现代地质 ›› 2019, Vol. 33 ›› Issue (02): 293-304.DOI: 10.19657/j.geoscience.1000-8527.2019.02.05
韦彬1(), 侯青叶1(
), 唐志敏2, 宗庆霞3, 闫帅1, 何海云1
收稿日期:
2018-07-10
修回日期:
2018-09-19
出版日期:
2019-05-08
发布日期:
2019-05-08
通讯作者:
侯青叶
作者简介:
侯青叶,女,副教授,1978年出生,地球化学专业,主要从事环境地球化学研究。Email: qingyehou@cugb.edu.cn。基金资助:
WEI Bin1(), HOU Qingye1(
), TANG Zhimin2, ZONG Qingxia3, YAN Shuai1, HE Haiyun1
Received:
2018-07-10
Revised:
2018-09-19
Online:
2019-05-08
Published:
2019-05-08
Contact:
HOU Qingye
摘要:
估算水系沉积物的地球化学背景值和识别其异常对人为污染判别与环境风险评估非常重要。采集并分析了珠江58件水系沉积物样品,经分析检验,Al、Fe和Sc被选作参考元素,并对比了确定地球化学背景及识别异常值的方法。其中,基于最小截断二乘法的回归分析是定义地球化学背景的有效方法,它是一种对异常值不敏感的稳健统计方法,而基于局部富集因子的箱线图和回归诊断图更适用于识别异常值。珠江不同河段重金属污染存在差异,北江和河网区主要受As、Cd、Cu、Pb和Zn污染,东江主要受Cu、Cr和Ni污染,而西江几乎不存在重金属污染。水系沉积物的主要污染类型是点源污染,主要污染来源是采矿和电镀等相关的工业活动。
中图分类号:
韦彬, 侯青叶, 唐志敏, 宗庆霞, 闫帅, 何海云. 珠江水系沉积物重金属元素背景值估算及污染特征分析[J]. 现代地质, 2019, 33(02): 293-304.
WEI Bin, HOU Qingye, TANG Zhimin, ZONG Qingxia, YAN Shuai, HE Haiyun. Estimation of Background Values and Contamination Characteristics of Heavy Metals in Sediments of the Pearl River, China[J]. Geoscience, 2019, 33(02): 293-304.
地点 | 含量 | Al2O3 | SiO2 | TFe2O3 | As | Cd | Cr | Cu | Hg | Ni | Pb | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|---|
东江 | 最小值 | 4.5 | 58.1 | 0.72 | 3.4 | 0.04 | 6.7 | 4.6 | 0.008 | 3.6 | 21.2 | 17.5 |
最大值 | 21.6 | 89.2 | 6.42 | 22.5 | 0.27 | 69.4 | 59.3 | 0.086 | 58.0 | 65.2 | 105.9 | |
中位数 | 7.7 | 82.5 | 1.95 | 7.4 | 0.13 | 19.9 | 23.0 | 0.016 | 9.7 | 30.5 | 61.2 | |
平均值 | 9.0 | 80.1 | 2.46 | 9.6 | 0.13 | 29.0 | 25.0 | 0.033 | 17.6 | 34.6 | 62.1 | |
标准差 | 5.2 | 9.8 | 1.82 | 5.9 | 0.08 | 23.6 | 20.4 | 0.031 | 16.9 | 13.1 | 39.9 | |
河网 | 最小值 | 5.4 | 58.1 | 1.92 | 10.2 | 0.26 | 21.7 | 6.7 | 0.022 | 2.9 | 26.6 | 50.3 |
最大值 | 20.2 | 85.8 | 6.86 | 79.0 | 3.90 | 114.5 | 99.5 | 0.200 | 61.7 | 137.8 | 333.5 | |
中位数 | 12.5 | 66.6 | 5.59 | 30.5 | 0.88 | 84.8 | 32.8 | 0.151 | 25.9 | 66.5 | 223.1 | |
平均值 | 13.3 | 70.2 | 5.15 | 34.3 | 1.38 | 73.1 | 45.0 | 0.129 | 26.8 | 67.9 | 201.5 | |
标准差 | 5.5 | 10.7 | 1.81 | 22.5 | 1.25 | 29.9 | 39.2 | 0.064 | 19.4 | 36.1 | 103.0 | |
北江 | 最小值 | 1.1 | 63.9 | 0.35 | 1.4 | 0.05 | 3.6 | 3.0 | 0.002 | 1.4 | 8.3 | 8.7 |
最大值 | 17.4 | 92.2 | 5.43 | 95.8 | 4.36 | 68.7 | 93.3 | 0.617 | 51.5 | 127.5 | 486.3 | |
中位数 | 6.6 | 85.3 | 2.00 | 14.6 | 0.82 | 22.0 | 22.0 | 0.056 | 12.3 | 36.1 | 51.9 | |
平均值 | 8.1 | 81.8 | 2.51 | 26.5 | 1.42 | 28.1 | 31.4 | 0.110 | 17.5 | 51.7 | 109.2 | |
标准差 | 4.2 | 7.8 | 1.50 | 27.8 | 1.33 | 20.4 | 29.0 | 0.153 | 14.1 | 34.6 | 121.5 | |
