现代地质 ›› 2017, Vol. 31 ›› Issue (01): 158-166.
王超群1,2(), 丁莹莹2, 胡道功1(
), 戚帮申1, 张耀玲1, 陶涛1, 吴环环1
收稿日期:
2016-09-21
修回日期:
2016-12-02
出版日期:
2017-02-10
发布日期:
2017-03-16
通讯作者:
胡道功,男,研究员,1963年出生,构造地质学专业,主要从事新构造与活动构造研究。Email:hudg@263.net。
作者简介:
王超群,女,硕士研究生,1993年出生,构造地质学专业,主要从事新构造与活动构造方面的研究工作。Email:871269501@qq.com。
基金资助:
WANG Chaoqun1,2(), DING Yingying2, HU Daogong1(
), QI Bangshen1, ZHANG Yaoling1, TAO Tao1, WU Huanhuan1
Received:
2016-09-21
Revised:
2016-12-02
Online:
2017-02-10
Published:
2017-03-16
摘要:
祁连山冻土区木里盆地三露天井田自2008年首次钻采到天然气水合物实物样品以来,实现了中低纬度高山冻土区天然气水合物勘探的重大突破。天然气水合物钻孔DK-9于2013年发现水合物,通过对该孔长期地温实时监测,获得了稳态的地温数据。结果表明,祁连山多年冻土区聚乎更矿区三露天井田冻土层底界为约163 m,冻土层的厚度达约160 m,冻土层内的地温梯度为1.38 ℃ /100 m,冻土层以下的地温梯度达4.85 ℃/100 m。根据天然气水合物形成的温-压条件分析,聚乎更矿区具备较好的天然气水合物形成条件,天然气水合物稳定带底界深度处于510~617 m之间。
中图分类号:
王超群, 丁莹莹, 胡道功, 戚帮申, 张耀玲, 陶涛, 吴环环. 祁连山冻土区DK-9孔温度监测及天然气水合物稳定带厚度[J]. 现代地质, 2017, 31(01): 158-166.
WANG Chaoqun, DING Yingying, HU Daogong, QI Bangshen, ZHANG Yaoling, TAO Tao, WU Huanhuan. Temperature Monitoring Results for Gas Hydrate Borehole DK-9 and Thickness of Gas Hydrate Stability Zone in the Qilian Mountains Permafrost[J]. Geoscience, 2017, 31(01): 158-166.
图1 (A)祁连山构造纲要图(据文献[27-28,33]修编);(B)三露天煤矿及邻区地质简图(据文献[38]修编)
Fig.1 (A) Tectonic assemblages of the Qilian Mountain; (B) Simplified geological map of the Sanloutian coalfield and the adjacent region
图2 (A)DK-9孔温度监测系统示意图;(B) DK-9孔温度监测传感器铂热电阻传感器;(C)铂热电阻传感器的电阻值和测量温度线性关系;(D)传感器的标定试验结果
Fig.2 (A)Temperature-monitoring system used in borehole DK-9;(B)PT100 platinum thermistor sensor used for temperature monitoring in borehole DK-9;(C)The resistance value of the platinum thermistor sensor changes linearly with temperature;(D)Calibration results of temperature-monitoring sensors
传感器 | 深度 /m | 月均温 /℃ | 年均温/℃ | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1月 | 2月 | 3月 | 4月 | 5月 | 6月 | 7月 | 8月 | 9月 | 10月 | 11月 | 12月 | |||
1 | 0.5 | -14.92 | -13.72 | -8.38 | -2.82 | -0.80 | 0.66 | 4.80 | 7.98 | 3.96 | -0.74 | -3.79 | -11.20 | -3.30 |
2 | 0.7 | -13.44 | -13.11 | -8.68 | -3.59 | -1.55 | -0.77 | 3.23 | 5.00 | 2.10 | -0.65 | -2.51 | -9.26 | -3.36 |
3 | 3.3 | -4.24 | -6.91 | -6.99 | -5.05 | -3.40 | -2.36 | -1.53 | -1.11 | -0.61 | -0.64 | -0.70 | -0.67 | -2.76 |
4 | 5.3 | -1.42 | -3.38 | -4.59 | -4.27 | -3.47 | -2.98 | -1.89 | -1.46 | -1.17 | -0.97 | -0.85 | -0.74 | -2.21 |
