现代地质 ›› 2025, Vol. 39 ›› Issue (01): 46-61.DOI: 10.19657/j.geoscience.1000-8527.2024.103
出版日期:
2025-02-10
发布日期:
2025-02-20
通信作者:
程志国,男,副教授,博士生导师,1987年出生,矿物学、岩石学、矿床学专业,主要从事塔里木大火成岩省和中亚造山带岩浆作用与资源环境的研究。Email: zgcheng@cugb.edu.cn。作者简介:
刘 帆,男,硕士研究生,1999年出生,地质学专业,主要从事火山碎屑岩及古环境的研究。Email: lf1569308648@163.com。
基金资助:
LIU Fan(), CHENG Zhiguo(
), GUO Zhufang, JI Wentao
Published:
2025-02-10
Online:
2025-02-20
摘要:
熔积岩是一种由炙热的熔岩流与湿冷沉积物混合形成的特殊火山碎屑岩,主要由浆源碎屑和宿主沉积物两部分构成。其独特的成因和产出环境为岩浆喷发期的沉积环境研究提供了重要依据。西南天山托云盆地记录了中生代以来塔里木湾海退的地质演化,新发现的古近纪熔积岩揭示了区域海陆转换过程。本研究以托云熔积岩为对象,通过典型剖面宿主碳酸盐岩的主微量元素和碳氧稳定同位素分析,探讨其古环境特征。分析结果显示,宿主碳酸盐岩的δ13CVPDB变化范围为-4.05‰~-7.74‰,δ18OVPDB变化范围为-6.42‰~-11.93‰。基于经验公式计算,其形成的古环境温度为30.3~6.9 ℃,古盐度指数为114.6~105.5(平均为110.2),古盐度值为24.77‰。综合研究表明,该熔积岩形成于海陆边界的微咸水潟湖环境。
中图分类号:
刘帆, 程志国, 郭祝芳, 冀文涛. 西南天山托云盆地古近纪熔积岩成因及其古环境意义[J]. 现代地质, 2025, 39(01): 46-61.
LIU Fan, CHENG Zhiguo, GUO Zhufang, JI Wentao. Petrogenesis and Paleoenvironmental Significance of Paleogene Peperite in the Tuoyun Basin, Southwestern Tianshan Mountains[J]. Geoscience, 2025, 39(01): 46-61.
图1 中新世—始新世新特提斯洋分布图(a)、中亚造山带示意图(b)和托云盆地地质简图(c)(图1(a)据文献[37]和[53]修改,图1(b)据文献[54]修改) (a)中的黄色虚线分别表示中始新世(41 Ma)塔里木湾海退和晚始新世(37 Ma)塔里木湾海退
Fig.1 Distribution map of the Neotethys Ocean during the Middle to Early Eocene (a), schematic map of the Central Asian Orogenic Belt (b), and simplified geological map of the Tuoyun Basin (c) (Fig.1(a) modified after refs.[37,53]and Fig.1(b) modified after ref. [54])
图3 托云盆地熔积岩野外露头剖面照片 (a)红色浆源碎屑与亮白色碳酸盐沉积物发生熔积作用,上部为发育柱状节理的玄武岩层;(b)块状熔积岩,宿主沉积物为碳酸盐岩,气孔构造和杏仁构造十分发育,局部可见浆源碎屑原位破碎形成的锯齿嵌合结构;(c)块状熔积岩层与枕状玄武岩伴生,两者之间存在明显的挤压关系,枕状玄武岩中零星分布有碳酸盐沉积物;(d)块状熔积岩,宿主沉积物为碳酸盐岩,局部可见沉积物烘烤边;(e)宿主沉积物为砂岩的流态熔积岩,含有杏仁状碳酸盐岩;(f)流态熔积岩中的浆源碎屑呈似枕状产出,包裹碳酸盐沉积物
Fig.3 Field photograph of the outcrop profile of peperite in the Tuoyun Basin
图4 托云盆地熔积岩中浆源碎屑的显微照片 (a)流态浆源碎屑与宿主沉积物流,浆源碎屑边界呈现流动状曲面外观,部分宿主沉积物因流化作用而破碎成小的新碎屑。BC=Basalt Clast,代表浆源碎屑,正交偏光;(b)硅质熔积岩,球状结构,岩心周围可见放射状结构,正交偏光;(c)宿主沉积物充填于浆源碎屑碎裂形成的裂隙中,单偏光;(d)浆源碎屑遇湿冷沉积物发生原位萃冷裂解,沉积物流充填裂解孔隙,单偏光
Fig.4 Photomicrographs of juvenile clasts in the peperite of the Tuoyun Basin
图5 托云盆地熔积岩中宿主白云岩的岩相学特征 (a)D1,隐晶质-微晶质结构,白云石晶粒细小且晶粒间紧密堆积,单偏光;(b)D2,聚集状分布,晶粒间凹凸接触或紧密镶嵌接触,孔隙较为发育,单偏光;(c)D3,自形-半自形晶体,正交偏光;(d)D3,自形-半自形晶体,部分存在白云石环带,可见双晶纹,正交偏光
Fig.5 Petrological characteristics of the host dolomite in the peperite of the Tuoyun Basin
图6 托云盆地熔积岩宿主白云岩球粒陨石标准化稀土元素配分图(标准化数据据文献[56])
Fig.6 Chondrite-normalized REE distribution patterns of the host dolomite in the peperite of the Tuoyun Basin (Standardized data derived from ref. [56])
样品编号 | 样品名称 | Na2O(%) | TiO2(%) | SiO2(%) | MnO(%) | MgO(%) | Cr2O3(%) | SrO(%) | NiO(%) | Al2O3(%) |
---|---|---|---|---|---|---|---|---|---|---|
ADH2-02-5 | 白云石 | 0.07 | - | 0.09 | 0.03 | 23.72 | 0.02 | 0.02 | 0.02 | 0.01 |
ADH2-02-6 | 白云石 | 0.09 | 0.01 | 0.06 | - | 21.50 | 0.01 | 0.04 | 0.12 | 0.02 |
ADH2-02-9 | 白云石 | 0.09 | 0.03 | 0.02 | 0.03 | 22.68 | - | 0.07 | 0.03 | 0.01 |
ADH2-02-10 | 白云石 | 0.07 | - | 0.01 | 0.01 | 22.80 | 0.01 | 0.03 | 0.06 | 0 |
ADH2-02-11 | 白云石 | 0.06 | 0.02 | 0.05 | 0.02 | 21.97 | 0.06 | 0.10 | 0.01 | 0 |
ADH2-02-12 | 白云石 | 0.03 | - | 0.02 | 0.01 | 21.80 | 0.01 | 0.07 | 0.04 | 0 |
ADH2-02-16-C | 白云石 | 0.03 | 0.03 | - | 0.02 | 22.64 | - | 0.01 | - | 0.01 |
ADH2-02-25-1 | 白云石 | 0.01 | 0.05 | 0.04 | 0.02 | 23.10 | 0.03 | 0.07 | - | 0.01 |
ADH2-02-25-2 | 白云石 | 0.03 | 0.01 | 0.08 | 0.03 | 22.69 | 0.01 | 0.02 | 0.02 | 0 |
ADH2-02-25-3 | 白云石 | 0.04 | 0.05 | 0.05 | - | 22.67 | - | 0.06 | 0.01 | 0.02 |