西江 | 最小值 | 4.7 | 58.2 | 2.42 | 12.9 | 0.17 | 32.5 | 11.6 | 0.031 | 12.9 | 21.2 | 51.4 |
最大值 | 18.9 | 87.6 | 7.79 | 68.1 | 4.51 | 105.9 | 57.1 | 0.262 | 51.8 | 110.2 | 349.2 | |
中位数 | 12.8 | 71.4 | 5.13 | 27.4 | 1.18 | 64.2 | 29.2 | 0.127 | 28.1 | 40.2 | 127.8 | |
平均值 | 11.9 | 72.6 | 5.25 | 28.7 | 1.39 | 67.0 | 30.2 | 0.123 | 29.3 | 44.5 | 144.3 | |
标准差 | 4.7 | 8.9 | 1.37 | 13.3 | 1.03 | 20.1 | 11.8 | 0.065 | 10.5 | 20.6 | 70.5 | |
全国① | 12.8 | 65.2 | 4.5 | 12.0 | 0.18 | 61.0 | 23.0 | 0.046 | 26.0 | 27.0 | 71.0 | |
珠江② | 12.9 | 61.8 | 6.5 | 17.0 | 0.09 | 86.0 | 38.0 | 0.093 | 35.0 | 30.0 | 85.0 | |
全国③ | 12.8 | 65.5 | 4.3 | 8.0 | 0.11 | 54.0 | 20.0 | 0.027 | 22.0 | 22.0 | 65.0 |
表1 珠江水系沉积物元素含量统计表
Table 1 Summary statistics of element contents in sediments of the Pearl River
地点 | 含量 | Al2O3 | SiO2 | TFe2O3 | As | Cd | Cr | Cu | Hg | Ni | Pb | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|---|
东江 | 最小值 | 4.5 | 58.1 | 0.72 | 3.4 | 0.04 | 6.7 | 4.6 | 0.008 | 3.6 | 21.2 | 17.5 |
最大值 | 21.6 | 89.2 | 6.42 | 22.5 | 0.27 | 69.4 | 59.3 | 0.086 | 58.0 | 65.2 | 105.9 | |
中位数 | 7.7 | 82.5 | 1.95 | 7.4 | 0.13 | 19.9 | 23.0 | 0.016 | 9.7 | 30.5 | 61.2 | |
平均值 | 9.0 | 80.1 | 2.46 | 9.6 | 0.13 | 29.0 | 25.0 | 0.033 | 17.6 | 34.6 | 62.1 | |
标准差 | 5.2 | 9.8 | 1.82 | 5.9 | 0.08 | 23.6 | 20.4 | 0.031 | 16.9 | 13.1 | 39.9 | |
河网 | 最小值 | 5.4 | 58.1 | 1.92 | 10.2 | 0.26 | 21.7 | 6.7 | 0.022 | 2.9 | 26.6 | 50.3 |
最大值 | 20.2 | 85.8 | 6.86 | 79.0 | 3.90 | 114.5 | 99.5 | 0.200 | 61.7 | 137.8 | 333.5 | |
中位数 | 12.5 | 66.6 | 5.59 | 30.5 | 0.88 | 84.8 | 32.8 | 0.151 | 25.9 | 66.5 | 223.1 | |
平均值 | 13.3 | 70.2 | 5.15 | 34.3 | 1.38 | 73.1 | 45.0 | 0.129 | 26.8 | 67.9 | 201.5 | |
标准差 | 5.5 | 10.7 | 1.81 | 22.5 | 1.25 | 29.9 | 39.2 | 0.064 | 19.4 | 36.1 | 103.0 | |
北江 | 最小值 | 1.1 | 63.9 | 0.35 | 1.4 | 0.05 | 3.6 | 3.0 | 0.002 | 1.4 | 8.3 | 8.7 |
最大值 | 17.4 | 92.2 | 5.43 | 95.8 | 4.36 | 68.7 | 93.3 | 0.617 | 51.5 | 127.5 | 486.3 | |
中位数 | 6.6 | 85.3 | 2.00 | 14.6 | 0.82 | 22.0 | 22.0 | 0.056 | 12.3 | 36.1 | 51.9 | |
平均值 | 8.1 | 81.8 | 2.51 | 26.5 | 1.42 | 28.1 | 31.4 | 0.110 | 17.5 | 51.7 | 109.2 | |
标准差 | 4.2 | 7.8 | 1.50 | 27.8 | 1.33 | 20.4 | 29.0 | 0.153 | 14.1 | 34.6 | 121.5 | |
西江 | 最小值 | 4.7 | 58.2 | 2.42 | 12.9 | 0.17 | 32.5 | 11.6 | 0.031 | 12.9 | 21.2 | 51.4 |
最大值 | 18.9 | 87.6 | 7.79 | 68.1 | 4.51 | 105.9 | 57.1 | 0.262 | 51.8 | 110.2 | 349.2 | |
中位数 | 12.8 | 71.4 | 5.13 | 27.4 | 1.18 | 64.2 | 29.2 | 0.127 | 28.1 | 40.2 | 127.8 | |
