现代地质 ›› 2023, Vol. 37 ›› Issue (01): 138-152.DOI: 10.19657/j.geoscience.1000-8527.2022.034
郭子豪1(), 李灿苹1(
), 陈凤英1, 勾丽敏2, 汪洪涛3, 曾宪军4, 刘一林1, 田鑫裕1
收稿日期:
2022-04-12
修回日期:
2022-09-30
出版日期:
2023-02-10
发布日期:
2023-03-20
通讯作者:
李灿苹,女,副教授,1977年出生,地球探测与信息技术专业,主要从事海洋天然气水合物和羽状流地震勘探研究。Email: canpinglihydx@163.com。
作者简介:
郭子豪,男,硕士研究生,1996年出生,农业工程与信息技术专业,主要从事海洋资源勘探研究。Email:1025569703@qq.com。
基金资助:
GUO Zihao1(), LI Canping1(
), CHEN Fengying1, GOU Limin2, WANG Hongtao3, ZENG Xianjun4, LIU Yilin1, TIAN Xinyu1
Received:
2022-04-12
Revised:
2022-09-30
Online:
2023-02-10
Published:
2023-03-20
摘要:
随着海底环境的变化以及全球变暖的加剧,天然气水合物分解释放出大量甲烷到海洋中,其中一部分甲烷会穿过海水释放到大气中,导致大气中的温室气体增加,从而加剧了全球暖化。本文从甲烷的释放和运移路径角度梳理和总结了甲烷对海洋生物的直接和间接影响。首先,水合物分解释放甲烷,在海底形成冷泉渗漏区,滋养了一批特殊的生物群落,而甲烷是其形成生命元素中不可或缺的要素,由此繁衍形成了冷泉生态系统。其次,甲烷释放到海水中会引起海水酸化,海水酸化不仅会导致钙化生物合成碳酸钙外壳受阻,还会加速已生成外壳的溶解。最后,甲烷作为强温室气体释放到大气中还会加剧全球变暖;此外,极地冻土层的融化也会使得冻土区天然气水合物分解,导致大量甲烷进入大气中,从而致使海水暖化,海水的暖化又会对海洋生物的生存、代谢、繁殖、发育和免疫应答等多种生命活动造成影响。以上认识为进一步研究甲烷对未来海洋生态系统的影响提供重要参考信息。
中图分类号:
郭子豪, 李灿苹, 陈凤英, 勾丽敏, 汪洪涛, 曾宪军, 刘一林, 田鑫裕. 天然气水合物分解的甲烷对海洋生物的影响[J]. 现代地质, 2023, 37(01): 138-152.
GUO Zihao, LI Canping, CHEN Fengying, GOU Limin, WANG Hongtao, ZENG Xianjun, LIU Yilin, TIAN Xinyu. Effect of Methane from Natural Gas Hydrate Decomposition on Marine Life[J]. Geoscience, 2023, 37(01): 138-152.