5 | 10.3 | -1.15 | -1.26 | -1.67 | -2.08 | -2.26 | -2.33 | -2.18 | -1.98 | -1.77 | -1.61 | -1.44 | -1.27 | -1.75 |
6 | 10.7 | -1.11 | -1.19 | -1.54 | -1.92 | -2.12 | -2.20 | -2.11 | -1.93 | -1.74 | -1.56 | -1.40 | -1.24 | -1.67 |
7 | 30.3 | -1.42 | -1.45 | -1.49 | -1.51 | -1.52 | -1.53 | -1.54 | -1.55 | -1.54 | -1.52 | -1.50 | -1.45 | -1.50 |
8 | 40.7 | -1.47 | -1.50 | -1.53 | -1.56 | -1.56 | -1.56 | -1.59 | -1.59 | -1.58 | -1.56 | -1.54 | -1.50 | -1.55 |
9 | 50.7 | -1.28 | -1.30 | -1.34 | -1.36 | -1.37 | -1.38 | -1.40 | -1.41 | -1.40 | -1.38 | -1.35 | -1.31 | -1.36 |
10 | 60.7 | -1.58 | -1.60 | -1.65 | -1.67 | -1.68 | -1.69 | -1.71 | -1.72 | -1.71 | -1.68 | -1.65 | -1.61 | -1.66 |
11 | 70.7 | -1.33 | -1.36 | -1.40 | -1.42 | -1.41 | -1.41 | -1.44 | -1.45 | -1.45 | -1.42 | -1.40 | -1.36 | -1.41 |
12 | 80.7 | -1.22 | -1.25 | -1.29 | -1.22 | -1.19 | -1.24 | -1.31 | -1.33 | -1.32 | -1.31 | -1.29 | -1.25 | -1.27 |
13 | 90.7 | -0.51 | -0.53 | -0.57 | -0.56 | -0.54 | -0.55 | -0.58 | -0.60 | -0.59 | -0.58 | -0.56 | -0.53 | -0.56 |
14 | 110.0 | -0.53 | -0.56 | -0.60 | -0.62 | -0.61 | -0.62 | -0.64 | -0.65 | -0.64 | -0.62 | -0.60 | -0.56 | -0.61 |
15 | 210.0 | 2.85 | 2.83 | 2.78 | 2.74 | 2.74 | 2.73 | 2.71 | 2.71 | 2.72 | 2.74 | 2.77 | 2.82 | 2.76 |
16 | 310.0 | - | - | - | 6.12 | 6.11 | 6.11 | 6.10 | - | - | - | - | - | 6.11 |
17 | 410.0 | 12.55 | 12.52 | 12.46 | 12.43 | 12.44 | 12.44 | 12.42 | 12.40 | 12.41 | 12.44 | 12.46 | 12.52 | 12.46 |
表1 DK-9孔温度监测结果
Table 1 Temperature-monitoring results of gas hydrate borehole DK-9
传感器 | 深度 /m | 月均温 /℃ | 年均温/℃ | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1月 | 2月 | 3月 | 4月 | 5月 | 6月 | 7月 | 8月 | 9月 | 10月 | 11月 | 12月 | |||
1 | 0.5 | -14.92 | -13.72 | -8.38 | -2.82 | -0.80 | 0.66 | 4.80 | 7.98 | 3.96 | -0.74 | -3.79 | -11.20 | -3.30 |
2 | 0.7 | -13.44 | -13.11 | -8.68 | -3.59 | -1.55 | -0.77 | 3.23 | 5.00 | 2.10 | -0.65 | -2.51 | -9.26 | -3.36 |
3 | 3.3 | -4.24 | -6.91 | -6.99 | -5.05 | -3.40 | -2.36 | -1.53 | -1.11 | -0.61 | -0.64 | -0.70 | -0.67 | -2.76 |
4 | 5.3 | -1.42 | -3.38 | -4.59 | -4.27 | -3.47 | -2.98 | -1.89 | -1.46 | -1.17 | -0.97 | -0.85 | -0.74 | -2.21 |
5 | 10.3 | -1.15 | -1.26 | -1.67 | -2.08 | -2.26 | -2.33 | -2.18 | -1.98 | -1.77 | -1.61 | -1.44 | -1.27 | -1.75 |