平均值 | 11.9 | 72.6 | 5.25 | 28.7 | 1.39 | 67.0 | 30.2 | 0.123 | 29.3 | 44.5 | 144.3 | |
标准差 | 4.7 | 8.9 | 1.37 | 13.3 | 1.03 | 20.1 | 11.8 | 0.065 | 10.5 | 20.6 | 70.5 | |
全国① | 12.8 | 65.2 | 4.5 | 12.0 | 0.18 | 61.0 | 23.0 | 0.046 | 26.0 | 27.0 | 71.0 | |
珠江② | 12.9 | 61.8 | 6.5 | 17.0 | 0.09 | 86.0 | 38.0 | 0.093 | 35.0 | 30.0 | 85.0 | |
全国③ | 12.8 | 65.5 | 4.3 | 8.0 | 0.11 | 54.0 | 20.0 | 0.027 | 22.0 | 22.0 | 65.0 |
地球化学背景函数 | R2 | 样品数 |
---|---|---|
As=4.259×Al-1.586 | 0.86 | 58 |
As=7.403×Fe-0.007 | 0.82 | 58 |
As=2.557×Sc-0.306 | 0.84 | 58 |
Cd=0.202×Al-0.207 | 0.36 | 58 |
Cd=0.388×Fe-0.184 | 0.50 | 58 |
Cd=0.117×Sc-0.071 | 0.60 | 58 |
Cu=4.510×Al+0.305 | 0.36 | 58 |
Cu=8.970×Fe-1.245 | 0.89 | 58 |
Cu=2.937×Sc-0.119 | 0.94 | 58 |
Cr=11.801×Al-18.984 | 0.86 | 58 |
Cr=19.644×Fe-6.002 | 0.98 | 57 |
Cr=6.541×Sc-4.804 | 0.95 | 58 |
Hg=0.024×Al-0.042 | 0.81 | 58 |
Hg=0.045×Fe-0.035 | 0.89 | 54 |
Hg=0.014×Sc-0.031 | 0.90 | 58 |
Ni=4.435×Al-2.165 | 0.80 | 58 |
Ni=8.822×Fe-2.354 | 0.91 | 58 |
Ni=3.044×Sc-2.555 | 0.97 | 57 |
Pb=4.889×Al+13.196 | 0.77 | 58 |
Pb=7.690×Fe+19.490 | 0.54 | 58 |
Pb=2.475×Sc+19.252 | 0.60 | 58 |
Zn=23.602×Al-17.931 | 0.79 | 58 |
Zn=38.502×Fe-1.007 | 0.87 | 58 |
Zn=13.109×Sc-2.392 | 0.91 | 58 |
表2 珠江水系沉积物中重金属元素与参考元素的回归方程
Table 2 Robust regression equations and correlation coe-fficients for heavy metals versus particle-size proxy elements (Al, Fe and Sc) in the sediments of the Pearl River
地球化学背景函数 | R2 | 样品数 |
---|---|---|
As=4.259×Al-1.586 | 0.86 | 58 |
As=7.403×Fe-0.007 | 0.82 | 58 |
As=2.557×Sc-0.306 | 0.84 | 58 |
Cd=0.202×Al-0.207 | 0.36 | 58 |
Cd=0.388×Fe-0.184 | 0.50 | 58 |
Cd=0.117×Sc-0.071 | 0.60 | 58 |
Cu=4.510×Al+0.305 | 0.36 | 58 |
Cu=8.970×Fe-1.245 | 0.89 | 58 |
Cu=2.937×Sc-0.119 | 0.94 | 58 |
Cr=11.801×Al-18.984 | 0.86 | 58 |
Cr=19.644×Fe-6.002 | 0.98 | 57 |
Cr=6.541×Sc-4.804 | 0.95 | 58 |
Hg=0.024×Al-0.042 | 0.81 | 58 |
Hg=0.045×Fe-0.035 | 0.89 | 54 |
Hg=0.014×Sc-0.031 | 0.90 | 58 |
Ni=4.435×Al-2.165 | 0.80 | 58 |
Ni=8.822×Fe-2.354 | 0.91 | 58 |
Ni=3.044×Sc-2.555 | 0.97 | 57 |
Pb=4.889×Al+13.196 | 0.77 | 58 |
Pb=7.690×Fe+19.490 | 0.54 | 58 |
Pb=2.475×Sc+19.252 | 0.60 | 58 |
Zn=23.602×Al-17.931 | 0.79 | 58 |
Zn=38.502×Fe-1.007 | 0.87 | 58 |
Zn=13.109×Sc-2.392 | 0.91 | 58 |
图3 重金属元素-参考元素散点图与重金属元素含量箱线图 (散点图中●代表东江水系沉积物样品;■代表北江水系沉积物样品;┼ 代表西江水系沉积物样品;▲代表河网区水系沉积物样品)
Fig.3 Scatter plots of heavy metals vs. reference elements as well as Tukey’s boxplots of element concentrations
