGZ-20 | HPGZ-21 | HPEW-23 | HPEW-24 | HPEW-25 |
---|---|---|---|---|---|---|---|---|
戈枕村组中伟晶岩 | 片麻状花岗岩中伟晶岩 | 峨文岭组中伟晶岩 | ||||||
Li | 4.91 | 11.2 | 4.00 | 9.23 | 6.93 | 4.95 | 3.36 | 5.02 |
Be | 4.13 | 3.77 | 2.47 | 3.03 | 2.80 | 3.69 | 3.95 | 7.03 |
Cs | 5.07 | 3.12 | 4.98 | 3.68 | 4.81 | 2.80 | 4.18 | 3.67 |
Sn | 0.67 | 2.70 | 1.16 | 2.96 | 2.67 | 0.88 | 0.71 | 4.59 |
Rb | 195.00 | 87.20 | 220.00 | 167.00 | 234.00 | 144.00 | 141.00 | 132.00 |
Ba | 508.00 | 48.40 | 299.00 | 173.00 | 95.40 | 480.00 | 878.00 | 225.00 |
Th | 2.30 | 3.97 | 1.67 | 3.11 | 1.66 | 2.78 | 0.22 | 7.14 |
U | 1.66 | 4.83 | 2.21 | 3.15 | 1.95 | 1.73 | 0.29 | 2.24 |
Ta | 0.40 | 0.79 | 3.17 | 0.88 | 0.62 | 1.22 | 0.09 | 0.62 |
Nb | 1.95 | 8.41 | 17.90 | 9.00 | 6.31 | 6.35 | 0.58 | 5.92 |
Sr | 96.90 | 83.90 | 77.70 | 105.00 | 67.60 | 198.00 | 239.00 | 121.00 |
Zr | 25.00 | 111.00 | 36.30 | 31.70 | 23.00 | 44.40 | 4.91 | 20.10 |
Hf | 1.71 | 5.26 | 2.09 | 1.31 | 1.07 | 2.01 | 0.17 | 0.88 |
Y | 36.50 | 29.70 | 10.80 | 18.80 | 29.30 | 15.50 | 2.12 | 38.10 |
La | 8.19 | 3.80 | 2.69 | 8.50 | 10.60 | 6.90 | 1.79 | 14.80 |
Ce | 7.55 | 5.92 | 4.11 | 9.76 | 12.10 | 12.50 | 2.94 | 29.40 |
Pr | 1.89 | 0.84 | 0.72 | 1.84 | 2.99 | 1.59 | 0.34 | 3.85 |
Nd | 7.54 | 3.46 | 3.06 | 7.60 | 12.20 | 6.17 | 1.28 | 15.30 |
Sm | 2.47 | 1.10 | 1.05 | 2.08 | 3.70 | 1.37 | 0.28 | 3.60 |
Eu | 0.28 | 0.17 | 0.18 | 0.24 | 0.13 | 0.47 | 1.17 | 0.40 |
Tb | 0.73 | 0.49 | 0.30 | 0.47 | 0.76 | 0.33 | 0.06 | 0.72 |
Gd | 3.40 | 2.06 | 1.43 | 2.63 | 4.06 | 1.62 | 0.32 | 3.70 |
Dy | 5.16 | 3.68 | 2.21 | 2.92 | 4.93 | 2.24 | 0.36 | 5.51 |
Ho | 1.21 | 0.93 | 0.45 | 0.64 | 1.08 | 0.54 | 0.08 | 1.38 |
Er | 3.84 | 3.11 | 1.32 | 1.93 | 3.32 | 1.81 | 0.22 | 4.96 |
Tm | 0.71 | 0.55 | 0.22 | 0.32 | 0.61 | 0.33 | 0.04 | 1.05 |
Yb | 4.85 | 3.83 | 1.33 | 2.00 | 4.26 | 2.32 | 0.23 | 8.07 |
Lu | 0.76 | 0.62 | 0.19 | 0.33 | 0.69 | 0.38 | 0.04 | 1.32 |
图5 (a)抱板杂岩中伟晶岩球粒陨石标准化稀土元素配分模式图和(b)原始地幔标准化微量元素蛛网图(标准化数值据文献[17],二长花岗岩数据引自文献[4][16],花岗闪长岩数据引自文献 [4][6], 峨文岭组数据引自文献[3][16],戈枕村组数据引自文献[5])
Fig.5 (a) Primitive mantle-normalized spidergrams of trace elements and (b)chondrite-normalized REE distribution patterns of the pegmatite in the Baoban complex(normalizing values after reference[17], the data of monzonitic granite from references [4][16], the data of granodiorite from references [4][6], the data of Ewenling Formation from references [3][16], the data of Gezhencun Formation from reference[5])
样品编号 | HPGZ-10 | HPGZ-11 | HPGZ-21 | HPEW-25 | |
---|---|---|---|---|---|
SiO2 | 48.02 | 46.49 | 47.07 | 46.80 | 46.77 |
Al2O3 | 34.66 | 34.50 | 35.69 | 34.80 | 35.00 |
FeOT | 3.03 | 2.41 | 1.95 | 1.35 | 1.50 |
MnO | 0.02 | 0.02 | - | 0.01 | 0.01 |
MgO | 0.41 | 0.41 | 0.25 | 0.56 | 0.75 |
CaO | 0.02 | - | 0.01 | 0.01 | 0.06 |
Na2O | 0.60 | 0.58 | 0.45 | 0.34 | 0.37 |
K2O | 10.41 | 10.36 | 11.00 | 10.65 | 10.58 |
TiO2 | - | 0.07 | 0.08 | 0.36 | 0.33 |
F | 0.22 | 0.06 | 0.18 | 0.09 | 0.14 |
Li2O* | 0.05 | 0.01 | 0.04 | 0.02 | 0.03 |