ADH2-02-28 | 白云石 | 0.04 | - | 0.06 | 0.01 | 23.20 | 0.01 | 0.08 | 0.02 | 0.01 |
样品编号 | 样品名称 | FeO(%) | K2O(%) | CaO(%) | Na(10-6) | Mn(10-6) | Mg(10-6) | Sr(10-6) | Fe(10-6) | Ca(10-6) |
ADH2-02-5 | 白云石 | 0.02 | 0.02 | 29.93 | 549.00 | 205.20 | 143020.40 | 152.20 | 155.50 | 213876.30 |
ADH2-02-6 | 白云石 | 0.03 | 0.02 | 31.78 | 678.80 | - | 129660.00 | 372.10 | 229.30 | 227119.60 |
ADH2-02-9 | 白云石 | 0.01 | 0.03 | 30.85 | 675.10 | 193.60 | 136797.00 | 583.50 | 50.50 | 220490.80 |
ADH2-02-10 | 白云石 | 0.03 | 0.00 | 30.95 | 511.90 | 73.60 | 137475.50 | 283.30 | 194.30 | 221187.60 |
ADH2-02-11 | 白云石 | - | 0.01 | 31.68 | 445.10 | 174.30 | 132509.40 | 858.30 | - | 226401.40 |
ADH2-02-12 | 白云石 | 0.01 | - | 31.82 | 255.90 | 92.90 | 131433.00 | 613.10 | 77.70 | 227434.10 |
ADH2-02-16-C | 白云石 | 0.05 | 0.01 | 30.69 | 244.80 | 123.90 | 136498.50 | 105.70 | 373.10 | 219329.40 |
ADH2-02-25-1 | 白云石 | 0.02 | 0.01 | 29.41 | 92.70 | 166.50 | 139293.60 | 617.30 | 139.90 | 210188.50 |
ADH2-02-25-2 | 白云石 | - | - | 30.30 | 200.30 | 267.20 | 136851.30 | 190.30 | - | 216545.70 |
ADH2-02-25-3 | 白云石 | 0.02 | - | 30.63 | 311.60 | - | 136697.50 | 528.50 | 159.30 | 218889.90 |
ADH2-02-28 | 白云石 | 0.04 | - | 30.00 | 267.10 | 62.00 | 139917.80 | 655.30 | 272.10 | 214390.90 |
表1 托云盆地熔积岩中宿主白云石电子探针数据
Table 1 EPMA data of the host dolomite in the peperite of the Tuoyun Basin
样品编号 | 样品名称 | Na2O(%) | TiO2(%) | SiO2(%) | MnO(%) | MgO(%) | Cr2O3(%) | SrO(%) | NiO(%) | Al2O3(%) |
---|---|---|---|---|---|---|---|---|---|---|
ADH2-02-5 | 白云石 | 0.07 | - | 0.09 | 0.03 | 23.72 | 0.02 | 0.02 | 0.02 | 0.01 |
ADH2-02-6 | 白云石 | 0.09 | 0.01 | 0.06 | - | 21.50 | 0.01 | 0.04 | 0.12 | 0.02 |
ADH2-02-9 | 白云石 | 0.09 | 0.03 | 0.02 | 0.03 | 22.68 | - | 0.07 | 0.03 | 0.01 |
ADH2-02-10 | 白云石 | 0.07 | - | 0.01 | 0.01 | 22.80 | 0.01 | 0.03 | 0.06 | 0 |
ADH2-02-11 | 白云石 | 0.06 | 0.02 | 0.05 | 0.02 | 21.97 | 0.06 | 0.10 | 0.01 | 0 |
ADH2-02-12 | 白云石 | 0.03 | - | 0.02 | 0.01 | 21.80 | 0.01 | 0.07 | 0.04 | 0 |
ADH2-02-16-C | 白云石 | 0.03 | 0.03 | - | 0.02 | 22.64 | - | 0.01 | - | 0.01 |
ADH2-02-25-1 | 白云石 | 0.01 | 0.05 | 0.04 | 0.02 | 23.10 | 0.03 | 0.07 | - | 0.01 |
ADH2-02-25-2 | 白云石 | 0.03 | 0.01 | 0.08 | 0.03 | 22.69 | 0.01 | 0.02 | 0.02 | 0 |
ADH2-02-25-3 | 白云石 | 0.04 | 0.05 | 0.05 | - | 22.67 | - | 0.06 | 0.01 | 0.02 |
ADH2-02-28 | 白云石 | 0.04 | - | 0.06 | 0.01 | 23.20 | 0.01 | 0.08 | 0.02 | 0.01 |
样品编号 | 样品名称 | FeO(%) | K2O(%) | CaO(%) | Na(10-6) | Mn(10-6) | Mg(10-6) | Sr(10-6) | Fe(10-6) | Ca(10-6) |
ADH2-02-5 | 白云石 | 0.02 | 0.02 | 29.93 | 549.00 | 205.20 | 143020.40 | 152.20 | 155.50 | 213876.30 |
ADH2-02-6 | 白云石 | 0.03 | 0.02 | 31.78 | 678.80 | - | 129660.00 | 372.10 | 229.30 | 227119.60 |
ADH2-02-9 | 白云石 | 0.01 | 0.03 | 30.85 | 675.10 | 193.60 | 136797.00 | 583.50 | 50.50 | 220490.80 |
ADH2-02-10 | 白云石 | 0.03 | 0.00 | 30.95 | 511.90 | 73.60 | 137475.50 | 283.30 | 194.30 | 221187.60 |
ADH2-02-11 | 白云石 | - | 0.01 | 31.68 | 445.10 | 174.30 | 132509.40 | 858.30 | - | 226401.40 |
ADH2-02-12 | 白云石 | 0.01 | - | 31.82 | 255.90 | 92.90 | 131433.00 | 613.10 | 77.70 | 227434.10 |
ADH2-02-16-C | 白云石 | 0.05 | 0.01 | 30.69 | 244.80 | 123.90 | 136498.50 | 105.70 | 373.10 | 219329.40 |
ADH2-02-25-1 | 白云石 | 0.02 | 0.01 | 29.41 | 92.70 | 166.50 | 139293.60 | 617.30 | 139.90 | 210188.50 |
ADH2-02-25-2 | 白云石 | - | - | 30.30 | 200.30 | 267.20 | 136851.30 | 190.30 | - | 216545.70 |
ADH2-02-25-3 | 白云石 | 0.02 | - | 30.63 | 311.60 | - | 136697.50 | 528.50 | 159.30 | 218889.90 |