区域 | 中心区 经纬度 | 水深/m | 气泡半 径/mm | 甲烷通量 |
---|---|---|---|---|
墨西哥湾 | 92°W, 27.5°N | 550~600 | 2.4~6.0 | 2305 μmol/ (m·d)(平均) |
新西兰 | 178.2°E, 40.1°S | 630~1000 | 3.0~4.5 | 3746 mmol/ min(单孔) |
黑海 | 32°W, 44.9°N | 70~112 | 5.2 | 23.91 mmol/ min(单孔) |
表1 原位观测水合物释放甲烷气体的特征参数[4,26?-28]
Table 1 Parameters for in-situ observations on gas hydrates dissociation [4,26?-28]
区域 | 中心区 经纬度 | 水深/m | 气泡半 径/mm | 甲烷通量 |
---|---|---|---|---|
墨西哥湾 | 92°W, 27.5°N | 550~600 | 2.4~6.0 | 2305 μmol/ (m·d)(平均) |
新西兰 | 178.2°E, 40.1°S | 630~1000 | 3.0~4.5 | 3746 mmol/ min(单孔) |
黑海 | 32°W, 44.9°N | 70~112 | 5.2 | 23.91 mmol/ min(单孔) |
图3 2008年至2011年期间大气甲烷浓度的变化(修改自Glikson等[29];1 mb=100 Pa) (a)2008年11月1日至10日天然气含量;(b)2011年11月1日至10日天然气含量;图中展示30°N—90°N各经度上大气甲烷浓度变化,其中东半球经度用正数表示,西半球经度用负数表示
Fig.3 Variation in atmospheric methane concentrations from 2008 to 2011(modified from Glikson et al.[29];1 mb=100 Pa)
图5 全球主要冷泉分布 (绿色正方形代表走滑大陆边缘海底冷泉,蓝色正方形代表主动大陆边缘海底冷泉,橙色正方形代表被动大陆边缘海底冷泉;图中红蓝绿三种颜色的实线表示各大陆板块分界线或大陆板块分界线附近区域海底冷泉渗漏区经常伴随着大量自生碳酸盐岩、生物群落、泥火山、麻坑等较为宏观的地质现象[37];修改自Suess等[35,37])
Fig.5 Distribution of major cold seeps in the world(modified from Suess et al.[35,37])
图10 不同体长组南极磷虾在温度渐变下的变化对比图[91] (L1-L6组别体长分别为L1, 30±2.50 mm;L2, 35±2.50 mm;L3, 40±2.50 mm;L4, 45±2.50 mm;L5, 50±2.50 mm;L6, 55±2.50 mm)
Fig.10 Variation comparison of Antarctic krill in different body length groups under temperature gradient[91]
[1] | 苏正, 刘丽华. 南海北部陆坡天然气水合物成藏特征研究进展分析[J]. 新能源进展, 2020, 8(1):35-41. |
[2] | 赵伟, 王全胜, 郑星升. 国内天然气水合物研究进展[J]. 石化技术, 2019, 26(10):165-167. |
[3] | 赵军, 师执峰, 李元平, 等. 天然气水合物储层导电特性模拟与饱和度计算[J]. 天然气地球科学, 2021, 32(9):1261-1269. |
[4] | 叶黎明, 罗鹏, 杨克红. 天然气水合物气候效应研究进展[J]. 地球科学进展, 2011, 26(5):565-574. |
[5] |
BUFFETT B, ARCHER D. Global inventory of methane clathrate: sensitivity to changes in the deep ocean[J]. Earth and Planetary Science Letters, 2004, 227(3/4):185-199.
DOI URL |
[6] | WESTBROOK G K, THATCHER K E, ROHLING E J, et al. Escape of methane gas from the seabed along the West Spitsbergen continental margin[J]. Geophysical Research Letters, 2009, 36(15):L15608. |
[7] |
BOSWELL R, COLLETT T S. Current perspectives on gas hydrate resources[J]. Energy and Environmental Science, 2011, 4(4): 1206-1215.
DOI URL |
[8] |
KVENVOLDEN K A. Methane hydrate—A major reservoir of carbon in the shallow geosphere[J]. Chemical Geology, 1988, 71(1/3):41-51.
DOI URL |
[9] |
DICKENS G R. Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor[J]. Earth and Planetary Science Letters, 2003, 213(3/4):169-183.
DOI URL |
[10] |
KENNEDY M, MROFKA D, BORCH C. Snowball Earth termination by destabilization of equatorial permafrost methane clathrate[J]. Nature, 2008, 453:642-645.
DOI |
[11] |
BEERLING DJ, LOMAS M R, GRÖCKE D R. On the nature of methane gas-hydrate dissociation during the Toarcian and Aptian Oceanic anoxic events[J]. American Journal of Science, 2002, 302(1):28-49.
DOI URL |
[12] |
MCINERNEY F A, WING S L. The Paleocene-Eocene thermal maximum: A perturbation of carbon cycle, climate, and biosphere with implications for the future[J]. Annual Review of Earth and Planetary Sciences, 2011, 39(1):489-516.