H2O* | 4.47 | 4.44 | 4.47 | 4.45 | 4.45 |
总量 | 101.86 | 99.34 | 101.14 | 99.43 | 100.00 |
以22个氧为基础计算(apfu) | |||||
Si | 6.291 | 6.239 | 6.202 | 6.245 | 6.212 |
AlIV | 1.709 | 1.761 | 1.798 | 1.755 | 1.788 |
Total(T) | 8.000 | 8.000 | 8.000 | 8.000 | 8.000 |
AlVI | 3.645 | 3.697 | 3.745 | 3.719 | 3.691 |
Fe | 0.332 | 0.270 | 0.214 | 0.151 | 0.167 |
Mn | 0.003 | 0.002 | 0.000 | 0.002 | 0.000 |
Mg | 0.079 | 0.082 | 0.050 | 0.111 | 0.149 |
Ti | 0.000 | 0.007 | 0.008 | 0.036 | 0.033 |
Li* | 0.027 | 0.005 | 0.021 | 0.008 | 0.016 |
Total(Y) | 4.086 | 4.064 | 4.039 | 4.027 | 4.057 |
Ca | 0.003 | 0.001 | 0.001 | 0.001 | 0.009 |
Na | 0.153 | 0.151 | 0.116 | 0.087 | 0.095 |
K | 1.740 | 1.774 | 1.849 | 1.813 | 1.793 |
Total(X) | 1.896 | 1.927 | 1.966 | 1.901 | 1.897 |
F | 0.090 | 0.026 | 0.074 | 0.037 | 0.060 |
OH* | 3.910 | 3.974 | 3.926 | 3.963 | 3.940 |
Total(A) | 4.000 | 4.000 | 4.000 | 4.000 | 4.000 |
表3 伟晶岩中白云母电子探针分析结果(%)
Table 3 EMPA data of mica from the pegmatite (%)
样品编号 | HPGZ-10 | HPGZ-11 | HPGZ-21 | HPEW-25 | |
---|---|---|---|---|---|
SiO2 | 48.02 | 46.49 | 47.07 | 46.80 | 46.77 |
Al2O3 | 34.66 | 34.50 | 35.69 | 34.80 | 35.00 |
FeOT | 3.03 | 2.41 | 1.95 | 1.35 | 1.50 |
MnO | 0.02 | 0.02 | - | 0.01 | 0.01 |
MgO | 0.41 | 0.41 | 0.25 | 0.56 | 0.75 |
CaO | 0.02 | - | 0.01 | 0.01 | 0.06 |
Na2O | 0.60 | 0.58 | 0.45 | 0.34 | 0.37 |
K2O | 10.41 | 10.36 | 11.00 | 10.65 | 10.58 |
TiO2 | - | 0.07 | 0.08 | 0.36 | 0.33 |
F | 0.22 | 0.06 | 0.18 | 0.09 | 0.14 |
Li2O* | 0.05 | 0.01 | 0.04 | 0.02 | 0.03 |
H2O* | 4.47 | 4.44 | 4.47 | 4.45 | 4.45 |
总量 | 101.86 | 99.34 | 101.14 | 99.43 | 100.00 |
以22个氧为基础计算(apfu) | |||||
Si | 6.291 | 6.239 | 6.202 | 6.245 | 6.212 |
AlIV | 1.709 | 1.761 | 1.798 | 1.755 | 1.788 |
Total(T) | 8.000 | 8.000 | 8.000 | 8.000 | 8.000 |
AlVI | 3.645 | 3.697 | 3.745 | 3.719 | 3.691 |
Fe | 0.332 | 0.270 | 0.214 | 0.151 | 0.167 |
Mn | 0.003 | 0.002 | 0.000 | 0.002 | 0.000 |
Mg | 0.079 | 0.082 | 0.050 | 0.111 | 0.149 |
Ti | 0.000 | 0.007 | 0.008 | 0.036 | 0.033 |
Li* | 0.027 | 0.005 | 0.021 | 0.008 | 0.016 |
Total(Y) | 4.086 | 4.064 | 4.039 | 4.027 | 4.057 |
Ca | 0.003 | 0.001 | 0.001 | 0.001 | 0.009 |
Na | 0.153 | 0.151 | 0.116 | 0.087 | 0.095 |
K | 1.740 | 1.774 | 1.849 | 1.813 | 1.793 |
Total(X) | 1.896 | 1.927 | 1.966 | 1.901 | 1.897 |
F | 0.090 | 0.026 | 0.074 | 0.037 | 0.060 |
OH* | 3.910 | 3.974 | 3.926 | 3.963 | 3.940 |
Total(A) | 4.000 | 4.000 | 4.000 | 4.000 | 4.000 |
图6 (a)伟晶岩中云母类型判别图(底图据文献[18])和(b)长石类型判别图(底图据文献[19]) A.正长石和微斜长石;B.歪长石;C.钠长石;D.更长石;E.中长石;F.拉长石;G.倍长石;H.钙长石;Ab.钠长石分子;Or.钾长石分子;An.钙长石分子
Fig.6 (a) Discrimination diagram of mica type in the pegmatite (base map from reference[18]))and discrimination diagram of feldspar type in the pegmatite (base map from reference[19])
编号 | Li | Be | B | Sc | Rb | Sr | Zr | Nb | Sn | Cs | Ba | Hf | Ta | K/Rb | K/Cs |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HPGZ-10-02-Ms | 71.5 | 1.92 | 42.1 | 41.1 | 1088 | 7.09 | 0.55 | 81.4 | 30.7 | 18.2 | 15.5 | 0.24 | 2.20 | 85.1 | 5101 |