6 | 10.7 | -1.11 | -1.19 | -1.54 | -1.92 | -2.12 | -2.20 | -2.11 | -1.93 | -1.74 | -1.56 | -1.40 | -1.24 | -1.67 |
7 | 30.3 | -1.42 | -1.45 | -1.49 | -1.51 | -1.52 | -1.53 | -1.54 | -1.55 | -1.54 | -1.52 | -1.50 | -1.45 | -1.50 |
8 | 40.7 | -1.47 | -1.50 | -1.53 | -1.56 | -1.56 | -1.56 | -1.59 | -1.59 | -1.58 | -1.56 | -1.54 | -1.50 | -1.55 |
9 | 50.7 | -1.28 | -1.30 | -1.34 | -1.36 | -1.37 | -1.38 | -1.40 | -1.41 | -1.40 | -1.38 | -1.35 | -1.31 | -1.36 |
10 | 60.7 | -1.58 | -1.60 | -1.65 | -1.67 | -1.68 | -1.69 | -1.71 | -1.72 | -1.71 | -1.68 | -1.65 | -1.61 | -1.66 |
11 | 70.7 | -1.33 | -1.36 | -1.40 | -1.42 | -1.41 | -1.41 | -1.44 | -1.45 | -1.45 | -1.42 | -1.40 | -1.36 | -1.41 |
12 | 80.7 | -1.22 | -1.25 | -1.29 | -1.22 | -1.19 | -1.24 | -1.31 | -1.33 | -1.32 | -1.31 | -1.29 | -1.25 | -1.27 |
13 | 90.7 | -0.51 | -0.53 | -0.57 | -0.56 | -0.54 | -0.55 | -0.58 | -0.60 | -0.59 | -0.58 | -0.56 | -0.53 | -0.56 |
14 | 110.0 | -0.53 | -0.56 | -0.60 | -0.62 | -0.61 | -0.62 | -0.64 | -0.65 | -0.64 | -0.62 | -0.60 | -0.56 | -0.61 |
15 | 210.0 | 2.85 | 2.83 | 2.78 | 2.74 | 2.74 | 2.73 | 2.71 | 2.71 | 2.72 | 2.74 | 2.77 | 2.82 | 2.76 |
16 | 310.0 | - | - | - | 6.12 | 6.11 | 6.11 | 6.10 | - | - | - | - | - | 6.11 |
17 | 410.0 | 12.55 | 12.52 | 12.46 | 12.43 | 12.44 | 12.44 | 12.42 | 12.40 | 12.41 | 12.44 | 12.46 | 12.52 | 12.46 |
图4 DK-9孔0~45 m月均温度和深度的关系以及活动层特征
Fig.4 The monthly average temperature versus deepness (at 0-45 m) and the characteristic of active layer in gas hydrate borehole DK-9
图5 DK-9孔0~450 m月均温度和深度的关系及冻土层和冻土层以下的地温梯度
Fig.5 The monthly average temperature versus deepness(0-450 m) and geothermal gradient in gas hydrate borehole DK-9
图6 祁连山冻土区基于温度监测和实测天然气水合物气体组分的天然气水合物稳定带
Fig.6 Gas hydrate stability zone based on temperature monitoring and measurement of gas hydrate components in Qilian Mountain permafrost
[1] | SLOAN E D. Clathrate Hydrates of Natural Gases[M]. 2nd ed. New York: Marcel Dekker, 1998: 19. |
[2] |
KVENVOLDEN K A. Potential effects of gas hydrate on human welfare[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(7): 3420-3426.
PMID |
[3] |
KVENVOLDEN K A. Methane hydrate in the global organic carbon cycle[J]. Terra Nova, 2002, 14(5): 302-306.
DOI URL |
[4] |
MILKOV A V. Global estimates of hydrate-bound gas in marine sediments: how much is really out there?[J]. Earth-Science Reviews, 2004, 66(3/4): 183-197.