DOI URL |
[13] | 王曦, 万晓樵, 李国彪. 西藏岗巴地区古新世—始新世界线地层及底栖大有孔虫的演替[J]. 微体古生物学报, 2010, 27(2):109-117. |
[14] | 牛明杨, 梁文悦, 王风平. 海洋环境中甲烷的生物转化及其对气候变化的影响[J]. 中国科学(地球科学), 2018, 48(12):1568-1588. |
[15] |
ORCUTT B N, SYLVAN J B, KNAB N J, et al. Microbial ecology of the dark ocean above, at, and below the seafloor[J]. Microbiology and Molecular Biology Reviews, 2011, 75(2):361-422.
DOI PMID |
[16] | 杨力, 刘斌, 徐梦婕, 等. 南海北部琼东南海域活动冷泉特征及形成模式[J]. 地球物理学报, 2018, 61(7):2905-2914. |
[17] | 栾锡武, 刘鸿, 岳保静, 等. 海底冷泉在旁扫声纳图像上的识别[J]. 现代地质, 2010, 24(3):474-480. |
[18] |
REEBURGH W S. Oceanic methane biogeochemistry[J]. Chemical Reviews, 2007, 107(2):486-513.
PMID |
[19] |
REGNIER P, DALE A W, ARNDT S, et al. Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective[J]. Earth Science Reviews, 2011, 106(1/2):105-130.
DOI URL |
[20] |
BOETIUS A, WENZHÖFER F. Seafloor oxygen consumption fueled by methane from cold seeps[J]. Nature Geoscience, 2013, 6(9):725-734.
DOI |
[21] |
LESNIEWSKI R A, JAIN S, ANANTHARAMAN K, et al. The metatranscriptome of a deep-sea hydrothermal plume is dominated by water column methanotrophs and lithotrophs[J]. The ISME Journal, 2012, 6(12):2257-2268.
DOI |
[22] |
SCHUBERT C J, COOLEN M, NERETIN L N, et al. Aerobic and anaerobic methanotrophs in the Black Sea water column[J]. Environmental Microbiology, 2010, 8(10):1844-1856.
DOI URL |
[23] | BIASTOC H, TREUD E, RPK E, et al. Rising Arctic Ocean temperatures cause gas hydrate destabilization and ocean acidification[J]. Geophysical Research Letters, 2011, 38(8):L08602. |
[24] |
陈忠, 颜文, 陈木宏, 等. 海底天然气水合物分解与甲烷归宿研究进展[J]. 地球科学进展, 2006, 21(4):394-400.
DOI |
[25] |
LEIFER I S, PATRO R K. The bubble mechanism for transport of methane from the shallow sea bed to the surface: A review and sensitivity study[J]. Continental Shelf Research, 2002, 22:2409-2428.
DOI URL |
[26] |
SOLOMON E A, KASTNER M, MACDONALD I R, et al. Considerable methane fluxes to the atmosphere from hydrocarbon seeps in the Gulf of Mexico[J]. Nature Geoscience, 2009, 2(8):561-565.
DOI |
[27] |
NAUDTS L, GREINERT J, POORT J, et al. Active venting sites on the gas-hydrate-bearing Hikurangi Margin, off New Zea-land: Diffusive-versus bubble-released methane[J]. Marine Geology, 2010, 272(1/4):233-250.
DOI URL |
[28] | GREINERT J, MCGINNIS D F, NAUDTS L, et al. Atmospheric methane flux from bubbling seeps: Spatially extrapolated quantification from a Black Sea shelf area[J]. Journal of Geophysical Research (Oceans), 2010, 115:C01002. |
[29] |
GLIKSON A. The methane time bomb[J]. Energy Procedia, 2018, 146:23-29.