HPGZ-10-03-Ms | 116 | 2.40 | 52.6 | 47.2 | 969 | 5.48 | 2.48 | 90.6 | 28.0 | 12.2 | 18.7 | 0.18 | 2.26 | 93.9 | 7446 |
HPGZ-11-01-Ms | 45.2 | 3.48 | 89.4 | 122.0 | 827 | 4.24 | 1.34 | 128 | 51.4 | 14.0 | 96.7 | 0.10 | 5.31 | 112.0 | 6596 |
HPGZ-11-02-Ms | 38.9 | 4.08 | 110 | 128.0 | 798 | 3.36 | 0.34 | 118 | 47.7 | 14.3 | 106.0 | 0.08 | 5.13 | 117.0 | 6510 |
HPGZ-11-03-Ms | 59.7 | 3.45 | 90.4 | 98.8 | 726 | 4.78 | 0.81 | 106 | 37.6 | 9.44 | 152.0 | 0.10 | 4.30 | 125.0 | 9617 |
HPGZ-11-04-Ms | 51.5 | 2.37 | 75.9 | 125.0 | 768 | 5.05 | 0.36 | 111 | 32.6 | 9.50 | 93.0 | 0.04 | 4.33 | 119.0 | 9642 |
HPGZ-20-01-Ms | 93.2 | 3.35 | 50.4 | 50.7 | 696 | 6.17 | — | 71.1 | 27.1 | 8.70 | 90.6 | 0.06 | 2.51 | 125.0 | 10060 |
HPGZ-21-02-Ms | 55.3 | 7.11 | 107.0 | 37.6 | 893 | 4.21 | 1.07 | 156.0 | 44.8 | 20.5 | 45.1 | 0.20 | 8.94 | 98.90 | 4308 |
HPGZ-21-03-Ms | 45.4 | 6.73 | 102.0 | 32.4 | 906 | 1.86 | 0.14 | 95.9 | 37.7 | 22.2 | 41.1 | 0.06 | 6.04 | 101.0 | 4111 |
HPGZ-21-04-Ms | 67.3 | 9.39 | 45.5 | 24.4 | 1123 | 3.83 | 1.59 | 152.0 | 48.0 | 30.0 | 31.8 | 0.21 | 7.76 | 79.5 | 2973 |
HPGZ-21-05-Ms | 115.0 | 6.93 | 38.1 | 26.6 | 1150 | 2.59 | 0.85 | 103.0 | 37.1 | 17.9 | 10.3 | 0.22 | 1.92 | 78.4 | 5030 |
HPEW-25-01-Ms | 26.6 | 3.29 | 77.9 | 25.2 | 428 | 10.3 | 0.70 | 48.1 | 15.0 | 7.57 | 326.0 | 0.06 | 7.77 | 219.0 | 12411 |
HPEW-25-02-Ms | 29.4 | 2.70 | 54.4 | 23.6 | 515 | 6.98 | 0.85 | 36.4 | 11.4 | 6.42 | 529.0 | 0.09 | 4.44 | 187.0 | 15021 |
HPEW-25-03-Ms | 27.2 | 3.75 | 66.8 | 26.7 | 402 | 10.4 | 0.91 | 45.3 | 16.6 | 7.88 | 305.0 | 0.14 | 6.39 | 240.0 | 12271 |
HPEW-25-04-Ms | 29.7 | 1.93 | 58.8 | 26.2 | 567 | 8.09 | 1.44 | 46.8 | 14.4 | 8.44 | 529.0 | — | 6.34 | 167.0 | 11232 |
HPGZ-11-06-Bi | 193.0 | 2.80 | 144.0 | 72.1 | 453 | 54.0 | 0.09 | 14.4 | 27.2 | 93.5 | 189.0 | 0.04 | 1.33 | 88.0 | 427 |
表4 伟晶岩中云母LA-ICP-MS微量元素成分(10-6)
Table 4 LA-ICP-MS data (10-6) of mica from pegmatite
编号 | Li | Be | B | Sc | Rb | Sr | Zr | Nb | Sn | Cs | Ba | Hf | Ta | K/Rb | K/Cs |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HPGZ-10-02-Ms | 71.5 | 1.92 | 42.1 | 41.1 | 1088 | 7.09 | 0.55 | 81.4 | 30.7 | 18.2 | 15.5 | 0.24 | 2.20 | 85.1 | 5101 |
HPGZ-10-03-Ms | 116 | 2.40 | 52.6 | 47.2 | 969 | 5.48 | 2.48 | 90.6 | 28.0 | 12.2 | 18.7 | 0.18 | 2.26 | 93.9 | 7446 |
HPGZ-11-01-Ms | 45.2 | 3.48 | 89.4 | 122.0 | 827 | 4.24 | 1.34 | 128 | 51.4 | 14.0 | 96.7 | 0.10 | 5.31 | 112.0 | 6596 |
HPGZ-11-02-Ms | 38.9 | 4.08 | 110 | 128.0 | 798 | 3.36 | 0.34 | 118 | 47.7 | 14.3 | 106.0 | 0.08 | 5.13 | 117.0 | 6510 |
HPGZ-11-03-Ms | 59.7 | 3.45 | 90.4 | 98.8 | 726 | 4.78 | 0.81 | 106 | 37.6 | 9.44 | 152.0 | 0.10 | 4.30 | 125.0 | 9617 |
HPGZ-11-04-Ms | 51.5 | 2.37 | 75.9 | 125.0 | 768 | 5.05 | 0.36 | 111 | 32.6 | 9.50 | 93.0 | 0.04 | 4.33 | 119.0 | 9642 |
HPGZ-20-01-Ms | 93.2 | 3.35 | 50.4 | 50.7 | 696 | 6.17 | — | 71.1 | 27.1 | 8.70 | 90.6 | 0.06 | 2.51 | 125.0 | 10060 |
HPGZ-21-02-Ms | 55.3 | 7.11 | 107.0 | 37.6 | 893 | 4.21 | 1.07 | 156.0 | 44.8 | 20.5 | 45.1 | 0.20 | 8.94 | 98.90 | 4308 |