图4 重金属元素-参考元素散点图与局部富集因子箱线图 (散点图中●代表东江水系沉积物样品;■代表北江水系沉积物样品;┼ 代表西江水系沉积物样品;▲代表河网区水系沉积物样品)
Fig.4 Scatter plots of heavy metals vs. reference elements as well as Tukey’s boxplots of local enrichment factors
图5 珠江水系沉积物的回归诊断图(水平线为垂向异常点确定了边界值;序号为样品序号)
Fig.5 Least trimmed sum of squares (LTS) regression diagnostic plots of heavy metals vs. reference elements in sediments of the Pearl River (Horizontal lines define cut-off values for vertical outliers. The sequence number is ordered for samples)
图6 不同方法识别重金属异常值的比较 (a.与全国数据比较; b.元素含量箱线图方法;c.局部富集因子箱线图方法; d.回归诊断图方法;灰色表示存在异常,白色则表示无异常)
Fig.6 Comparison of different methods for identifying anomalies of heavy metals
[1] | FOSTER I D L, CHARLESWORTH S M. Heavy metals in the hydrological cycle: Trends and explanation[J]. Hydrological Processes, 1996,10:227-261. |
[2] | SEGURA R, ARANCIBIA V, ZÙÑIGA M C, et al. Distribution of copper, zinc, lead and cadmium concentrations in stream sediments from the Mapocho River in Santiago, Chile[J]. Journal of Geochemical Exploration, 2006,91(1/3):71-80. |
[3] | HAKANSON L. An ecological risk index for aquatic pollution control.A sedimentological approach[J]. Water Research, 1980,14(8):975-1001. |
[4] | MULLER G. Index of geoaccumulation in sediments of the Rhine River[J]. Geological Journal, 1969,2(3):108-118. |
[5] | SZEFER P, GLASBY G P, KUSAK A, et al. Evaluation of the anthropogenic influx of metallic pollutants into Puck Bay, southern Baltic[J]. Applied Geochemistry, 1998,13(3):293-304. |
[6] | JIANG J, WANG J, LIU S, et al. Background, baseline, normalization, and contamination of heavy metals in the Liao River Watershed sediments of China[J]. Journal of Asian Earth Sciences, 2013,73:87-94. |
[7] | ÇEVIK F, GÖKSU M Z L, DERICI O B, et al. An assessment of metal pollution in surface sediments of Seyhan dam by using enrichment factor, geoaccumulation index and statistical analyses[J]. Environmental Monitoring and Assessment, 2009,152(1/4):309-317. |
[8] | CHEN J B, GAILLARDET J, BOUCHEZ J, et al. Anthropophile elements in river sediments: Overview from the Seine River, France[J]. Geochemistry, Geophysics, Geosystems, 2014,15(11):4526-4546. |
[9] | ZAHRA A, HASHMI M Z, MALIK R N, et al. Enrichment and geo-accumulation of heavy metals and risk assessment of sediments of the Kurang Nallah-feeding tributary of the Rawal Lake Reservoir, Pakistan[J]. Science of the Total Environment, 2014,470/471:925-933. |