DOI URL |
[30] | LEVITUS S, ANTONOV J I, BOYER T P, et al. Global ocean heat content 1955—2008 in light of recently revealed instrumentation problems[J]. Geophysical Research Letters, 2009, 36:L07608. |
[31] | BERNSTEIN L, BOSCH P, CANZIANI O, et al. IPCC, 2007: Climate Change 2007-Synthesis Report[M]. Cambridge: Cambridge University Press, 2007:30-31. |
[32] |
CHEN C, LUI H K, HSIEH C H, et al. Deep oceans may acidify faster than anticipated due to global warming[J]. Nature Climate Change, 2017, 7(12):890-894.
DOI |
[33] | MASLIN M, OWEN M, BETTS R, et al. Gas hydrates: past and future geohazard[J]. Philosophical Transactions, 2010, 368:2369-2393. |
[34] | 陈汉宗, 周蒂. 天然气水合物与全球变化研究[J]. 地球科学进展, 1997, 12(1):38-43. |
[35] | SUESS E. Marine cold seeps: background and recent advances.[M]// WILKES H. Hydrocarbons, Oils and Lipids:Diversity, Origin, Chemistry and Fate:Handbook of Hydrocarbon and Lipid Microbiology. Cham: Springer, 2020:747-767. |
[36] | 陈多福, 陈先沛, 陈光谦. 冷泉流体沉积碳酸盐岩的地质地球化学特征[J]. 沉积学报, 2002, 20(1):34-40. |
[37] | 席世川, 张鑫, 王冰, 等. 海底冷泉标志与主要冷泉区的分布和比较[J]. 海洋地质前沿, 2017, 33(2):7-18. |
[38] |
ASTROM E K L, CARROLL M L, AMBROSE W G, et al. Arctic cold seeps in marine methane hydrate environments: impacts on shelf microbenthic community structure offshore Svalbard[J]. Marine Ecology Progress Series, 2016, 552:1-18.
DOI URL |
[39] | 陈忠, 杨华平, 黄奇瑜, 等. 海底甲烷冷泉特征与冷泉生态系统的群落结构[J]. 热带海洋学报, 2007, 26(6):73-82. |
[40] | 陈忠, 黄奇瑜, 颜文, 等. 南海西沙海槽的碳酸盐结壳及其对甲烷冷泉活动的指示意义[J]. 热带海洋学报, 2007, 26(2):26-33. |
[41] | 谢伟, 殷克东. 深海海洋生态系统与海洋生态保护区发展趋势[J]. 中国工程科学, 2019, 21(6):1-8. |
[42] | LEVIN L A. Ecology of cold seep sediments: interactions of fauna with flow, chemistry and microbes[J]. Oceanography and Marine Biology (An Annual Review), 2005, 43:1-46. |
[43] | DOVER C L V, AHARON P, BERNHARD J M, et al. Blake Ridge methane seeps: characterization of a soft-sediment, chemosynthetically based ecosystem[J]. Deep Sea Research Part I (Oceanographic Research Papers), 2003, 50(2):281-300. |
[44] |
JAMES, BOUSQUET R, BUSSMANN P, et al. Effects of climate change on methane emissions from seafloor sediments in the Arctic Ocean: A review[J]. Limnology and Oceanography, 2016, 61(S1):S283-S299.
DOI URL |
[45] | MAU S, VALENTINE D L, CLARK J F, et al. Dissolved methane distributions and air-sea flux in the plume of a massive seep field, Coal Oil Point, California[J]. Geophysical Research Letters, 2007, 34(22):60-64. |
[46] |
DONEY S C, FABRY V J, FEELY R A, et al. Ocean acidification: the other CO2 problem[J]. Annual Review of Marine Science, 2009, 1(1):169-192.
DOI URL |
[47] | MILLERO F J, PIERROT D, LEE K, et al. Dissociation constants for carbonic acid determined from field measurements[J]. Deep Sea Research Part I (Oceanographic Research Papers), 2002, 49(10):1705-1723. |
[48] |
DONEY S C, BUSCH D S, COOLEY S R, et al. The impacts of ocean acidification on marine ecosystems and reliant human communities[J]. Annual Review of Environment and Resources, 2020, 45(1): 1-30.