HPGZ-21-03-Ms | 45.4 | 6.73 | 102.0 | 32.4 | 906 | 1.86 | 0.14 | 95.9 | 37.7 | 22.2 | 41.1 | 0.06 | 6.04 | 101.0 | 4111 |
HPGZ-21-04-Ms | 67.3 | 9.39 | 45.5 | 24.4 | 1123 | 3.83 | 1.59 | 152.0 | 48.0 | 30.0 | 31.8 | 0.21 | 7.76 | 79.5 | 2973 |
HPGZ-21-05-Ms | 115.0 | 6.93 | 38.1 | 26.6 | 1150 | 2.59 | 0.85 | 103.0 | 37.1 | 17.9 | 10.3 | 0.22 | 1.92 | 78.4 | 5030 |
HPEW-25-01-Ms | 26.6 | 3.29 | 77.9 | 25.2 | 428 | 10.3 | 0.70 | 48.1 | 15.0 | 7.57 | 326.0 | 0.06 | 7.77 | 219.0 | 12411 |
HPEW-25-02-Ms | 29.4 | 2.70 | 54.4 | 23.6 | 515 | 6.98 | 0.85 | 36.4 | 11.4 | 6.42 | 529.0 | 0.09 | 4.44 | 187.0 | 15021 |
HPEW-25-03-Ms | 27.2 | 3.75 | 66.8 | 26.7 | 402 | 10.4 | 0.91 | 45.3 | 16.6 | 7.88 | 305.0 | 0.14 | 6.39 | 240.0 | 12271 |
HPEW-25-04-Ms | 29.7 | 1.93 | 58.8 | 26.2 | 567 | 8.09 | 1.44 | 46.8 | 14.4 | 8.44 | 529.0 | — | 6.34 | 167.0 | 11232 |
HPGZ-11-06-Bi | 193.0 | 2.80 | 144.0 | 72.1 | 453 | 54.0 | 0.09 | 14.4 | 27.2 | 93.5 | 189.0 | 0.04 | 1.33 | 88.0 | 427 |
样品 编号 | HPGZ -9 | HPGZ -10 | HPGZ -11 | HPGZ -21 | HPEW -25 |
---|---|---|---|---|---|
SiO2 | 68.73 | 65.23 | 68.24 | 64.65 | 68.21 |
Al2O3 | 19.73 | 22.18 | 20.15 | 22.02 | 19.63 |
P2O5 | - | 0.01 | - | 0.02 | 0.01 |
Na2O | 11.27 | 9.72 | 11.35 | 10.11 | 11.71 |
K2O | 0.06 | 0.20 | 0.05 | 0.18 | 0.11 |
CaO | 0.31 | 2.82 | 0.69 | 2.53 | 0.04 |
F | - | 0.08 | - | - | - |
Total | 100.23 | 100.32 | 100.49 | 99.62 | 99.79 |
以8个氧为基础计算(apfu) | |||||
Si | 2.992 | 2.862 | 2.969 | 2.858 | 2.987 |
Al | 1.012 | 1.147 | 1.033 | 1.146 | 1.013 |
P | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 |
Total(T) | 4.004 | 4.010 | 4.002 | 4.005 | 4.000 |
Na | 0.951 | 0.827 | 0.957 | 0.866 | 0.994 |
K | 0.003 | 0.011 | 0.003 | 0.010 | 0.006 |
Ca | 0.014 | 0.132 | 0.032 | 0.120 | 0.002 |
Total(X) | 0.968 | 0.971 | 0.992 | 0.996 | 1.002 |
An | 1.477 | 13.635 | 3.237 | 12.016 | 0.210 |
Ab | 98.182 | 85.202 | 96.475 | 86.970 | 99.199 |
Or | 0.341 | 1.163 | 0.288 | 1.015 | 0.591 |
表5 伟晶岩中斜长石电子探针分析结果(%)
Table 5 EMPA data (%) of feldspar from the pegmatite
样品 编号 | HPGZ -9 | HPGZ -10 | HPGZ -11 | HPGZ -21 | HPEW -25 |
---|---|---|---|---|---|
SiO2 | 68.73 | 65.23 | 68.24 | 64.65 | 68.21 |
Al2O3 | 19.73 | 22.18 | 20.15 | 22.02 | 19.63 |
P2O5 | - | 0.01 | - | 0.02 | 0.01 |
Na2O | 11.27 | 9.72 | 11.35 | 10.11 | 11.71 |
K2O | 0.06 | 0.20 | 0.05 | 0.18 | 0.11 |
CaO | 0.31 | 2.82 | 0.69 | 2.53 | 0.04 |
F | - | 0.08 | - | - | - |
Total | 100.23 | 100.32 | 100.49 | 99.62 | 99.79 |
以8个氧为基础计算(apfu) | |||||
Si | 2.992 | 2.862 | 2.969 | 2.858 | 2.987 |
Al | 1.012 | 1.147 | 1.033 | 1.146 | 1.013 |
P | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 |
Total(T) | 4.004 | 4.010 | 4.002 | 4.005 | 4.000 |
Na | 0.951 | 0.827 | 0.957 | 0.866 | 0.994 |
K | 0.003 | 0.011 | 0.003 | 0.010 | 0.006 |
Ca | 0.014 | 0.132 | 0.032 | 0.120 | 0.002 |
Total(X) | 0.968 | 0.971 | 0.992 | 0.996 | 1.002 |
An | 1.477 | 13.635 | 3.237 | 12.016 | 0.210 |
