现代地质 ›› 2018, Vol. 32 ›› Issue (05): 1012-1024.DOI: 10.19657/j.geoscience.1000-8527.2018.05.14
聂云峰1,2(), 于晶1,2, 陈宏文3, 万玲3, 范广慧3, 房强1,2, 吴怀春2(
)
收稿日期:
2018-04-21
修回日期:
2018-09-07
出版日期:
2018-10-10
发布日期:
2018-11-04
通讯作者:
吴怀春,男,教授/博导,1977年出生,海洋地质学专业,主要从事旋回地层学、海洋地质学和古地磁学的教学和科研工作。Email:whcgeo@cugb.edu.cn。
作者简介:
聂云峰,男,硕士研究生,1994年出生,海洋地质学专业,主要从事磁性地层学和环境磁学的科研工作。Email:610838038@qq.com。
基金资助:
NIE Yunfeng1,2(), YU Jing1,2, CHEN Hongwen3, WAN Ling3, FAN Guanghui3, FANG Qiang1,2, WU Huaichun2(
)
Received:
2018-04-21
Revised:
2018-09-07
Online:
2018-10-10
Published:
2018-11-04
摘要:
天然气水合物是一种潜在的巨量能源,但其分解释放的甲烷可能对全球气候与海洋环境产生巨大影响。然而,人们目前对天然气水合物分解产生的环境和生物效应的了解还不够全面。北极地区的斯瓦尔巴特群岛及邻区的海底和冻土层中蕴含大量甲烷,对气候变化十分敏感,是人们研究天然气水合物对气候变化的响应机制和其分解对生态环境影响的绝佳场所。系统总结了斯瓦尔巴特群岛及邻区水合物分解的气候与环境效应,发现目前研究区水合物分解产生的甲烷进入大气的年际通量不大,对全球气候的影响可能有限;水合物分解对海底滑坡起到催化剂的作用,但不是首要因素;海底水合物分解释放的甲烷能打破原有的化学平衡、生产力分布规律与输送机制、生物耦合关系甚至不同栖息地间的连通性,进而影响底栖生物群落。这些认识对研究天然气水合物开采对生态环境可能造成的影响和采取相应防治措施具有一定的借鉴意义。
中图分类号:
聂云峰, 于晶, 陈宏文, 万玲, 范广慧, 房强, 吴怀春. 北极斯瓦尔巴特群岛及邻区天然气水合物分解对气候、海洋环境和生物的影响[J]. 现代地质, 2018, 32(05): 1012-1024.
NIE Yunfeng, YU Jing, CHEN Hongwen, WAN Ling, FAN Guanghui, FANG Qiang, WU Huaichun. Climatic, Environmental and Biological Impacts of Gas Hydrate Decomposition in Arctic Svalbard and its Surrounding Areas[J]. Geoscience, 2018, 32(05): 1012-1024.
图3 斯图尔峡湾海槽地区冰盖演化及GHSZ变化过程(修改自Serov等[55]) GHP.水合物丘状体;GHSZ.天然气水合物稳定带;下文同
Fig.3 Evolution of ice sheet and GHSZ in Storfjordrenna (modified from Serov et al.[55])
图4 斯图尔峡湾海槽地区不同年份底层水温变化(据Serov等[55]) (a)2015年水温变化情况;(b)历史水温数据;灰色区域为满足水合物稳定的条件范围;GHP.水合物丘状体
Fig.4 Change of bottom water temperature in different years in Storfjordrenna (after Serov et al.[55])
图5 海洋沉积物和海水中的甲烷微生物汇(公式(1)、(2)分别代表AOM和MOx过程;修改自James等[27])
Fig.5 Microbial methane sink in marine sediments and seawater (modified from James et al.[27])
图7 对斯瓦尔巴特群岛西部斜坡稳定性模拟结果(据Yang等[103];红色区域表示在水合物分解作用的影响下,由地震引发的失稳区)
Fig.7 Simulation results of slope stability in the western Svalbard (after Yang et al.[103])
图8 甲烷冷泉生态系统及其生产力的输送随时间推移发生变化(修改自Levin等[111]) (a)活跃冷泉系统;(b)非活跃冷泉系统;DOC代表溶解有机碳
Fig.8 Cold seep ecosystem and the change of productivity transfer over time (modified from Levin et al.[111])
[1] |
CREMIERE A, LEPLANDA A, CHAND S, et al. Timescales of methane seepage on the Norwegian margin following collapse of the Scandinavian Ice Sheet[J]. Nature Communications, 2016, 7: 11509.
DOI PMID |
[2] | SLOAN JR E D, KOH C. Clathrate Hydrates of Natural Gases[M]. Boca Raton: CRC Press, 2007: 752. |
[3] | COLLETT T S, JOHNSON A H, KNAPP C C, et al. Natural gas hydrates:A review[M]// COLLETT T S,JOHNSON A H,KNAPP C C,et al. Natural Gas Hydrates-Energy Resource Potential and Associated Geologic Hazards. Washington: AAPG, 2009: 146-219. |
[4] |
MILKOV A V. Global estimates of hydrate-bound gas in marine sediments:How much is really out there?[J]. Earth-Science Reviews, 2004, 66: 183-197.