ADH2-02-28 | 白云石 | 0.04 | - | 30.00 | 267.10 | 62.00 | 139917.80 | 655.30 | 272.10 | 214390.90 |
样品编号 | 样品名称 | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb |
---|---|---|---|---|---|---|---|---|---|
ADH2-02-5 | 白云岩 | 0.2 | 0.1 | < 0.05 | 0.1 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
ADH2-02-6 | 白云岩 | 2.6 | 1.2 | 0.9 | 4.7 | 1.5 | 0.5 | 2.5 | 0.4 |
ADH2-02-9 | 白云岩 | 2.8 | 1.6 | 0.7 | 3.2 | 0.8 | 0.2 | 1.0 | 0.1 |
ADH2-02-10 | 白云岩 | 2.3 | 1.4 | 0.5 | 2.2 | 0.5 | 0.1 | 0.6 | 0.1 |
ADH2-02-11 | 白云岩 | 3.1 | 1.8 | 0.7 | 3.2 | 0.7 | 0.2 | 1.0 | 0.1 |
ADH2-02-12 | 白云岩 | 3.0 | 1.3 | 0.9 | 4.9 | 1.4 | 0.5 | 2.3 | 0.4 |
ADH2-02-15-C | 白云岩 | 3.5 | 5.9 | 1.0 | 5.1 | 1.2 | 0.4 | 1.5 | 0.2 |
ADH2-02-16-C | 白云岩 | 3.2 | 5.8 | 0.7 | 3.6 | 0.8 | 0.3 | 0.9 | 0.1 |
ADH2-02-25-1 | 白云岩 | 0.4 | 0.3 | 0.1 | 0.4 | 0.1 | < 0.05 | 0.1 | < 0.05 |
ADH2-02-25-2 | 白云岩 | 0.4 | 0.3 | 0.1 | 0.4 | 0.1 | < 0.05 | 0.1 | < 0.05 |
ADH2-02-25-3 | 白云岩 | 0.4 | 0.2 | 0.1 | 0.3 | 0.1 | < 0.05 | 0.1 | < 0.05 |
ADH2-02-28 | 白云岩 | 1.1 | 1.5 | 0.3 | 1.1 | 0.3 | 0.1 | 0.3 | < 0.05 |
样品编号 | 样品名称 | Dy | Ho | Er | Tm | Yb | Lu | Y | |
ADH2-02-5 | 白云岩 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.2 | |
ADH2-02-6 | 白云岩 | 2.8 | 0.6 | 1.8 | 0.3 | 1.6 | 0.3 | 21.4 | |
ADH2-02-9 | 白云岩 | 0.8 | 0.2 | 0.5 | 0.1 | 0.4 | 0.1 | 5.7 | |
ADH2-02-10 | 白云岩 | 0.4 | 0.1 | 0.3 | < 0.05 | 0.3 | < 0.05 | 3.7 | |
ADH2-02-11 | 白云岩 | 0.8 | 0.2 | 0.4 | 0.1 | 0.3 | 0.1 | 5.8 | |
ADH2-02-12 | 白云岩 | 2.6 | 0.6 | 1.8 | 0.3 | 1.5 | 0.3 | 20.7 | |
ADH2-02-15-C | 白云岩 | 1.3 | 0.2 | 0.7 | 0.1 | 0.5 | 0.1 | 8.3 | |
ADH2-02-16-C | 白云岩 | 0.8 | 0.2 | 0.4 | 0.1 | 0.3 | 0.1 | 5.3 | |
ADH2-02-25-1 | 白云岩 | 0.1 | < 0.05 | 0.1 | < 0.05 | 0.1 | < 0.05 | 1.0 | |
ADH2-02-25-2 | 白云岩 | 0.1 | < 0.05 | 0.1 | < 0.05 | 0.1 | < 0.05 | 1.0 | |
ADH2-02-25-3 | 白云岩 | 0.1 | < 0.05 | 0.1 | < 0.05 | < 0.05 | < 0.05 | 0.8 | |
ADH2-02-28 | 白云岩 | 0.3 | 0.1 | 0.2 | < 0.05 | 0.2 | < 0.05 | 2.0 |
表2 托云盆地熔积岩宿主白云岩的微量元素数据(10-6)
Table 2 Trace element data of the host dolomite in the peperite of the Tuoyun Basin(10-6)
样品编号 | 样品名称 | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb |
---|---|---|---|---|---|---|---|---|---|
ADH2-02-5 | 白云岩 | 0.2 | 0.1 | < 0.05 | 0.1 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
ADH2-02-6 | 白云岩 | 2.6 | 1.2 | 0.9 | 4.7 | 1.5 | 0.5 | 2.5 | 0.4 |
ADH2-02-9 | 白云岩 | 2.8 | 1.6 | 0.7 | 3.2 | 0.8 | 0.2 | 1.0 | 0.1 |
ADH2-02-10 | 白云岩 | 2.3 | 1.4 | 0.5 | 2.2 | 0.5 | 0.1 | 0.6 | 0.1 |
ADH2-02-11 | 白云岩 | 3.1 | 1.8 | 0.7 | 3.2 | 0.7 | 0.2 | 1.0 | 0.1 |
ADH2-02-12 | 白云岩 | 3.0 | 1.3 | 0.9 | 4.9 | 1.4 | 0.5 | 2.3 | 0.4 |
ADH2-02-15-C | 白云岩 | 3.5 | 5.9 | 1.0 | 5.1 | 1.2 | 0.4 | 1.5 | 0.2 |
ADH2-02-16-C | 白云岩 | 3.2 | 5.8 | 0.7 | 3.6 | 0.8 | 0.3 | 0.9 | 0.1 |
ADH2-02-25-1 | 白云岩 | 0.4 | 0.3 | 0.1 | 0.4 | 0.1 | < 0.05 | 0.1 | < 0.05 |
ADH2-02-25-2 | 白云岩 | 0.4 | 0.3 | 0.1 | 0.4 | 0.1 | < 0.05 | 0.1 | < 0.05 |
ADH2-02-25-3 | 白云岩 | 0.4 | 0.2 | 0.1 | 0.3 | 0.1 | < 0.05 | 0.1 | < 0.05 |
ADH2-02-28 | 白云岩 | 1.1 | 1.5 | 0.3 | 1.1 | 0.3 | 0.1 | 0.3 | < 0.05 |
样品编号 | 样品名称 | Dy | Ho | Er | Tm | Yb | Lu | Y | |
ADH2-02-5 | 白云岩 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.2 | |
ADH2-02-6 | 白云岩 | 2.8 | 0.6 | 1.8 | 0.3 | 1.6 | 0.3 | 21.4 | |
ADH2-02-9 | 白云岩 | 0.8 | 0.2 | 0.5 | 0.1 | 0.4 | 0.1 | 5.7 | |
ADH2-02-10 | 白云岩 | 0.4 | 0.1 | 0.3 | < 0.05 | 0.3 | < 0.05 | 3.7 | |