Ab | 98.182 | 85.202 | 96.475 | 86.970 | 99.199 |
Or | 0.341 | 1.163 | 0.288 | 1.015 | 0.591 |
样品编号 | HPGZ-09 -01-Ab | HPGZ-10 -01-Ol | HPGZ-11 -05-Ab | HPGZ-21 -01-Ol |
---|---|---|---|---|
Li | 104.00 | 0.92 | 0.88 | 1.53 |
Be | 6.38 | 6.56 | 5.79 | 5.87 |
Rb | 57.20 | 0.77 | 29.90 | 1.03 |
Cs | 1.68 | 0.097 | 0.77 | 0.17 |
Sn | 0.65 | 0.42 | 0.47 | - |
Nb | 0.30 | 0.011 | 0.22 | 0.02 |
Ta | 0.019 | 0.018 | 0.013 | - |
Ba | 57.40 | 2.23 | 13.00 | 1.01 |
表6 伟晶岩中斜长石LA-ICP-MS微量元素分析结果(10-6)
Table 6 LA-ICP-MS data (10-6) of feldspar from the pegmatite
样品编号 | HPGZ-09 -01-Ab | HPGZ-10 -01-Ol | HPGZ-11 -05-Ab | HPGZ-21 -01-Ol |
---|---|---|---|---|
Li | 104.00 | 0.92 | 0.88 | 1.53 |
Be | 6.38 | 6.56 | 5.79 | 5.87 |
Rb | 57.20 | 0.77 | 29.90 | 1.03 |
Cs | 1.68 | 0.097 | 0.77 | 0.17 |
Sn | 0.65 | 0.42 | 0.47 | - |
Nb | 0.30 | 0.011 | 0.22 | 0.02 |
Ta | 0.019 | 0.018 | 0.013 | - |
Ba | 57.40 | 2.23 | 13.00 | 1.01 |
样品 编号 | HPGZ- 10-Pl | HPGZ- 20-Mic | HPEW- 24-Mic | 红十字湖富铷 伟晶岩-Mic | 红十字湖富铷 伟晶岩-Mic |
---|---|---|---|---|---|
a(Å) | 8.143 | 8.562 | 8.559 | 8.637 | 8.635 |
b(Å) | 12.796 | 12.959 | 12.969 | 12.969 | 12.967 |
c(Å) | 7.139 | 7.210 | 7.206 | 7.226 | 7.225 |
α(°) | 94.07 | 90.39 | 90.07 | 90.56 | 90.58 |
β(°) | 116.53 | 115.95 | 115.99 | 116.00 | 116.00 |
γ(°) | 88.38 | 88.51 | 89.60 | 87.89 | 87.89 |
V | 663.80 | 719.0 | 718.9 | 727.0 | 726.7 |
表7 伟晶岩中斜长石和钾长石的晶胞参数
Table 7 Cell parameters of feldspar in pegmatite
样品 编号 | HPGZ- 10-Pl | HPGZ- 20-Mic | HPEW- 24-Mic | 红十字湖富铷 伟晶岩-Mic | 红十字湖富铷 伟晶岩-Mic |
---|---|---|---|---|---|
a(Å) | 8.143 | 8.562 | 8.559 | 8.637 | 8.635 |
b(Å) | 12.796 | 12.959 | 12.969 | 12.969 | 12.967 |
c(Å) | 7.139 | 7.210 | 7.206 | 7.226 | 7.225 |
α(°) | 94.07 | 90.39 | 90.07 | 90.56 | 90.58 |
β(°) | 116.53 | 115.95 | 115.99 | 116.00 | 116.00 |
γ(°) | 88.38 | 88.51 | 89.60 | 87.89 | 87.89 |
V | 663.80 | 719.0 | 718.9 | 727.0 | 726.7 |
图8 伟晶岩中云母的K/Rb-Cs图解 彩色线部分表示不同类型伟晶岩中云母中K/Rb比值和Cs含量;不含矿、Totoral伟晶岩数据引自文献[26];Leinster伟晶岩数据引自文献[27];Karibib伟晶岩数据引自文献[28];CapdeCreus伟晶岩数据引自文献[29];Tanco伟晶岩数据引自文献[30];可可托海3号脉数据引自文献[31];小虎斯特91号脉数据引自文献[32]
Fig.8 K/Rb-Cs diagram of mica in the pegmatite
图9 (a)各岩体中白云母的稀有金属含量箱线图和(b)抱板杂岩及伟晶岩稀有金属含量箱线图(李家锡矿床数据引自文献[33],李家沟无矿、含矿伟晶岩及可尔因岩体数据引自文献[34])
Fig.9 (a) Box plot of rare metal content of mica in various rock masses and (b) box plot of rare metal content of the cladice complex and pegmatite
图10 (a)稀有金属元素含量箱线图和(b)Nb/Ta-Zr/Hf图解(底图据文献[45],可尔因矿田数据引自文献[46-49],甲基卡矿田数据引自文献[50-53],二长花岗岩数据引自文献 [4][16], 花岗闪长岩数据引自文献[4][6])
Fig.10 (a) Box plot of rare metal element content and (b) Nb/Ta vs Zr/Hf diagram(base map from reference[45], the data of Ke’erin ore field from references [46-49], and the data of Jiajika ore field from references [50-53], the data of monzonitic granite from references [4][16], the data of granodiorite from references [4][6]
[1] | 马大铨, 黄香定, 肖志发, 等. 海南岛结晶基底[M]. 武汉: 中国地质大学出版社, 1998. |
[2] | 张立敏, 王岳军, 李庶波, 等. 海南公爱地区抱板群花岗片麻岩的年代学、地球化学及其构造意义[J]. 大地构造与成矿学, 2017, 41(2): 396-411. |