DOI URL |
[49] |
ORR J C, FABRY V J, AUMONT O, et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms[J]. Nature, 2005, 437:681-686.
DOI |
[50] | BERELSON W M. Relating estimates of CaCO3 production, export, and dissolution in the water column to measurements of CaCO3 rain into sediment traps and dissolution on the sea floor: A revised global carbonate budget[J]. Global Biogeochemical Cycles, 2007, 21(1):GB1024. |
[51] | FABRY V J, MCCLINTOCK J B, MATHIS J T, et al. Ocean acidification at high latitudes: The Bellwether[J]. Oceanography, 2009, 22(4):160-171. |
[52] |
DUQUETTE A, MCCLINTOCK J B, AMSLER C D, et al. Effects of ocean acidification on the shells of four Mediterranean gastropod species near a CO2 seep[J]. Marine Pollution Bulletin, 2017, 124(2):917-928,
DOI URL |
[53] |
WANG S, YIN K, CAI W, et al. Advances in studies of ecological effects of ocean acidification[J]. Acta Ecologica Sinica, 2012, 32(18):5859-5869.
DOI URL |
[54] |
WEISS I M, TUROSS N, ADDADI L, et al. Mollusc larval shell formation: amorphous calcium carbonate is a precursor phase for aragonite[J]. Journal of Experimental Zoology, 2010, 293(5): 478-491.
DOI URL |
[55] | 何盛毅, 林传旭, 何毛贤, 等. 海洋酸化对马氏珠母贝胚胎和早期幼虫发育的影响[J]. 生态学杂志, 2011, 30(4):747-751. |
[56] |
KURIHARA H, ASAI T, KATO S, et al. Effects of elevated pco2 on early development in the mussel Mytilus galloprovincialis[J]. Aquatic Biology, 2008, 4(3):225-233.
DOI URL |
[57] | ZHANG M, ZOU J, FANG J G. Impacts of marine acidification on calcification, respiration and energy metabolism of Zhikong scallop Chlamys farreri[J]. Marine Fisheries Research, 2011, 32(4):48-54. |
[58] |
POLITI Y, ARAD T, KLEIN E, et al. Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase[J]. Science, 2004, 306:1161-1164.
DOI PMID |
[59] |
CLARK D, BARKER L M. Response of sea urchin pluteus larvae (Echinodermata: Echinoidea) to reduced seawater pH: a comparison among a tropical, temperate, and a polar species[J]. Marine Biology, 2009, 156(6):1125-1137.
DOI URL |
[60] |
TODGHAM A E, HOFMANN G E. Transcriptomic response of sea urchin larvae Strongylocentrotus purpuratus to CO2-driven seawater acidification[J]. Journal of Experimental Biology, 2009, 212(16):2579-2594.
DOI URL |
[61] | 湛垚垚, 黄显雅, 段立柱, 等. 海洋酸化对近岸海洋生物的影响[J]. 大连大学学报, 2013, 34(3):79-84. |
[62] |
STROBEL A, BENNECKE S, LEO E, et al. Metabolic shifts in the Antarctic fish Nototheniarossii in response to rising temperature and PCO2[J]. Front Zool, 2012, 9(1): 28.
DOI URL |
[63] |
BAROILLER J F, D’COTTA H, SAILLANT E. Environmental effects on fish sex determination and differentiation[J]. Sexual Development, 2009, 3(2/3): 118-135.
DOI URL |
[64] |
MUNDAY P L, DIXSON D L, DONELSON J M, et al. Ocean acidification impairs olfactory discrimination and homing ability of a marine fish[J]. Proceedings of the National Academy of Sciences, 2009, 106(6):1848-1852.
DOI URL |
[65] |
LEVITUS S, ANTONOV JI, BOYER TP, et al. Warming of the world ocean[J]. Science, 2000, 287:2225-2229.
DOI URL |
[66] | 吕传彬. 大堡礁的珊瑚白化危机[J]. 中国水产, 2020(3):96-97. |
[67] |
CARILLI J, DONNER S D. Historical temperature variability affects coral response to heat stress[J]. PLoS ONE, 2012, 7(3):e34418.