DOI URL |
[5] | MAKOGON Y F, HOLDITCH S A, MAKOGON T Y. Natural gas-hydrates—A potential energy source for the 21st Century[J]. Journal of Petroleum Science & Engineering, 2007, 56(1): 14-31. |
[6] | MAKOGON Y F. Natural gas hydrates—A promising source of energy[J]. Journal of Natural Gas Science & Engineering, 2010, 2(1):49-59. |
[7] | 祝有海, 张永勤, 文怀军, 等. 青海祁连山冻土区发现天然气水合物[J]. 地质学报, 2009, 83(11):1762-1771. |
[8] | 卢振权, 祝有海, 张永勤, 等. 青海祁连山冻土区天然气水合物的气体成因研究[J]. 现代地质, 2010, 24(3):581-588. |
[9] | LU Z, ZHU Y, ZHANG Y, et al. Gas hydrate occurrences in the Qilian Mountain permafrost, Qinghai Province, China[J]. Cold Regions Science & Technology, 2011, 66(2):93-104. |
[10] | 卢振权, 祝有海, 张永勤, 等. 青海省祁连山冻土区天然气水合物存在的主要证据[J]. 现代地质, 2010, 24(2):329-336. |
[11] | 王平康, 祝有海, 卢振权, 等. 祁连山冻土区天然气水合物岩性和分布特征[J]. 地质通报, 2011, 30(12):1839-1850. |
[12] | 郭星旺, 祝有海. 祁连山冻土区DK-1钻孔天然气水合物测井响应特征和评价[J]. 地质通报, 2011, 30(12):1868-1873. |
[13] | LU Z, ZHU Y, LIU H, et al. Gas source for gas hydrate and its significance in the Qilian Mountain permafrost, Qinghai[J]. Marine & Petroleum Geology, 2013, 43:341-348. |
[14] | 唐世琪, 卢振权, 饶竹, 等. 祁连山冻土区天然气水合物岩心顶空气组分与同位素的指示意义——以DK-9孔为例[J]. 地质通报, 2015, 34(5): 961-971. |
[15] | 卢振权, 唐世琪, 王伟超, 等. 青海木里三露天冻土天然气水合物气源性质研究[J]. 现代地质, 2015, 29(5):995-1001. |
[16] | 卢振权, 翟刚毅, 文怀军, 等. 青海木里三露天冻土区天然气水合物形成与分布地质控制因素[J]. 现代地质, 2015, 29(5):1002-1013. |
[17] | 卢振权, 李永红, 王伟超, 等. 青海木里三露天冻土天然气水合物成藏模式研究[J]. 现代地质, 2015, 29(5):1014-1023. |
[18] | 陈利敏, 秦荣芳, 蒋艾林, 等. 青海木里三露天天然气水合物钻孔岩心构造裂隙特征[J]. 现代地质, 2015, 29(5):1087-1095. |
[19] | 于常青, 王琪, 卢振权, 等. 青海木里地区天然气水合物三维地震探测[J]. 现代地质, 2015, 29(5):1130-1137. |
[20] | 李承峰, 刘昌岭, 孟庆国, 等. 青海聚乎更水合物赋存区岩心微观孔隙、裂隙的微CT图像表征[J]. 现代地质, 2015, 29(5):1189-1193. |
[21] | 贺行良, 刘昌岭, 孟庆国, 等. 青海聚乎更钻探区含水合物岩心气体组成及其指示意义[J]. 现代地质, 2015, 29(5):1194-1200. |
[22] | 刘乐乐, 孙建业, 刘昌岭, 等. 松散沉积物中水合物降压分解阵面演化实验及数值模拟[J]. 现代地质, 2015, 29(5):1234-1241. |
[23] | 祝有海, 刘亚玲, 张永勤. 祁连山多年冻土区天然气水合物的形成条件[J]. 地质通报, 2006, 25(1/2):58-63. |
[24] | JIN C, QIAO D, LU Z, et al. Study on the characteristics of gas hydrate stability zone in the Muli permafrost, Qinghai—comparison between the modeling and drilling results[J]. Chinese Journal of Geophysics, 2011, 54(1):173-181. |
[25] | 曹代勇, 李靖, 王丹, 等. 青海木里煤田天然气水合物稳定带研究[J]. 中国矿业大学学报, 2013, 42(1): 76-82. |
[26] |
LIU S, JIANG Z, LIU H, et al. The natural-gas hydrate exploration prospects of the Nayixiong Formation in the Kaixinling-Wuli Permafrost, Qinghai-Tibet Plateau[J]. Marine and Petroleum Geology, 2016, 72:179-192.