ADH2-02-11 | 白云岩 | 0.8 | 0.2 | 0.4 | 0.1 | 0.3 | 0.1 | 5.8 | |
ADH2-02-12 | 白云岩 | 2.6 | 0.6 | 1.8 | 0.3 | 1.5 | 0.3 | 20.7 | |
ADH2-02-15-C | 白云岩 | 1.3 | 0.2 | 0.7 | 0.1 | 0.5 | 0.1 | 8.3 | |
ADH2-02-16-C | 白云岩 | 0.8 | 0.2 | 0.4 | 0.1 | 0.3 | 0.1 | 5.3 | |
ADH2-02-25-1 | 白云岩 | 0.1 | < 0.05 | 0.1 | < 0.05 | 0.1 | < 0.05 | 1.0 | |
ADH2-02-25-2 | 白云岩 | 0.1 | < 0.05 | 0.1 | < 0.05 | 0.1 | < 0.05 | 1.0 | |
ADH2-02-25-3 | 白云岩 | 0.1 | < 0.05 | 0.1 | < 0.05 | < 0.05 | < 0.05 | 0.8 | |
ADH2-02-28 | 白云岩 | 0.3 | 0.1 | 0.2 | < 0.05 | 0.2 | < 0.05 | 2.0 |
样品编号 | 岩石类型 | δ13CVPDB(‰) | δ18OVPDB(‰) |
---|---|---|---|
ADH-23-1 | 碳酸盐岩 | -6.13 | -7.56 |
ADH-23-2 | 碳酸盐岩 | -5.67 | -8.38 |
ADH-23-2 | 碳酸盐岩 | -7.29 | -11.42 |
ADH-23-6 | 碳酸盐岩 | -7.74 | -11.93 |
ADH-23-7 | 碳酸盐岩 | -5.97 | -11.38 |
ADH-23-8 | 碳酸盐岩 | -6.50 | -11.82 |
ADH-23-9 | 碳酸盐岩 | -5.98 | -11.49 |
ADH-23-10 | 碳酸盐岩 | -6.50 | -9.89 |
ADH-23-11 | 碳酸盐岩 | -6.67 | -10.92 |
ADH-23-13 | 碳酸盐岩 | -4.05 | -10.8 |
ADH-23-14 | 碳酸盐岩 | -5.22 | -10.41 |
ADH-23-16 | 碳酸盐岩 | -4.92 | -10.44 |
KK-23-15 | 碳酸盐岩 | -5.93 | -6.42 |
KK-23-16 | 碳酸盐岩 | -4.51 | -6.96 |
平均含量 | -5.93 | -9.99 |
表3 托云盆地熔积岩碳酸盐岩碳、氧同位素数据
Table 3 Carbon and oxygen isotope data of carbonate rocks in the peperite of the Tuoyun Basin
样品编号 | 岩石类型 | δ13CVPDB(‰) | δ18OVPDB(‰) |
---|---|---|---|
ADH-23-1 | 碳酸盐岩 | -6.13 | -7.56 |
ADH-23-2 | 碳酸盐岩 | -5.67 | -8.38 |
ADH-23-2 | 碳酸盐岩 | -7.29 | -11.42 |
ADH-23-6 | 碳酸盐岩 | -7.74 | -11.93 |
ADH-23-7 | 碳酸盐岩 | -5.97 | -11.38 |
ADH-23-8 | 碳酸盐岩 | -6.50 | -11.82 |
ADH-23-9 | 碳酸盐岩 | -5.98 | -11.49 |
ADH-23-10 | 碳酸盐岩 | -6.50 | -9.89 |
ADH-23-11 | 碳酸盐岩 | -6.67 | -10.92 |
ADH-23-13 | 碳酸盐岩 | -4.05 | -10.8 |
ADH-23-14 | 碳酸盐岩 | -5.22 | -10.41 |
ADH-23-16 | 碳酸盐岩 | -4.92 | -10.44 |
KK-23-15 | 碳酸盐岩 | -5.93 | -6.42 |
KK-23-16 | 碳酸盐岩 | -4.51 | -6.96 |
平均含量 | -5.93 | -9.99 |
图7 托云盆地熔积岩中宿主碳酸盐岩地球化学特征随深度变化
Fig.7 Variation of the geochemical characteristics of the host carbonate rocks in the peperite of the Tuoyun Basin with depth
图8 开放型和封闭性湖泊原生碳酸盐中不同地层单元湖相碳酸盐岩δ13C和δ18O平均含量的投影(据文献[21,68]修改)
Fig.8 Projection of average δ13C and δ18O contents in lacustrine carbonate rocks from different stratigraphic units in open and closed lake systems (modified after refs.[21,68])
样品编号 | 岩石类型 | 古盐度 指数Z | 古盐度S (‰) | 古温度T (℃) |
---|---|---|---|---|
ADH-23-1 | 碳酸盐岩 | 111.0 | 27.2 | 11.1 |
ADH-23-2 | 碳酸盐岩 | 111.5 | 26.4 | 14.3 |
ADH-23-5 | 碳酸盐岩 | 106.7 | 23.3 | 27.8 |
ADH-23-6 | 碳酸盐岩 | 105.5 | 22.8 | 30.3 |
ADH-23-7 | 碳酸盐岩 | 109.4 | 23.4 | 27.6 |
ADH-23-8 | 碳酸盐岩 | 108.1 | 22.9 | 29.7 |
ADH-23-9 | 碳酸盐岩 | 109.3 | 23.3 | 28.1 |
ADH-23-10 | 碳酸盐岩 | 109.1 | 24.9 | 20.7 |
ADH-23-11 | 碳酸盐岩 | 108.2 | 23.8 | 25.4 |
ADH-23-13 | 碳酸盐岩 | 113.6 | 24.0 | 24.8 |
ADH-23-14 | 碳酸盐岩 | 111.4 | 24.3 | 23.0 |
ADH-23-16 | 碳酸盐岩 | 112.0 | 24.3 | 23.2 |
KK-23-15 | 碳酸盐岩 | 112.0 | 28.3 | 6.9 |
KK-23-16 | 碳酸盐岩 | 114.6 | 27.8 | 8.8 |
平均值 | 110.2 | 24.8 | 21.6 |
表4 托云盆地古近纪古盐度、古温度数据
Table 4 Paleosalinity and paleotemperature data for the Paleogene period in the Tuoyun Basin
样品编号 | 岩石类型 | 古盐度 指数Z | 古盐度S (‰) | 古温度T (℃) |
---|---|---|---|---|
ADH-23-1 | 碳酸盐岩 | 111.0 | 27.2 | 11.1 |
ADH-23-2 | 碳酸盐岩 | 111.5 | 26.4 | 14.3 |
ADH-23-5 | 碳酸盐岩 | 106.7 | 23.3 | 27.8 |
ADH-23-6 | 碳酸盐岩 | 105.5 | 22.8 | 30.3 |
ADH-23-7 | 碳酸盐岩 | 109.4 | 23.4 | 27.6 |
ADH-23-8 | 碳酸盐岩 | 108.1 | 22.9 | 29.7 |
ADH-23-9 | 碳酸盐岩 | 109.3 | 23.3 | 28.1 |
ADH-23-10 | 碳酸盐岩 | 109.1 | 24.9 | 20.7 |
ADH-23-11 | 碳酸盐岩 | 108.2 | 23.8 | 25.4 |
ADH-23-13 | 碳酸盐岩 | 113.6 | 24.0 | 24.8 |