[3] | 许德如, 梁新权, 唐红峰. 琼西抱板群变质沉积岩地球化学研究[J]. 地球化学, 2002, 2: 153-160. |
[4] | 许德如, 梁新权, 陈广浩, 等. 海南岛中元古代花岗岩地球化学及成因研究[J]. 大地构造与成矿学, 2001, 25(4): 420-433. |
[5] | 徐德明, 谢才富, 张业明, 等. 琼中古—中元古代变基性火山岩地球化学特征及其地质意义[J]. 地球学报, 2006, 27(3): 227-234. |
[6] | ZHANG L M, ZHANG Y Z, CUI X, et al. Mesoproterozoic rift setting of SW Hainan: Evidence from the gneissic granites and metasedimentary rocks[J]. Precambrian Research, 2019, 325: 69-87. |
[7] | 陈龙耀, 刘晓春, 胡娟, 等. 海南岛抱板杂岩记录的多期构造热事件:锆石和独居石U-Pb年代学的制约[J]. 岩石学报, 2024, 40(1): 119-139. |
[8] | 恽虎, 王成, 官军, 等. 琼西抱板杂岩中伟晶岩年代学及其地质意义[J]. 矿物岩石地球化学通报, 2024, 43(5): 973-986. |
[9] | 胡在龙, 王勇, 赵小明, 等. 海南岛南部侏罗系的发现——来自碎屑锆石U-Pb年龄及Hf同位素的证据[J]. 地质通报, 2019, 38(10): 1740-1757. |
[10] | 陈哲培. 海南省岩石地层[M]. 武汉: 中国地质大学出版社, 1997. |
[11] | 汪啸风. 海南岛地质2岩浆岩[M]. 北京: 地质出版社, 1991. |
[12] | 海南省地质调查院. 1:25 万东方县幅区域地质调查报告[R]. 2007. |
[13] | 海南省地质调查院, 宜昌地质矿产研究所. 1:25 万乐东县幅、 陵水县幅区域地质调查报告[R]. 2004. |
[14] | MIDDLEMOST E A K. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994, 37(3): 215-224. |
[15] | RICKWOOD P C. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos, 1989, 22(4): 247-263. |
[16] | LI Z X, LI X H, LI W X, et al. Was Cathaysia part of Proterozoic Laurentia ? New data from Hainan Island, south China[J]. Terra Nova, 2008, 20(2): 154-164. |
[17] | SUN S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society London Special Publications, 1989, 42(1): 313-345. |
[18] | TISCHENDORF G, GOTTESMANN B, FORSTER H J, et al. On Li-bearing micas: estimating Li from electron microprobe analyses and an improved diagram for graphical representation[J]. Mineralogical Magazine, 1997, 61(6): 809-834. |
[19] | SMITH J V. Feldspar Minerals[M]. Springer Berlin Heidelberg, 1974. |
[20] | TISCHENDORF G, RIEDER M, FRSTER H J, et al. A new graphical presentation and subdivision of potassium micas[J]. Mineralogical Magazine, 2004, 68(4): 649-667. |
[21] | Tindle A G, Webb P C. Estimation of lithium contents in trioctahedral micas using microprobe data: application to micas from granitic rocks[J]. European Journal of Mineralogy, 1990, 2(5): 595-610. |
[22] | 王贤觉, Černý P. 红十字湖地区伟晶花岗岩及其伟晶岩中钾长石的地球化学演化[J]. 矿物学报, 1992, 12(1): 18-25. |
[23] | Černý P, ERCIT T S. The classification of granitic pegmatites revisited[J]. Can Mineral, 2005, 43: 2005-2026. |
[24] | 王汝成, 谢磊, 诸泽颖, 等. 云母:花岗岩-伟晶岩稀有金属成矿作用的重要标志矿物[J]. 岩石学报, 2019, 35(1): 69-75. |
[25] | WISE M A. Trace element chemistry of lithium-rich micas from rare-element granitic pegmatites[J]. Mineralogy Petrology, 1995, 55(1/3): 203-215. |
[26] | OYARZABAL J, GALLISKI M A, PERINO E. Geochemistry of K-feldspar and Muscovite in Rare-element Pegmatites and Granites from the Totoral Pegmatite Field, San Luis, Argentina[J]. Resource Geology, 2009, 59(4): 315-329. |
[27] | KAETER D, BARROS R, MENUGE J F, et al. The magmatic-hydrothermal transition in rare-element pegmatites from southeast Ireland: LA-ICP-MS chemical mapping of muscovite and columbite-tantalite[J]. Geochimca et Cosmochimica Acta, 2018, 240: 98-130. |