DOI URL |
[27] | GEHRELS G E, YIN A, WANG X. Magmatic history of the northeastern Tibetan Plateau[J]. Journal of Geophysical Research, 2003, 108(9): ETG 5-1. |
[28] |
BOVET P M, RITTS B D, GEHRELS G G, et al. Evidence of Miocene crustal shortening in the North Qilian Shan from Cenozoic stratigraphy of the western Hexi Corridor[J]. American Journal of Science, 2009, 309(4):290-329.
DOI URL |
[29] | RITTS B D, BIFFI U. Mesozoic northeast Qaidam basin: response to contractional reactivation of Qilian Shan, and implications for extent of Mesozoic intracontinental deformation in central Asia[M]//HENDRIX, M S, DAVIS G A. Paleozoic and Meso-zoic Tectonic Evolution of Central and Eastern Asia: From Continental Assembly to Intracontinental Deformation[R]. Memoir of Geological Society of America, 2001, 194: 293-316. |
[30] |
PAN B, LI Q, HU X, et al. Cretaceous and Cenozoic cooling history of the eastern Qilian Shan, north-eastern margin of the Tibetan Plateau: evidence from apatite fission-track analysis[J]. Terra Nova, 2013, 25(6):431-438.
DOI URL |
[31] |
BURCHFIEL B C, ZHANG P, WANG Y, et al. Geology of the Haiyuan Fault Zone, Ningxia-Hui Autonomous Region, China, and its relation to the evolution of the northeastern margin of the Tibetan Plateau[J]. Tectonics, 1991, 10(6):1091-1110.
DOI URL |
[32] |
GAUDEMER Y, TAPPONNIER P, MEYER B, et al. Partitioning of crustal slip between linked, active faults in the Eastern Qilian Shan, and evidence for a major seismic gap, the Tianzhu Gap, on the western Haiyuan fault, Gansu (China)[J]. Geophysical Journal International, 2007, 120(3):599-645.
DOI URL |
[33] |
VINCENT S J, ALLEN M B. Evolution of the Minle and Chao-shui Basins, China: Implications for Mesozoic strike-slip basin formation in Central Asia[J]. Geological Society of America Bulletin, 1999, 111(5):725-742.
DOI URL |
[34] | LASSERRE C, MOREL P, GAUDEMER Y, et al. Postglacial left slip rate and past occurrence of M≥8 earthquakes on the Western Haiyuan Fault, Gansu, China[M]. Journal of Geophy-sical Research: Solid Earth, 1999, 104(8):17633-17651. |
[35] |
TAPPONNIER P, ZHIQIN X, ROGER F, et al. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294:1671-1677.
PMID |
[36] | 戚帮申, 胡道功, 杨肖肖, 等. 祁连山中段白垩纪以来阶段性构造抬升过程的磷灰石裂变径迹证据[J]. 地球学报, 2016, 37(1):46-58. |
[37] |
QI B S, HU D G, YANG X X, et al. Apatite fission track evidence for the Cretaceous-Cenozoic cooling history of the Qilian Shan (NW China) and for stepwise northeastward growth of the northeastern Tibetan Plateau since Early Eocene[J]. Journal of Asian Earth Sciences, 2016, 124:28-41.
DOI URL |
[38] | 张雪亭. 青海省板块构造研究[M]. 北京: 地质出版社, 2007:128-142. |
[39] | 吴吉春, 盛煜, 于晖, 等. 祁连山中东部的冻土特征(I):多年冻土分布[J]. 冰川冻土, 2007, 29(3):418-425. |
[40] | 周幼吾. 中国冻土[M]. 北京: 科学出版社, 2000:309. |
[41] |
DOBINSKI W. Permafrost[J]. Earth-Science Reviews, 2011, 108(3/4):158-169.
DOI URL |
[42] |
MILKOV A V, SASSEN R. Thickness of the gas hydrate stability zone, Gulf of Mexico continental slope[J]. Marine and Petroleum Geology, 2000, 17(9):981-991.