ADH-23-14 | 碳酸盐岩 | 111.4 | 24.3 | 23.0 |
ADH-23-16 | 碳酸盐岩 | 112.0 | 24.3 | 23.2 |
KK-23-15 | 碳酸盐岩 | 112.0 | 28.3 | 6.9 |
KK-23-16 | 碳酸盐岩 | 114.6 | 27.8 | 8.8 |
平均值 | 110.2 | 24.8 | 21.6 |
[1] | SCROPE G P. Memoir on the Geology of Central France:Including the Volcanic Formations of Auvergne, the Velay,and the Vivarais[M]. Longman, Rees, Orme, Brown and Green, London:British Library, Historical Print Editions, 1827: 79. |
[2] | SCROPE G P. The Geology and Extinct Volcanos of Central France[M]. 2nd.Enl. and improved. London: Cambridge University Press, 1858: 258. |
[3] | 白志达, 孙善平, 徐德斌, 等. 火山碎屑岩的一种重要类型: 熔积岩[J]. 地学前缘, 2004, 11(3): 134. |
[4] | SATISH-KUMAR M, SHIRAKAWA M, IMURA A, et al. A geochemical and isotopic perspective on tectonic setting and depositional environment of Precambrian meta-carbonate rocks in collisional orogenic belts[J]. Gondwana Research, 2021, 96:163-204. |
[5] | 史冀忠, 牛亚卓, 许伟, 等. 银额盆地石板泉西石炭系白山组碳酸盐岩地球化学特征及其环境意义[J]. 吉林大学学报(地球科学版), 2021, 51(3): 680-693. |
[6] | ZHOU X X, LÜ X X, LIU C. Geochemical characteristics of carbonates and indicative significance of the sedimentary environment based on carbon-oxygen isotopes, trace elements and rare earth elements: Case study of the Lower Paleozoic carbonates in the Gucheng Area, Tarim Basin, China[J]. Arabian Journal of Geosciences, 2021, 14(14): 1341. |
[7] | UREY H C. The thermodynamic properties of isotopic substances[J]. Journal of the Chemical Society, 1947: 562-581. |
[8] | EMILIANI C. Pleistocene temperatures[J]. The Journal of Geology, 1955, 63(6): 538-578. |
[9] | 张秀莲. 碳酸盐岩中氧、碳稳定同位素与古盐度、古水温的关系[J]. 沉积学报, 1985, 3(4): 17-30. |
[10] | EDWARDS C T, JONES C M, QUINTON P C, et al. Oxygen isotope (δ18O) trends measured from Ordovician conodont apatite using secondary ion mass spectrometry (SIMS): Implications for paleo-thermometry studies[J]. GSA Bulletin, 2022, 134(1/2): 261-274. |
[11] | LOMBINO A, ATKINSON T, BROOKS S J, et al. Climate reconstruction from paired oxygen-isotope analyses of chironomid larval head capsules and endogenic carbonate (Hawes Water, UK)-Potential and problems[J]. Quaternary Science Reviews, 2021, 270: 107160. |
[12] | ZHANG P Y, WANG Y L, ZHANG X J, et al. Carbon, oxygen and strontium isotopic and elemental characteristics of the Cambrian Longwangmiao Formation in South China: Paleoenvironmental significance and implications for carbon isotope excursions[J]. Gondwana Research, 2022, 106: 174-190. |
[13] | LIU Y, JING Y T, ZHAO W C. Distribution of rare earth elements and implication for Ce anomalies in the clay-sized minerals of deep-sea sediment, Western Pacific Ocean[J]. Applied Clay Science, 2023, 235: 106876. |
[14] |
ZACHOS J C, RÖHL U, SCHELLENBERG S A, et al. Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum[J]. Science, 2005, 308: 1611-1615.
PMID |
[15] | 陈祚伶, 丁仲礼. 古新世—始新世极热事件研究进展[J]. 第四纪研究, 2011, 31(6): 937-950. |
[16] | GUTJAHR M, RIDGWELL A, SEXTON P F, et al. Very large release of mostly volcanic carbon during the Palaeocene-Eocene Thermal Maximum[J]. Nature, 2017, 548: 573-577. |
[17] | ZHANG Q H, DING L, KITAJIMA K, et al. Constraining the magnitude of the carbon isotope excursion during the Paleocene-Eocene thermal maximum using larger benthic foraminifera[J]. Global and Planetary Change, 2020, 184: 103049. |
[18] |
KENDER S, BOGUS K, PEDERSEN G K, et al. Paleocene/Eocene carbon feedbacks triggered by volcanic activity[J]. Nature Communications, 2021, 12(1): 5186.