[28] | RODA E, KELLER P, PESQUERA A, et al. Micas of the muscovite-lepidolite series from Karibib pegmatites, Namibia[J]. Mineralogical Magazine, 2007, 71(1): 41-62. |
[29] | ALFONSO P, MELGAREJO J C, YUSTA I, et al. Geochemistry of feldspars and muscovite in granitic pegmatite from the Cap de Creus field, Catalonia, Spain[J]. The Canadian Mineralogist, 2003, 41: 103-116. |
[30] | VAN LICHTERVELDE M, GREGOIRE M, LINNEN R L, et al. Trace element geochemistry by laser ablation ICP-MS of micas associated with Ta mineralization in the Tanco pegmatite, Manitoba, Canada[J]. Contrib Mineral Petrol, 2008, 155(6): 791-806. |
[31] | 周起凤, 秦克章, 唐冬梅, 等. 阿尔泰可可托海3号脉伟晶岩型稀有金属矿床云母和长石的矿物学研究及意义[J]. 岩石学报, 2013, 29(9): 3004-3022. |
[32] | 田润. 新疆小虎斯特91号伟晶岩脉的岩浆——热液演化和稀有金属含矿性评价[D]. 北京: 中国科学院大学, 2019. |
[33] | ZHANG Q, LU J J, ZHANG R Q, et al. Early Paleozoic tin mineralization in South China: Geology, geochronology and geochemistry of the Lijia tin deposit in the Miaoershan-Yuechengling composite batholith[J]. Ore Geology Reviews, 2023, 152: 105249. |
[34] | 李云强. 四川可尔因李家沟伟晶岩型锂辉石矿床矿物学特征及找矿意义[D]. 成都: 成都理工大学, 2021. |
[35] | EBY G N, WOOLLEY A R, DIN V, et al. Geochemistry and petrogenesis of nepheline syenites: Kasungu-Chipala, Ilomba, and Ulindi nepheline syenite intrusions, North Nyasa Alkaline Province, Malawi[J]. Journal of Petrology, 1998, 39(8): 1405-1424. |
[36] | PETFORD N, ATHERTON M. Na-rich partial melts from newly underplated basaltic crust: The Cordillera Blanca Batholith, Peru[J]. Journal of Petrology, 1996, 37(6): 1491-1521. |
[37] | 代鸿章, 王登红, 刘丽君, 等. 川西甲基卡308号伟晶岩脉年代学和地球化学特征及其地质意义[J]. 地球科学, 2018, 43(10): 3664-3681. |
[38] | LINNEN R L. The solubility of Nb-Ta-Zr-Hf-W in granitic melts with Li and Li+F: Constraints for mineralization in rare metal granites and pegmatites[J]. Economic Geology, 1998, 93(7): 1013-1025. |
[39] | IRBER W. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr Hf of evolving peraluminous granite suites[J]. Geochimica et Cosmochimica Acta, 1999, 63(3/4): 489-508. |
[40] | 卢焕章, 范宏瑞, 倪培, 等. 流体包裹体[M]. 北京: 科学出版社, 2004. |
[41] | LONDON D. The application of experimental petrology to the genesis and crystallization of granitic pegmatites[J]. The Canadian Mineralogist, 1992, 30(3): 499-540. |
[42] | MÜLLER A, ROMER R L, PEDERSEN R. The Sveconorwegian pegmatite province-thousands of pegmatites without parental granites[J]. The Canadian Mineralogist, 2017, 55(2): 283-315. |
[43] | DILL H G. Geology and chemistry of Variscan-type pegmatite systems (SE Germany)-With special reference to structural and chemical pattern recognition of felsic mobile components in the crust[J]. Ore Geology Reviews, 2018, 92: 205-239. |
[44] | 周起凤, 秦克章, 朱丽群, 等. 花岗伟晶岩成因探讨:岩浆分异与深熔[J]. 地学前缘, 2023, 30(05): 26-39. |
[45] | BALLOUARD C, BRANQUET Y, TARTESE R, et al. Nb-Ta fractionation in peraluminous granites: A marker of the magmatic-hydrothermal transition[J]. Geology, 2016, 44(3): 231-234. |
[46] | 唐文春, 段威, 邹林, 等. 川西可尔因地区伟晶岩型锂矿地球化学指标定位矿体的方法[J]. 地质力学学报, 2022, 28(5): 765-792. |