DOI URL |
[68] |
BANASZAK A T, TRENCH R K. Effects of ultraviolet (UV) radiation on marine microalgal-invertebrate symbioses. I. Response of the algal symbionts in culture an in hospite[J]. Journal of Experimental Marine Biology and Ecology, 1995, 194(2):213-232.
DOI URL |
[69] |
DOWNS C A, FAUTH J E, HALAS J C, et al. Oxidative stress and seasonal coral bleaching[J]. Free Radical Biology and Medicine, 2002, 33(4):533-543.
PMID |
[70] |
HARLAND A D, NGANRO N R. Copper uptake by the sea anemone Anemoniaviridis and the role of zooxanthellae in metal regulation[J]. Marine Biology, 1990, 104(2):297-301.
DOI URL |
[71] |
CERVINO J M, HAYES R L, HONOVICH M, et al. Changes in zooxanthellae density, morphology, and mitotic index in hermatypic corals and anemones exposed to cyanide[J]. Marine Pollution Bulletin, 2003, 46(5):573-586.
PMID |
[72] |
FAGOONEE I, WILSON H B, HASSELL M P, et al. The dynamics of zooxanthellae populations: A long-term study in the field[J]. Science, 1999, 283: 843-845.
DOI URL |
[73] |
WARNER M, CHILCOAT G, MCFARLAND F, et al. Seasonal fluctuations in the photosynthetic capacity of photosystem II in symbiotic dinoflagellates in the Caribbean reef-building coral Montastraea[J]. Marine Biology, 2002, 141(1):31-38.
DOI URL |
[74] | 姚翠鸾, GEORGE N S. 海洋暖化对海洋生物的影响[J]. 科学通报, 2015, 60(9):805-816. |
[75] |
HOEKE R K, JOKIEL P L, BUDDEMEIER R W, et al. Projected changes to growth and mortality of Hawaiian corals over the next 100 years[J]. PLoS ONE, 2011, 6(3):e18038.
DOI URL |
[76] |
GODINOT C, HOULBRÈQUE F, GROVER R, et al. Coral uptake of inorganic phosphorus and nitrogen negatively affected by simultaneous changes in temperature and pH[J]. PLoS ONE, 2011, 6(9):e25024.
DOI URL |
[77] | 李丽娜. 氮、 磷、钾水平对瓜叶菊生长发育的影响[D]. 成都: 四川农业大学, 2015. |
[78] | MACNEIL M A, GRAHAM N A J, CINNER J E, et al. Transitional states in marine fisheries: adapting to predicted global change[J]. Philosophical Transactions of the Royal Society B (Biological Sciences), 2010, 365:3753-3763. |
[79] |
SIMPSON S, JENNINGS S, JOHNSON M, et al. Continental shelf-wide response of a fish assemblage to rapid warming of the sea[J]. Current Biology, 2011, 21: 1565-1570.
DOI PMID |
[80] |
MUNDAY P L, MCCORMICK M I, NILSSON G E. Impact of global warming and rising CO2 levels on coral reef fishes: what hope for the future?[J]. Journal of Experimental Biology, 2012, 215(22):3865.
DOI URL |
[81] |
WILSON S K, GRAHAM N A J, PRATCHETT M S, et al. Multiple disturbances and the global degradation of coral reefs: are reef fishes at risk or resilient?[J]. Global Change Biology, 2010, 12(11):2220-2234.
DOI URL |
[82] |
PERRY A L, LOW P J, ELLIS J R, et al. Climate change and distribution shifts in marine fishes[J]. Science, 2005, 308:1912-1915.
DOI PMID |
[83] |
SANTO V D. Ocean acidification exacerbates the impacts of glo-bal warming on embryonic little skate, Leucoraja erinacea (Mitchill)[J]. Journal of Experimental Marine Biology and Ecology, 2015, 463:72-78.