DOI PMID |
[19] | HU Z Y, LI W Q, ZHANG H, et al. Mg isotope evidence for restriction events within the Paleotethys Ocean around the Permian-Triassic transition[J]. Earth and Planetary Science Letters, 2021, 556: 116704. |
[20] | 陈祚伶. 古新世—始新世极热事件碳循环研究进展[J]. 科学通报, 2022, 67(15): 1704-1714. |
[21] | TALBOT M R. A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates[J]. Chemical Geology: Isotope Geoscience Section, 1990, 80(4): 261-279. |
[22] | 王兵杰, 蔡明俊, 林春明, 等. 渤海湾盆地塘沽地区古近系沙河街组湖相白云岩特征及成因[J]. 古地理学报, 2014, 16(1): 65-76. |
[23] | HEILBRONN G, BOULVAIS P, MARCHAND E, et al. Stable isotope characterization of pedogenic and lacustrine carbonates from the Chinese Tian Shan: Constraints on the Mesozoic-Lower Cenozoic palaeoenvironmental evolution[J]. Geochemistry, 2015, 75(1): 133-141. |
[24] | 李世恩, 关平. 湖相碳酸盐碳、氧同位素与团簇同位素的研究进展[J]. 北京大学学报(自然科学版), 2023, 59(6): 1052-1068. |
[25] | XI D P, CAO W X, CHENG Y, et al. Late Cretaceous biostratigraphy and sea-level change in the southwest Tarim Basin[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 441: 516-527. |
[26] | 孙东怀, 王鑫, 李宝锋, 等. 新生代特提斯海演化过程及其内陆干旱化效应研究进展[J]. 海洋地质与第四纪地质, 2013, 33(4): 135-151. |
[27] | GAO D, CHENG Z G, ZHANG Z C, et al. Lava-water-sediment interaction: Dolomite U-Pb dating marks the Cenozoic Ocean-continent transformation in the southwestern Tianshan Mountains[J]. Lithos, 2024, 466/467: 107463. |
[28] | SUESS E. Are great ocean depths permanent[J]. National Science, 1893, 2: 180-187. |
[29] | ŞENGÖR A. Tectonics of the Tethysides: Orogenic collage development in a collisional setting[J]. Annual Review of Earth and Planetary Sciences, 1987, 15: 213-244. |
[30] | METCALFE I. Palaeozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments: The Korean Peninsula in context[J]. Gondwana Research, 2006, 9(1/2):24-46. |
[31] | METCALFE I. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys[J]. Journal of Asian Earth Sciences, 2013, 66: 1-33. |
[32] | ZHU R X, ZHAO P, ZHAO L. Tectonic evolution and geodynamics of the Neo-Tethys Ocean[J]. Science China Earth Sciences, 2022, 65(1): 1-24. |
[33] | 雍天寿, 单金榜. 白垩纪及早第三纪塔里木海湾的形成与发展[J]. 沉积学报, 1986, 4(3): 67-75. |
[34] | 郝诒纯, 曾学鲁. 从有孔虫的特征探讨中新生代西塔里木古海湾的演变[J]. 微体古生物学报, 1984, 1(1): 1-16, 106-107. |
[35] |
席党鹏, 唐自华, 王雪娇, 等. 塔里木盆地西部白垩纪—古近纪海相地层框架及对重大地质事件的记录[J]. 地学前缘, 2020, 27(6): 165-198.
DOI |
[36] | AGARD P, OMRANI J, JOLIVET L, et al. Zagros orogeny: A subduction-dominated process[J]. Geological Magazine, 2011, 148(5/6): 692-725. |
[37] | BOSBOOM R E, DUPONT-NIVET G, HOUBEN A J P, et al. Late Eocene sea retreat from the Tarim Basin (west China) and concomitant Asian paleoenvironmental change[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 299(3/4): 385-398. |
[38] | BOSBOOM R E, DUPONT-NIVET G, GROTHE A, et al. Timing, cause and impact of the late Eocene stepwise sea retreat from the Tarim Basin (west China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 403: 101-118. |
[39] | SUN J M, ZHANG Z L, CAO M M, et al. Timing of seawater retreat from proto-Paratethys, sedimentary provenance, and tectonic rotations in the late Eocene-early Oligocene in the Tajik Basin, Central Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 545: 109657. |
[40] | SUN J M, TALEBIAN M, JIN C S, et al. Timing and forcing mechanism of the final Neotethys seawater retreat from Central Iran in response to the Arabia-Asia collision in the late early Miocene[J]. Global and Planetary Change, 2021, 197: 103395. |
[41] | WANG X S, KLEMD R, GAO J, et al. Final assembly of the southwestern Central Asian Orogenic Belt as constrained by the evolution of the South Tianshan Orogen: Links With Gondwana and Pangea[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(9): 7361-7388. |
[42] | ŞENGÖR A M C, NATAL’ IN B A, BURTMAN V S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature, 1993, 364: 299-307. |
[43] | HAN B F, HE G Q, WANG X C, et al. Late Carboniferous collision between the Tarim and Kazakhstan-Yili terranes in the western segment of the South Tian Shan Orogen, Central Asia, and implications for the Northern Xinjiang, western China[J]. Earth-Science Reviews, 2011, 109(3/4): 74-93. |
[44] | HUANG H, WANG T, TONG Y, et al. Rejuvenation of ancient micro-continents during accretionary orogenesis: Insights from the Yili Block and adjacent regions of the SW Central Asian Orogenic Belt[J]. Earth-Science Reviews, 2020, 208: 103255. |
[45] | SELTMANN R, KONOPELKO D, BISKE G, et al. Hercynian post-collisional magmatism in the context of Paleozoic magmatic evolution of the Tien Shan orogenic belt[J]. Journal of Asian Earth Sciences, 2011, 42(5): 821-838. |
[46] | 季建清, 韩宝福, 朱美妃, 等. 西天山托云盆地及周边中新生代岩浆活动的岩石学、地球化学与年代学研究[J]. 岩石学报, 2006, 22(5): 1324-1340. |
[47] | 梁涛, 罗照华, 李文韬, 等. 托云火山群的火山地质特征及其构造意义[J]. 新疆地质, 2005, 23(2): 105-110, 215. |
[48] | SOBEL E R, ARNAUD N. Cretaceous-Paleogene basaltic rocks of the Tuyon basin, NW China and the Kyrgyz Tian Shan: The trace of a small plume[J]. Lithos, 2000, 50(1/2/3): 191-215. |
[49] | HUANG B C, PIPER J D A, WANG Y C, et al. Paleomagnetic and geochronological constraints on the post-collisional northward convergence of the southwest Tian Shan, NW China[J]. Tectonophysics, 2005, 409(1/2/3/4): 107-124. |
[50] | LHUILLIER F, GILDER S A, WACK M, et al. More stable yet bimodal geodynamo during the Cretaceous superchron?[J]. Geophysical Research Letters, 2016, 43(12): 6170-6177. |