[47] | 谭华, 费光春, 蔡云华, 等. 四川可尔因矿田党坝稀有金属矿床中带和南带伟晶岩地球化学特征及地质意义[J]. 矿物岩石, 2023, 43(1): 61-72. |
[48] | 黄巧缘. 川西可尔因地区李家沟伟晶岩型锂矿床元素地球化学特征及成矿作用研究[D]. 成都: 成都理工大学, 2021. |
[49] | FEI G, MENUGE J F, LI Y, et al. Petrogenesis of the Lijiagou spodumene pegmatites in Songpan-Garze Fold Belt, West Sichuan, China: Evidence from geochemistry, zircon, cassiterite and coltan U-Pb geochronology and Hf isotopic compositions[J]. Lithos, 2020, 105555. |
[50] | 李贤芳, 田世洪, 王登红, 等. 川西甲基卡锂矿床花岗岩与伟晶岩成因关系:U-Pb定年、Hf-O同位素和地球化学证据[J]. 矿床地质, 2020, 39(2): 273-304. |
[51] | 李名则, 秦宇龙, 李峥, 等. 川西甲基卡二云母花岗岩与伟晶岩脉地球化学特征及其地质意义[J]. 岩石矿物学杂志, 2018, 37(3): 366-378. |
[52] | 贾旭. 甲基卡花岗伟晶岩型稀有金属矿床成矿特征[D]. 成都: 成都理工大学, 2019. |
[53] | 侯江龙, 李建康, 张玉洁, 等. 四川甲基卡锂矿床花岗岩体Li同位素组成及其对稀有金属成矿的制约[J]. 地球科学, 2018, 43(6): 2042-2054. |
[54] | 吴昌志, 贾力, 雷如雄, 等. 中亚造山带天河石花岗岩及相关铷矿床的主要特征与研究进展[J]. 岩石学报, 2021, 37(9): 2604-2628. |
[55] | 刘英俊, 曹励明, 李兆麟, 等. 元素地球化学[M]. 北京: 科学出版社, 1984. |
[56] | 张辉, 吕正航, 唐勇. LCT型伟晶岩及其锂矿床成因概述[J]. 地质学报, 2021, 95: 2955-2970. |
[57] | 赵振华, 陈华勇, 韩金生. 新疆阿尔泰造山带中生代伟晶岩的稀有金属成矿作用[J]. 中山大学学报(自然科学版)(中英文), 2022, 61(1): 1-26. |
[58] | 王登红, 王成辉, 孙艳, 等. 我国锂铍钽矿床调查研究进展及相关问题简述[J]. 中国地质调查, 2017, 4(5): 1-8. |
[59] | 广东省地质局海南地质大队. 广东省海南岛乐东县红五岭白云母矿区详细普查地质总结报告[R]. 1962. |
[60] | 农仕华. 桂东北加里东期与钨矿有关花岗岩成岩成矿研究[D]. 南宁: 广西大学, 2018. |
[61] | SYLVESTER P J. Post-collisional strongly peraluminous granites[J]. Lithos, 1998, 45(1): 29-44. |
[1] | 吴晓贺, 张聚全, 段站站, 张乐民, 温雨菁, 郭子桤, 李清. 华北克拉通中部菅等岩体的成因及构造意义: 锆石U-Pb年代学、岩石地球化学的约束[J]. 现代地质, 2025, 39(03): 728-751. |
[2] | 娄元林, 成明, 陈武, 唐侥, 曾昊, 陈坤, 袁永盛, 杨桃. 藏南古堆地区锑多金属矿床成矿流体热力学与地球化学特征及其成矿启示[J]. 现代地质, 2025, 39(02): 263-266. |
[3] | 赖静, 刘文泉, 钟福军. 南岭东段上窑铀矿床花岗斑岩脉岩石成因及构造意义[J]. 现代地质, 2025, 39(02): 277-293. |
[4] | 韩慧萍, 马嘉, 张怡, 潘莹露. 塔里木盆地塔中地区奥陶系碳酸盐岩储层成岩流体性质及分布[J]. 现代地质, 2025, 39(02): 312-326. |
[5] | 杨宇婷, 白峰, 温宇航, 张启东, 张道元, 王雯. 吉林“磐龙玉”的地球化学特征及颜色成因探讨[J]. 现代地质, 2025, 39(01): 167-182. |
[6] | 安雯静, 白峰, 刘孟松, 张道元, 黄甜甜, 王雯. 吉林“磐龙墨玉”的宝石矿物学、年代学及成因研究[J]. 现代地质, 2025, 39(01): 183-193. |
[7] | 许鑫, 张立飞, 田伟, 朱金涛, 何衍鑫. 海南岛新生代玄武岩中富硅熔体包裹体特征及成因[J]. 现代地质, 2025, 39(01): 31-45. |
[8] | 张国宾, 孔金贵, 王翠彭, 史宏江, 鞠楠, 何云龙. 大兴安岭北段呼玛地区晚石炭世花岗岩年代学和地球化学特征:对古亚洲洋构造演化的制约[J]. 现代地质, 2025, 39(01): 62-82. |
[9] | 张美诺, 石康兴, 邱昆峰, 邓军. 冀东司家营BIF铁矿床磁铁矿类型与成因及其对高品位铁矿化成矿机制的启示[J]. 现代地质, 2025, 39(01): 96-114. |
[10] | 刘孝锐, 路俊刚, 谭开俊, 廖建波, 龙礼文, 陈世加, 李勇, 肖正录. 鄂尔多斯盆地西南部HQ地区长7段烃源岩地球化学特征与长8段原油来源分析[J]. 现代地质, 2024, 38(05): 1306-1324. |
[11] | 吕古贤, 张宝林, 胡宝群, 周永胜, 王宗秀, 王红才, 曹代勇, 方维萱, 韩润生, 许德如, 杨兴科, 焦建刚, 王翠芝, 吕承训. 构造物理化学的理论纲要和应用前景[J]. 现代地质, 2024, 38(04): 837-852. |
[12] | 张宝林, 吕古贤, 沈晓丽, 张壮, 曹明坚, 黄新硕, 苏艳平, 贾文臣. 基于构造变形岩相带的覆盖区化探资料解释与找矿应用:以广西金秀镍钴多金属矿田为例[J]. 现代地质, 2024, 38(04): 934-946. |
[13] | 刘旭, 戢兴忠, 陈强, 李源洪. 贵州普克金矿区黄铁矿和方解石地球化学特征及地质意义[J]. 现代地质, 2024, 38(04): 977-990. |
[14] | 潘有良, 王小洪, 费光春, 杨恩林, 肖玉, 张钟华. 贵州省桐梓县耕地表层土壤养分元素有效性研究[J]. 现代地质, 2024, 38(03): 764-774. |
[15] | 何云龙, 张国宾, 杨言辰, 冯玥, 孔金贵, 陈兴凯. 锡霍特—阿林造山带那丹哈达地体四平山金矿床成因与构造背景:锆石U-Pb年代学、岩石和流体地球化学制约[J]. 现代地质, 2024, 38(01): 128-153. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||