[10] | KOITER A J, OWENS P N, PETTICREW E L, et al. The behavioural characteristics of sediment properties and their implications for sediment fingerprinting as an approach for identifying sediment sources in river basins[J]. Earth-Science Reviews, 2013,125:24-42. |
[11] | GRYGAR T M, POPELKA J. Revisiting geochemical methods of distinguishing natural concentrations and pollution by risk elements in fluvial sediments[J]. Journal of Geochemical Exploration, 2016,170:39-57. |
[12] | BLASER P, ZIMMERMANN S, LUSTER J, et al. Critical exa-mination of trace element enrichments and depletions in soils: As, Cr, Cu, Ni, Pb, and Zn in Swiss forest soils[J]. Science of the Total Environment, 2000,249(1/3):257-280. |
[13] | VAROL M, ŞEN B. Assessment of nutrient and heavy metal contamination in surface water and sediments of the upper Tigris River, Turkey[J]. Catena, 2012,92:1-10. |
[14] |
SAKAN S, DEVIĆ G, RELIĆ D, et al. Evaluation of sediment contamination with heavy metals: The importance of determining appropriate background content and suitable element for normalization[J]. Environmental Geochemistry and Health, 2015,37(1):97-113.
URL PMID |
[15] | TAPIA J, AUDRY S, TOWNLEY B, et al. Geochemical background, baseline and origin of contaminants from sediments in the mining-impacted Altiplano and Eastern Cordillera of Oruro, Boli-via[J]. Geochemistry: Exploration, Environment, Analysis, 2012,12(1):3-20. |
[16] | BÁBEK O, GRYGAR T M, FAMĚRA M, et al. Geochemical background in polluted river sediments: How to separate the effects of sediment provenance and grain size with statistical rigour?[J]. Catena, 2015,135:240-253. |
[17] | COVELLI S, FONTOLAN G. Application of a normalization procedure in determining regional geochemical baselines[J]. Environmental Geology, 1997,30(1/2):34-45. |
[18] | GRYGAR T M, NOVÁKOVÁ T, BÁBEK O, et al. Robust assessment of moderate heavy metal contamination levels in floodplain sediments: A case study on the Jizera River, Czech Republic[J]. Science of the Total Environment, 2013,452/453:233-245. |
[19] | MAJEROVÁ L, GRYGAR T M, ELZNICOVÁ J, et al. The differentiation between point and diffuse industrial pollution of the floodplain of the Plouĉnice River, Czech Republic[J]. Water, Air, & Soil Pollution, 2013,224(9):1-20. |
[20] |
VIJVER M G, SPIJKER J, VINK J P M, et al. Determining me-tal origins and availability in fluvial deposits by analysis of geochemical baselines and solid-solution partitioning measurements and modelling[J]. Environmental Pollution, 2008,156(3):832-839.