DOI URL |
[84] | ROSA R, BAPTISTA M, LOPES V M, et al. Early-life exposure to climate change impairs tropical shark survival[J]. Proceedings of Biological Sciences, 2014, 281:1-6. |
[85] |
PISTEVOS J C A, NAGELKERKEN I, ROSSI T, et al. Ocean acidification and global warming impair shark hunting behavior and growth[J]. Scientific Reports, 2015, 5:16293.
DOI |
[86] |
CHEUNGE W W L, WATSON R, PAULY D. Signature of ocean warming in global fisheries catch[J]. Nature, 2013, 497:365-368.
DOI |
[87] |
ALLISON E H, PERRY A L, BADJECK M, et al. Vulnerability of national economies to the impacts of climate change on fisheries[J]. Fish and Fisheries, 2010, 10(2):173-196.
DOI URL |
[88] |
SUMAILA U R, CHEUNG W W L, LAM V W Y, et al. Climate change impacts on the biophysics and economics of world fisheries[J]. Nature Climate Change, 2011, 1(9):449-456.
DOI |
[89] |
ATKINSON A, SIEGEL V, PAKHOMOV E, et al. Long-term decline in krill stock and increase in salps within the Southern Ocean[J]. Nature, 2004, 432:100-103.
DOI |
[90] | MURPHY E J, TRATHAN P N, et al. Climatically driven fluctuations in Southern Ocean ecosystems[J]. Proceedings of the Royal Society B(Biological Sciences), 2007, 274:3057-3067. |
[91] | 王震. 基于水箱试验的南极磷虾环境耐受性研究[D]. 上海: 上海海洋大学, 2017. |
[92] |
HAWKINS S J, SOUTHWARD A J, GENNER M J. Detection of environmental change in a marine ecosystem-evidence from the western English Channel[J]. The Science of the Total Environment, 2003, 310:245-256
DOI URL |
[93] | 方精云, 唐艳鸿, 蒋高明. 全球生态学:气候变化与生态响应[M]. 北京: 高等教育出版社,施普林格出版社, 2000. |
[94] | SOUISSI S, MOLINERO J, BEAUGRAND G, et al. Major reorganisation of North Atlantic pelagic ecosystems linked to climate change[J]. GLOBEC International Newsletter, 2007(13): 23-25. |
[95] | 李君华, 李少菁, 朱小明. 海洋浮游动物多样性及其分布对全球变暖的响应[J]. 海洋湖沼通报, 2008, 30(4):137-144. |
[96] | ZHANG D J, LI S J, GUO D H. Impacts of global warming on marine zooplankton[J]. Marine Science Bulletin, 2010, 12(2):15-25. |
[97] |
KASCHNE R, KRISTI N, TITTENSO R, et al. Current and future patterns of global marine mammal biodiversity[J]. PLoS ONE, 2011, 6(5):e19653.
DOI URL |
[98] |
MARX F G, UHEN M D. Climate, critters, and cetaceans: Cenozoic drivers of the evolution of modern whales[J]. Science, 2010, 327:993-996.
DOI PMID |
[99] | KEROSKY S M, IROVI A, ROCHE L K, et al. Bryde’s whale seasonal range expansion and increasing presence in the Southern California Bight from 2000 to 2010[J]. Deep Sea Research Part I (Oceanographic Research Papers), 2012, 65:125-132. |
[100] | ELLIOTT W, SIMMONDS M P.Whales in Hot Water? The Impact of a Changing Climate on Whales, Dolphins and Porpoises: A Call for Action[M]. Gland: World Wildlife Fund International, 2007:4-5. |
[101] |
ALBOUY C, DELATTRE V, DONATI G, et al. Global vulnerability of marine mammals to global warming[J]. Scientific Reports, 2020, 10(1):548.
DOI PMID |
[102] |
KOVACS K M, LYDERSEN C. Climate change impacts on seals and whales in the North Atlantic Arctic and adjacent shelf seas[J]. Science Progress, 2008, 91(2):117-150.