DOI URL |
[43] |
GRASSMANN S, CRAMER B, DELISLE G, et al. pT-effects of Pleistocene glacial periods on permafrost, gas hydrate stability zones and reservoir of the Mittel plate oil field, northern Germany[J]. Marine and Petroleum Geology, 2010, 27(1):298-306.
DOI URL |
[44] |
COLLETT T S, LEE M W, AGENA W F, et al. Permafrost-associated natural gas hydrate occurrences on the Alaska North Slope[J]. Marine and Petroleum Geology, 2011, 28(2):279-294.
DOI URL |
[45] | SLOAN E D, KOH A. Clathrate Hydrates of Natural Gases[M]. New York: CRC Press of Tayor and Francis Group, 2008:567-569. |
[46] | COLLETT T S, DALLIMORE S R. Permafrost-associated gas hydrate[M]//MAX M D. Natural Gas Hydrate in Oceanic and Permafrost Environments. Dordrecht: Kluwer Academic Publishers, 2000:43-60. |
[47] | COLLETT T S, BIRD K J, KVENVOLDEN K A, et al. Geologic interrelations relative to gas hydrates within the North Slope of Alaska: U.S.Geological Open-file Report[R]. U.S.Department of Energy, 1988:1-50. |
[48] | 王平康, 祝有海, 卢振权, 等. 祁连山冻土区天然气水合物现场识别方法[J]. 矿床地质, 2013, 32(5):1045-1056. |
[49] |
RAO Y H. C-program for the calculation of gas hydrate stability zone thickness[J]. Computers & Geosciences, 1999, 25(6):705-707.
DOI URL |
[50] | 王淑红, 宋海斌, 颜文. 外界条件变化对天然气水合物相平衡曲线及稳定带厚度的影响[J]. 地球物理学进展, 2005, 20(3):761-768. |
[51] | SUESS E, TORRES M E, BOHRMANN G, et al. Sea Floor Methane Hydrates at Hydrate Ridge, Cascadia Margin[M]. Washington D C: American Geophysical Union. Geophysical Monograph, 2001, 124: 87-98. |
[52] | 卢振权, 祝有海, 张永勤, 等. 青海祁连山冻土区天然气水合物资源量的估算方法——以钻探区为例[J]. 地质通报, 2010, 29(9):1310-1318. |
[53] | HE J, WANG J, FU X, et al. Assessing the conditions favorable for the occurrence of gas hydrate in the Tuonamu area Qiangtang basin, Qinghai-Tibetan, China[J]. Energy Conversion & Mana-gement, 2012, 53(1):11-18. |
[54] |
LU Z, RAO Z, HE J, et al. Geochemistry of drill core headspace gases and its significance in gas hydrate drilling in Qilian Mountain permafrost[J]. Journal of Asian Earth Sciences, 2015, 98:126-140.
DOI URL |
[55] |
LIU C, MENG Q, HE X, et al. Comparison of the characteristics for natural gas hydrate recovered from marine and terrestrial areas in China[J]. Journal of Geochemical Exploration, 2015, 152:67-74.