DOI URL PMID |
[21] | 阂育顺, 祁士华, 张干. 珠江广州河段重金属元素的高分辨沉积记录[J]. 科学通报, 2000,45(S1):2802-2805. |
[22] |
GENG J, WANG Y, LUO H. Distribution, sources, and fluxes of heavy metals in the Pearl River Delta, South China[J]. Marine Pollution Bulletin, 2015,101(2):914-921.
DOI URL PMID |
[23] | 李红玉, 赵彦龙, 梁永津, 等. 北江干流沉积物重金属污染生态风险评价[J]. 广东微量元素科学, 2014,21(7):1-5. |
[24] | 谢文平, 王少冰, 朱新平, 等. 珠江下游河段沉积物中重金属含量及污染评价[J]. 环境科学, 2012,33(6):1808-1815. |
[25] | 许振成, 杨晓云, 温勇, 等. 北江中上游底泥重金属污染及其潜在生态危害评价[J]. 环境科学, 2009,30(11):3262-3268. |
[26] | 吕文英, 周树杰, 雷颖欣. 珠江广州段东朗断面底泥中重金属污染研究[J]. 环境科学与技术, 2009,32(5):183-186. |
[27] | 赖启宏, 杜海燕, 方敬文, 等. 珠江三角洲冲积平原土壤镉高含量区形成原因[J]. 农业环境科学学报, 2005,24(4):746-750. |
[28] | 刘子宁, 窦磊, 张伟. 珠江三角洲第四纪沉积物Cd元素的分布特征及成因[J]. 地质通报, 2012,31(1):172-180. |
[29] | ROUSSEEUW P J. Least median of squares regression[J]. Journal of the American Statistical Association, 1984,79:871-880. |
[30] | R Core Team. R: A language and environment for statistical[CP/OL]. (2018-04-23)[2018-07-03]. https://www.r-project.org/ |
[31] | MAECHLER M, ROUSSEEUW P, CROUX C, et al. robustbase: Basic Robust Statistics R package[CP/OL]. (2018-04-25)[2018-07-03] https://cran.r-project.org/web/packages/robustbase |
[32] | GRYGAR T M, ELZNICOVÁ J, BÁBEK O, et al. Obtaining isochrones from pollution signals in a fluvial sediment record: A case study in a uranium-polluted floodplain of the Plouĉnice River, Czech Republic[J]. Applied Geochemistry, 2014,48:1-15. |
[33] | TUKEY J W. Exploratory Data Analysis[M]. Boston: Addison-Wesley Publishing Company, 1977: 39-56. |
[34] | ROUSSEEUW P J, VAN ZOMEREN B C. Unmasking multivariate outliers and leverage points[J]. Journal of the American Statistical Association, 1990,85:633-639. |
[35] | 迟清华, 鄢明才. 应用地球化学元素丰度数据手册[M]. 北京: 地质出版社, 2007: 92-93. |
[36] | 史长义, 梁萌, 冯斌. 中国水系沉积物39种元素系列背景值[J]. 地球科学, 2008,41(2):234-251. |
[37] | GAŁUSZKA A, MIGASZEWSKI Z M. Geochemical background—an environmental perspective[J]. Mineralogia, 2011,42(1):7-17. |
[38] | BOUCHEZ J, GAILLARDET J, LANORD C F, et al. Grain size control of river suspended sediment geochemistry: Clues from Amazon River depth profiles[J]. Geochemistry, Geophysics, Geosystems, 2013,12(3):1-24. |
[39] | REIMANN C, GARRETT R G. Geochemical background—concept and reality[J]. Science of the Total Environment, 2005,350(1/3):12-27. |
[40] |
GU Y G, LI Q S, FANG J H, et al. Identification of heavy metal sources in the reclaimed farmland soils of the Pearl River estuary in China using a multivariate geostatistical approach[J]. Ecotoxicology and Environmental Safety, 2014,105:7-12.