[51] | CHENG Z G, ZHANG Z C, WANG Z C, et al. Petrogenesis of continental intraplate alkaline basalts in the Tuoyun Basin, western Central Asian Orogenic Belt: Implications for deep carbon recycling[J]. Journal of Petrology, 2022, 63(9): egac088. |
[52] | SKILLING I P, WHITE J D L, MCPHIE J. Peperite: A review of magma-sediment mingling[J]. Journal of Volcanology and Geothermal Research, 2002, 114(1/2): 1-17. |
[53] | 林旭, 程钰瑞, 冯一帆, 等. 塔西南盆地海退时间及其形成机制研究[J]. 海洋地质与第四纪地质, 2019, 39(3): 84-93. |
[54] | XIAO W J, SANTOSH M. The western Central Asian Orogenic Belt: A window to accretionary orogenesis and continental growth[J]. Gondwana Research, 2014, 25(4): 1429-1444. |
[55] | BUSBY-SPERA C J, WHITE J D L. Variation in peperite textures associated with differing host-sediment properties[J]. Bulletin of Volcanology, 1987, 49(6): 765-776. |
[56] | SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42: 313-345. |
[57] | WESTERHOLD T, MARWAN N, DRURY A J, et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years[J]. Science, 2020, 369:1383-1387. |
[58] | WESTERHOLD T, RÖHL U, DONNER B, et al. Late Lutetian Thermal Maximum—Crossing a thermal threshold in earth’s climate system?[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(1): 73-82. |
[59] | INTXAUSPE-ZUBIAURRE B, MARTÍNEZ-BRACERAS N, PAYROS A, et al. The last Eocene hyperthermal (Chron C19r event,-41.5 Ma): Chronological and paleoenvironmental insights from a continental margin (Cape Oyambre, N Spain)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 505: 198-216. |
[60] | RIVERO-CUESTA L, WESTERHOLD T, ALEGRET L. The Late Lutetian Thermal Maximum (middle Eocene): First record of deep-sea benthic foraminiferal response[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 545: 109637. |
[61] | 韩宝福, 王学潮, 何国琦, 等. 西南天山早白垩世火山岩中发现地幔和下地壳捕虏体[J]. 科学通报, 1998, 43(23): 2544-2547. |
[62] | SVENSEN H, PLANKE S, MALTHE-SØRENSSEN A, et al. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming[J]. Nature, 2004, 429: 542-545. |
[63] | YUAN J Y, HUANG C G, ZHAO F, et al. Carbon and oxygen isotopic compositions, and palaeoenvironmental significance of saline lacustrine dolomite from the Qaidam Basin, Western China[J]. Journal of Petroleum Science and Engineering, 2015, 135: 596-607. |
[64] | 刘传联, 赵泉鸿, 汪品先. 湖相碳酸盐氧碳同位素的相关性与生油古湖泊类型[J]. 地球化学, 2001, 30(4): 363-367. |
[65] | 胡忠贵, 郑荣才, 胡九珍, 等. 川东—渝北地区黄龙组白云岩储层稀土元素地球化学特征[J]. 地质学报, 2009, 83(6): 782-790. |
[66] | WHITE J D L. Impure coolants and interaction dynamics of phreatomagmatic eruptions[J]. Journal of Volcanology and Geothermal Research, 1996, 74(3/4): 155-170. |
[67] | ZIMANOWSKI B, BÜTTNER R, LORENZ V. Premixing of magma and water in MFCI experiments[J]. Bulletin of Volcanology, 1997, 58(6): 491-495. |
[68] |
曾旭, 林潼, 周飞, 等. 柴达木盆地—里坪地区新近系沉积环境及碳酸盐岩碳氧同位素特征[J]. 天然气地球科学, 2021, 32(1): 73-85.
DOI |
[69] | EPSTEIN S, MAYEDA T. Variation of O18 content of waters from natural sources[J]. Geochimica et Cosmochimica Acta, 1953, 4(5): 213-224. |
[70] | ROBERT N C, EGON T D. Use of carbon isotope analyses of carbonates for differentiating fresh-water and marine sediments: GEOLOGICAL NOTES[J]. AAPG Bulletin, 1959, 43(4): 890-897. |
[71] | KEITH M L, WEBER J N. Carbon and oxygen isotopic composition of selected limestones and fossils[J]. Geochimica et Cosmochimica Acta, 1964, 28(10/11): 1787-1816. |
[72] | 王兵杰, 蔡明俊, 林春明, 张霞, 等. 渤海湾盆地塘沽地区古近系沙河街组湖相白云岩特征及成因[J]. 古地理学报, 2014, 16(1): 65-76. |
[73] | OSMAN M B, TIERNEY J E, ZHU J, et al. Globally resolved surface temperatures since the Last Glacial Maximum[J]. Nature, 2021, 599: 239-244. |
[74] |
SOSDIAN S M, BABILA T L, GREENOP R, et al. Ocean carbon storage across the middle Miocene: A new interpretation for the Monterey Event[J]. Nature Communications, 2020, 11(1): 134.
DOI PMID |
[75] | 刘阳, 邵铁全, 刘云焕, 等. 陕南西乡寒武纪梅树村期微古生物群产出层位的地球化学特征及古环境和古气候条件研究[J]. 地质论评, 2022, 68(1): 309-322. |
[76] | 李树峰, 赵佳港, ALEX F, 等. 新生代青藏高原生长对东亚水循环及生态系统的影响[J]. 科学通报, 2023, 68(12): 1567-1579. |
[77] | ZHANG W X, ZHOU T J, ZHANG L X, et al. Future intensification of the water cycle with an enhanced annual cycle over global land monsoon regions[J]. Journal of Climate, 2019, 32(17): 5437-5452. |
[78] | CRAIG H. The Measurement of Oxygen Isotope Palaeotempera tures[M]//TONGIORGI E. Stable Isotopes in Oceanographic Studies and Palaeotemperatures. Pisa: Consiglio Nazionale delle Ricerche Laboratorio di Geologia Nucleare, 1965:161-182. |
[79] | LU Y, GAO Y, JIA J J, et al. Water conveyance-type lake systems shift toward carbon sources under regulatory balanced water level metabolic processes[J]. ACS Earth and Space Chemistry, 2022, 6(10): 2400-2411. |
[80] | YUE L Y, KONG W D, LI C G, et al. Dissolved inorganic carbon determines the abundance of microbial primary producers and primary production in Tibetan Plateau lakes[J]. FEMS Microbiology Ecology, 2021, 97(2): fiaa242. |
[81] | WALKER G, ABUMERE O E, KAMALUDDIN B. Luminescence spectroscopy of Mn2+rock-forming carbonates[J]. Mineralogical Magazine, 1989, 53: 201-211. |
[82] |
朱光有, 李茜. 白云岩成因类型与研究方法进展[J]. 石油学报, 2023, 44(7): 1167-1190.
DOI |
[83] | 彭军, 夏梦, 曹飞, 等. 塔里木盆地顺北一区奥陶系鹰山组与一间房组沉积特征[J]. 岩性油气藏, 2022, 34(2): 17-30. |
[84] | NOZAKI Y, ZHANG J, AMAKAWA H. The fractionation between Y and Ho in the marine environment[J]. Earth and Planetary Science Letters, 1997, 148(1/2): 329-340. |
[85] | WEBB G E, KAMBER B S. Rare earth elements in Holocene reefal microbialites: A new shallow seawater proxy[J]. Geochimica et Cosmochimica Acta, 2000, 64(9): 1557-1565. |
[86] |
王宇航, 朱园园, 黄建东, 等. 海相碳酸盐岩稀土元素在古环境研究中的应用[J]. 地球科学进展, 2018, 33(9): 922-932.