DOI URL |
[56] | 宋海斌, 江为为, 张文生, 等. 天然气水合物的海洋地球物理研究进展[J]. 地球物理学进展, 2002, 17(2): 224-229. |
[57] | 宋海斌, OSAMU M, 杨胜雄, 等. 含天然气水合物沉积物的岩石物性模型与似海底反射层的AVA特征[J]. 地球物理学报, 2002, 45(4): 546-556. |
[58] | 陈多福, 王茂春, 夏斌. 青藏高原冻土带天然气水合物的形成条件与分布预测[J]. 地球物理学报, 2005, 48(1): 165-172. |
[59] | MAJOROWICZ J A, OSADETZ K G. Gas hydrate distribution and volume in Canada[J]. AAPG Bulletin, 2001, 85(7):1211-1230. |
[60] | WU Q, JIANG G, ZHANG P. Assessing the permafrost temperature and thickness conditions favorable for the occurrence of gas hydrate in the Qinghai-Tibet Plateau[J]. Energy Conversion & Management, 2010, 51(4):783-787. |
[61] | 贺行良, 刘昌岭, 孟庆国, 等. 祁连山冻土区天然气水合物气体组分的气相色谱法测定[J]. 地质通报, 2011, 30(12): 1857-1862. |
[62] | 翟刚毅, 卢振权, 卢海龙, 等. 祁连山冻土区天然气水合物成矿系统[J]. 矿物岩石, 2014, 34(4):79-92. |
[1] | 杨露梅, 邝荣禧, 郭慧, 左丽琼, 苟富刚, 许书刚, 张硕. 苏南现代化建设示范区现今地温场特征及影响因素[J]. 现代地质, 2023, 37(04): 954-962. |
[2] | 王圣宜, 邹长春, 彭诚, 王红才, 陆敬安, 康冬菊, 伍操为, 蓝茜茜, 谢莹峰. 海域孔隙型储层天然气水合物赋存模式定量化表征:声波和电阻率测井的约束[J]. 现代地质, 2023, 37(01): 127-137. |
[3] | 郭子豪, 李灿苹, 陈凤英, 勾丽敏, 汪洪涛, 曾宪军, 刘一林, 田鑫裕. 天然气水合物分解的甲烷对海洋生物的影响[J]. 现代地质, 2023, 37(01): 138-152. |
[4] | 汤昌福, 罗万静, 黄骏玮. 中深层套管换热器短期无干扰名义取热量计算解析方法[J]. 现代地质, 2022, 36(05): 1440-1446. |
[5] | 黄玉平, 龙祖烈, 朱俊章, 石创, 张博, 张小龙, 陈聪. 珠江口盆地白云凹陷地温场特征及烃源岩热演化[J]. 现代地质, 2022, 36(01): 130-139. |
[6] | 刘洋, 陈强, 邹长春, 赵金环, 彭诚, 孙建业, 刘昌岭, 伍操为. 气体水合物生成实验过程动态监测:一种新的ERT方法及其效果分析[J]. 现代地质, 2022, 36(01): 193-201. |
[7] | 胡高伟, 吴能友, 李琦, 白辰阳, 万义钊, 黄丽, 王代刚, 李彦龙, 陈强. 海域天然气水合物试采目标优选定量评价方法初探[J]. 现代地质, 2022, 36(01): 202-211. |
[8] | 吴龙, 柳长峰, 刘文灿, 张宏远. 青藏高原东北缘祁连山三叠系砂岩碎屑锆石U-Pb定年及其物源分析[J]. 现代地质, 2021, 35(05): 1178-1193. |
[9] | 宿宇驰, 毛小平, 张飞, 毛珂, 卢鹏羽. 沧县隆起北部地温场特征及其主控因素分析[J]. 现代地质, 2021, 35(02): 403-411. |
[10] | 王进寿, 卢振权, 王富春, 陈静, 薛万文, 张志清. 羌塘北缘开心岭—乌丽冻土区水溶烃组分及甲烷碳、氢同位素特征研究[J]. 现代地质, 2019, 33(06): 1306-1313. |
[11] | 周亚龙, 杨志斌, 张富贵, 张舜尧, 孙忠军, 王惠艳. 祁连山天然气水合物地球化学勘查方法稳定性和异常重现性分析[J]. 现代地质, 2019, 33(06): 1314-1324. |
[12] | 范东稳, 卢振权, 肖睿, 牛索安, 祁拉加, 魏毅, 张永安, 费德亮, 党孝锋. 南祁连盆地木里坳陷石炭系—侏罗系天然气水合物潜在气源岩地质特征[J]. 现代地质, 2018, 32(05): 985-994. |
[13] | 周亚龙, 孙忠军, 杨志斌, 张富贵, 张舜尧. 祁连山木里冻土区天然气水合物矿区稀有气体氦、氖地球化学特征及其指示意义[J]. 现代地质, 2018, 32(05): 995-1002. |
[14] | 张富贵, 唐瑞玲, 杨志斌, 朱敬华, 周亚龙, 孙忠军. 漠河盆地多年冻土区天然气水合物地球化学调查及远景评价[J]. 现代地质, 2018, 32(05): 1003-1011. |
[15] | 张富贵, 王成文, 张舜尧, 周亚龙, 唐瑞玲. 热释光:一种冻土区天然气水合物地球化学勘查新技术[J]. 现代地质, 2018, 32(05): 1080-1088. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||