URL PMID |
[41] | 丁小勇, 陈来国, 张卫东, 等. 北江沉积物汞污染现状与评价初步研究[J]. 农业环境科学学报, 2010,29(2):357-362. |
[1] | 李楠, 曹明杰, 郝喆, 侯永莉, 陈红丹, 张颖. 基于不同土地利用方式的土壤重金属污染与潜在风险评价:以辽河流域(浑太水系)山水林田湖草沙一体化保护和修复工程为例[J]. 现代地质, 2023, 37(06): 1655-1664. |
[2] | 张莉, 刘菲, 袁慧卿, 梁凯旋. 地下水抽出处理技术研究进展与展望[J]. 现代地质, 2023, 37(04): 977-985. |
[3] | 张伟, 安茂国, 王志鹏, 杨启, 陈怀鑫, 马晓峰, 支成龙, 邢其涛, 裴长世, 王娜, 刘铭. 青海省那陵格勒河中游地区水系沉积物地球化学特征及找矿远景[J]. 现代地质, 2023, 37(03): 690-707. |
[4] | 梁东, 华北, 赵德怀, 吴浩, 万生楠, 谭朝欣, 赵晓健, 杨志鹏. 喀喇昆仑麦拉山地区水系沉积物地球化学特征与找矿预测[J]. 现代地质, 2023, 37(03): 708-721. |
[5] | 韩宝华, 段星星, 何峻岭, 阿地来·赛提尼亚孜, 王翠翠, 董越. 甘肃白银东大沟地区土壤镉地球化学特征及生态风险评价[J]. 现代地质, 2023, 37(03): 745-757. |
[6] | 胡永浩, 段星星, 夏昭德, 韩宝华. 玉米根际土壤细菌群落对不同程度镉污染的响应: 以甘肃省白银市四龙镇地区为例[J]. 现代地质, 2023, 37(03): 758-766. |
[7] | 胡庆海, 王学求, 韩志轩, 成晓梦, 吴慧, 田密, 刘福田, 孙彬彬, 陈卫明, 杜雪苗, 刘彬, 崔邢涛. 京津冀地区永清县土壤重金属地球化学特征及绿色食品产地的土壤质量评价[J]. 现代地质, 2023, 37(03): 778-789. |
[8] | 杜古尔·卫卫, 石海涛, 邢浩, 娄雪聪, 胡宏利, 布龙巴特. 新疆戈壁荒漠区典型露天煤矿土壤重金属来源解析及空间分布[J]. 现代地质, 2023, 37(03): 790-800. |
[9] | 王佳鑫, 侯青叶, 叶丹君, 杨忠芳, 余涛. 珠江三角洲不同成土母质发育水稻土镉活动性差异及其影响因素[J]. 现代地质, 2023, 37(01): 197-207. |
[10] | 陈世明, 杨镇熙, 雷自强, 康维良, 张晶, 赵青虎. 甘肃北山前红泉地区水系沉积物地球化学特征及找矿方向[J]. 现代地质, 2022, 36(06): 1513-1524. |
[11] | 刘同, 刘传朋, 康鹏宇, 赵秀芳, 邓俊, 王凯凯. 山东省沂南县东部土壤重金属地球化学特征及源解析[J]. 现代地质, 2022, 36(04): 1173-1182. |
[12] | 王斌, 任涛, 宋伊圩, 杨可, 王占彬, 孙亚柯. 西秦岭常家山地区水系沉积物地球化学特征及其地质意义[J]. 现代地质, 2022, 36(03): 911-922. |
[13] | 朱英海, 施泽明, 王新宇, 张凯亮, 朱伯丞. 攀西大梁子铅锌矿区水系沉积物重金属地球化学特征及源解析[J]. 现代地质, 2022, 36(03): 923-932. |
[14] | 郭正材, 郭华明, 魏亮, 高志鹏. 河北保定典型污灌区土壤Cu吸附特性研究[J]. 现代地质, 2022, 36(02): 524-532. |
[15] | 乔雯, 王议, 张德强, 殷秀兰, 白光宇, 何培雍. 某矿区土壤重金属分布特征及来源解析[J]. 现代地质, 2022, 36(02): 543-551. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||