DOI URL |
[1] | 王圣宜, 邹长春, 彭诚, 王红才, 陆敬安, 康冬菊, 伍操为, 蓝茜茜, 谢莹峰. 海域孔隙型储层天然气水合物赋存模式定量化表征:声波和电阻率测井的约束[J]. 现代地质, 2023, 37(01): 127-137. |
[2] | 刘洋, 陈强, 邹长春, 赵金环, 彭诚, 孙建业, 刘昌岭, 伍操为. 气体水合物生成实验过程动态监测:一种新的ERT方法及其效果分析[J]. 现代地质, 2022, 36(01): 193-201. |
[3] | 胡高伟, 吴能友, 李琦, 白辰阳, 万义钊, 黄丽, 王代刚, 李彦龙, 陈强. 海域天然气水合物试采目标优选定量评价方法初探[J]. 现代地质, 2022, 36(01): 202-211. |
[4] | 王进寿, 卢振权, 王富春, 陈静, 薛万文, 张志清. 羌塘北缘开心岭—乌丽冻土区水溶烃组分及甲烷碳、氢同位素特征研究[J]. 现代地质, 2019, 33(06): 1306-1313. |
[5] | 周亚龙, 杨志斌, 张富贵, 张舜尧, 孙忠军, 王惠艳. 祁连山天然气水合物地球化学勘查方法稳定性和异常重现性分析[J]. 现代地质, 2019, 33(06): 1314-1324. |
[6] | 范东稳, 卢振权, 肖睿, 牛索安, 祁拉加, 魏毅, 张永安, 费德亮, 党孝锋. 南祁连盆地木里坳陷石炭系—侏罗系天然气水合物潜在气源岩地质特征[J]. 现代地质, 2018, 32(05): 985-994. |
[7] | 周亚龙, 孙忠军, 杨志斌, 张富贵, 张舜尧. 祁连山木里冻土区天然气水合物矿区稀有气体氦、氖地球化学特征及其指示意义[J]. 现代地质, 2018, 32(05): 995-1002. |
[8] | 张富贵, 唐瑞玲, 杨志斌, 朱敬华, 周亚龙, 孙忠军. 漠河盆地多年冻土区天然气水合物地球化学调查及远景评价[J]. 现代地质, 2018, 32(05): 1003-1011. |
[9] | 聂云峰, 于晶, 陈宏文, 万玲, 范广慧, 房强, 吴怀春. 北极斯瓦尔巴特群岛及邻区天然气水合物分解对气候、海洋环境和生物的影响[J]. 现代地质, 2018, 32(05): 1012-1024. |
[10] | 张富贵, 王成文, 张舜尧, 周亚龙, 唐瑞玲. 热释光:一种冻土区天然气水合物地球化学勘查新技术[J]. 现代地质, 2018, 32(05): 1080-1088. |
[11] | 张舜尧, 杨帆, 张富贵, 施泽明, 杨志斌, 周亚龙, 王惠艳. 青藏高原冻土区湿地甲烷排放及同位素特征研究[J]. 现代地质, 2018, 32(05): 1089-1096. |
[12] | 万丽华, 梁徳青, 李栋梁, 关进安. 祁连山冻土区天然气水合物储层岩石热物性实验研究[J]. 现代地质, 2018, 32(02): 385-391. |
[13] | 陈敏, 邓兴波, 刘昌岭, 任宏波, 尹希杰, 李佳宣, 戚洪帅, 张爱梅. 水合物生成过程中碳同位素组成变化的实验研究[J]. 现代地质, 2018, 32(01): 205-212. |
[14] | 王超群, 丁莹莹, 胡道功, 戚帮申, 张耀玲, 陶涛, 吴环环. 祁连山冻土区DK-9孔温度监测及天然气水合物稳定带厚度[J]. 现代地质, 2017, 31(01): 158-166. |
[15] | 刘杰 ,孙美静,杨睿, 苏明, 严恒. 泥底辟输导流体机制及其与天然气水合物成藏的关系[J]. 现代地质, 2016, 30(6): 1399-1407. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||