DOI |
[87] | SÁNCHEZ-ROMÁN M, GIBERT L, MARTÍN-MARTÍN J D, et al. Sabkha and salina dolomite preserves the biogeochemical conditions of its depositional paleoenvironment[J]. Geochimica et Cosmochimica Acta, 2023, 356: 66-82. |
[88] | SHIELDS G, STILLE P. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: An isotopic and REE study of Cambrian phosphorites[J]. Chemical Geology, 2001, 175(1/2): 29-48. |
[89] | LIU C, XIE Q B, WANG G W, et al. Rare earth element characteristics of the carboniferous Huanglong Formation dolomites in eastern Sichuan Basin, southwest China: Implications for origins of dolomitizing and diagenetic fluids[J]. Marine and Petroleum Geology, 2017, 81: 33-49. |
[90] | BADIOZAMANI K. The dorag dolomitization model-application to the middle Ordovician of Wisconsin[J]. Journal of Sedimentary Research, 1973, 43(4): 965-984. |
[91] | MEIJA J, COPLEN T, BERGLUND M, et al. Isotopic compositions of the elements 2013 (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2016, 88(3): 293-306. |
[92] | 史忠生, 陈开远, 何胡军, 等. 锶同位素在沉积环境分析方面的应用[J]. 石油与天然气地质, 2003, 24(2): 187-190. |
[93] | 陈世悦, 李聪, 杨勇强, 等. 黄骅坳陷歧口凹陷沙一下亚段湖相白云岩形成环境[J]. 地质学报, 2012, 86(10): 1679-1687. |
[94] |
胡作维, 李云, 李北康, 等. 显生宙以来海水锶同位素组成研究的回顾与进展[J]. 地球科学进展, 2015, 30(1): 37-49.
DOI |
[95] | 梁涛. 托云盆地新生代碱性玄武岩及其构造意义初探[D]. 北京: 中国地质大学(北京), 2005. |
[96] | LI F J, MA X K, LAI X L. Petrography, geochemistry and genesis of dolomites in the upper Cambrian Sanshanzi Formation of the western Ordos Basin, Northern China[J]. Journal of Asian Earth Sciences, 2022, 223: 104980. |
[97] | 马立祥, 张二华, 鞠俊成, 等. 西藏伦坡拉盆地下第三系沉积体系域基本特征[J]. 地球科学:中国地质大学学报, 1996, 21(2): 174-178. |
[98] | LI X, ZHU G Y, CHEN Z Y, et al. Mg isotopic geochemistry and origin of Early Ordovician dolomite and implications for the formation of high-quality reservoir in the Tabei area, Tarim Basin, NW China[J]. Journal of Asian Earth Sciences, 2023, 255: 105757. |
[99] | BOWEN G J, BEERLING D J, KOCH P L, et al. A humid climate state during the Palaeocene/Eocene thermal maximum[J]. Nature, 2004, 432: 495-499. |
[100] | KRAUS M J, RIGGINS S. Transient drying during the Paleocene-Eocene Thermal Maximum (PETM): Analysis of paleosols in the bighorn basin, Wyoming[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 245(3/4): 444-461. |
[1] | 韩建恩, 邵兆刚, 张雪锋, 余苇, 孟庆伟, 余佳, 王津, 朱大岗. 青藏高原南部玛不错湖面变化及其对气候环境的指示[J]. 现代地质, 2024, 38(02): 477-486. |
[2] | 谭聪, 刘策, 王铜山, 李秋芬, 朱玺, 付景龙, 姜华. 局部白云岩化作用研究:以塔里木盆地阿克苏地区蓬莱坝剖面鹰山组为例[J]. 现代地质, 2023, 37(05): 1182-1193. |
[3] | 张一范, 高远, 陈积权, 黄帅, 海伦, 毋正轩, 杨柳, 董甜. 松辽盆地晚白垩世湖相白云岩碳氧同位素特征及其古环境意义[J]. 现代地质, 2023, 37(05): 1243-1253. |
[4] | 张改侠, 孙金佳杰, 龚庆杰, 江彪, 严桃桃. 云南潞西上芒岗金矿区白云岩风化的地球化学基因[J]. 现代地质, 2023, 37(03): 801-812. |
[5] | 蒋中发, 江梦雅, 陈海龙, 刘龙松, 王学勇, 卞保力, 李娜. 准噶尔盆地玛湖凹陷下二叠统风城组烃源岩热演化及沉积古环境评价[J]. 现代地质, 2022, 36(04): 1118-1130. |
[6] | 白翔宇, 马郡伟, 夏清萍, 谭先锋, 李开开. 北京西山下苇甸第三统/芙蓉统界线附近碳酸盐岩地球化学特征及古环境意义[J]. 现代地质, 2022, 36(02): 729-741. |
[7] | 高阳东, 林鹤鸣, 汪旭东, 邱欣卫, 阙晓铭, 李敏, 赵泽颖, 陈艳. 珠江口盆地陆丰凹陷文昌组沉积地球化学特征及古环境意义[J]. 现代地质, 2022, 36(01): 118-129. |
[8] | 祁鹏, 郭刚, 任亚平, 崔敏, 王欣. 西湖凹陷始新世平湖运动的地质表征及其油气地质意义[J]. 现代地质, 2021, 35(04): 1098-1105. |
[9] | 路晶芳, 张克信, 宋博文, 徐亚东, 张楗钰, 黄威, 张道来. 柴达木盆地大红沟地区始新世—上新世孢粉记录及气候变化[J]. 现代地质, 2020, 34(04): 732-744. |
[10] | 蒋苏扬, 黄文辉, 张永生. 鄂尔多斯盆地西缘中奥陶统地球化学特征及古环境意义[J]. 现代地质, 2020, 34(03): 545-553. |
[11] | 黎霆, 诸丹诚, 李海平, 杨明磊, 李涛, 李平平, 邹华耀. 中二叠统茅口组白云岩发育机理:以川中-川东地区为例[J]. 现代地质, 2020, 34(02): 345-355. |
[12] | 马佳怡, 谢淑云, 张默海, 焦存礼, 韩俊, 鲍征宇, 邬铁, 张海. 湖北秭归地区震旦系灯影组白云岩地球化学特征及其成因意义[J]. 现代地质, 2020, 34(01): 74-87. |
[13] | 谭聪, 袁选俊, 于炳松, 刘策, 李雯, 崔景伟. 鄂尔多斯盆地南缘上二叠统—中下三叠统地球化学特征及其古气候、古环境指示意义[J]. 现代地质, 2019, 33(03): 615-628. |
[14] | 贾鹏,李伟,卢远征,樊茹,李鑫, 李明,曾乙洋,刘鑫. 四川盆地中南部地区洗象池群沉积旋回的碳氧同位素特征及地质意义[J]. 现代地质, 2016, 30(6): 1329-1338. |
[15] | 霍沈君,杨香华,王清斌,周心怀,朱红涛,王维. 黄河口凹陷H-1构造沙河街组混积岩储层控制因素[J]. 现代地质, 2015, 29(6): 1348-1359. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||