DOI URL |
[5] |
MESTDAGHA T, POORTB J, BATISTA M D. The sensitivity of gas hydrate reservoirs to climate change:Perspectives from a new combined model for permafrost-related and marine settings[J]. Earth-Science Reviews, 2017, 169: 104-131.
DOI URL |
[6] |
VADAKKEPULIYAMBATTA S, CHAND S, BUNZ S. The history and future trends of ocean warming-induced gas hydrate dissociation in the SW Barents Sea[J]. Geophysical Research Letters, 2017, 44: 835-844.
DOI URL |
[7] | KENNETT J P, CANNARIATO K G, HENDY I L, et al. The Clathrate Gun Hypothesis[M]// Anonymous. Methane Hydrates in Quaternary Climate Change:The Clathrate Gun Hypothesis. Washington: American Geophysical Union, 2003: 105-107. |
[8] | PORTNOV A, VADAKKEPULIYAMBATTA S, MIENERT J, et al. Ice-sheet driven methane storage and release in the Arctic[J]. Nature Communications, 2016, 7: 10-14. |
[9] |
HESTER K C, BREWERER P G. Clathrate hydrates in nature[J]. Annual Review of Marine Science, 2009, 1: 303-327.
PMID |
[10] |
REAGAN M T, MORIDIS G J. Oceanic gas hydrate instability and dissociation under climate change scenarios[J]. Geophysical Research Letters, 2007, 34: L22709.
DOI URL |
[11] |
DICKENS G R. Down the rabbit hole:Toward appropriate discussion of methane release from gas hydrate systems during the Paleocene-Eocene thermal maximum and other past hyperthermal events[J]. Climate of the Past, 2011, 7: 831-846.
DOI URL |
[12] | POHLMAN J W, GREINERT J, RUPPEL C, et al. Enhanced CO2 uptake at a shallow Arctic Ocean seep field overwhelms the positive warming potential of emitted methane[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114: 201618926. |
[13] | 陈芳, 庄畅, 周洋, 等. 南海神狐海域MIS12 期以来的碳酸盐旋回与水合物分解[J]. 现代地质, 2015, 29(1): 145-154. |
[14] |
REEBURGH W S. Oceanic methane biogeochemistry[J]. Chemical Reviews, 2007, 107: 486-513.
PMID |
[15] |
KENNEDY M, MROFKA D, BORCH C. Snowball Earth termination by destabilization of equatorial permafrost methane clathrate[J]. Nature, 2008, 453: 642-645.
DOI |
[16] |
KEMP D B, COE A L, COHEN A S, et al. Astronomical pacing of methane release in the Early Jurassic period[J]. Nature, 2005, 437: 396-399.
DOI |
[17] |
BEERLING D J, LOMAS M R, GROCKE D R. On the nature of methane gas hydrate dissociation during the Toarcian and Aptian oceanic anoxic events[J]. American Journal of Science, 2002, 302: 28-49.
DOI URL |
[18] |
HESSELBO S P, GROCKE D R, JENKYNS H C, et al. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event[J]. Nature, 2000, 406: 392-395.
DOI |
[19] |
DICKENS G R, CASTILLO M M, WALKER J C G. A blast of gas in the latest Paleocene:Simulating first-order effects of massive dissociation of oceanic methane hydrate[J]. Geology, 1997, 25: 259-262.
DOI URL |
[20] |
DICKENS G R, ONEIL J R, REA D K, et al. Dissociation of oceanic methane hydrate as a cause of the carbon-isotope excursion at the end of the Paleocene[J]. Paleoceanography, 1995, 10: 965-971.
DOI URL |
[21] | 苏明, 沙志彬, 匡增桂, 等. 海底峡谷侵蚀-沉积作用与天然气水合物成藏[J]. 现代地质, 2015, 29(1): 155-162. |
[22] |
PAULL C K, BUELOW W J, USSLER W, et al. Increased continental-margin slumping frequency during sea-level lowstands above gas hydrate-bearing sediments[J]. Geology, 1996, 24: 143-146.
DOI URL |
[23] | CRUTCHLEY G J, MOUNTJOY J J, PECHER I A, et al. Submarine slope instabilities coincident with shallow gas hydrate systems:Insights from New Zealand examples[M]// LAMARCHE G,MOUNTJOY J,BULL S,et al. Submarine Mass Movements and Their Consequences. Berlin: Springer International Publishing, 2016: 517-524. |
[24] |
SULTAN N, COCHONAT P, FOUCHER J P, et al. Effect of gas hydrates melting on seafloor slope instability[J]. Marine Geology, 2004, 213: 379-401.
DOI URL |
[25] |
ÅSTRÖM E K L, CARROLL M L, AMBROSE J R W G, et al. Arctic cold seeps in marine methane hydrate environments:impacts on shelf microbenthic community structure offshore Svalbard[J]. Marine Ecology Progress Series, 2016, 552: 1-18.
DOI URL |
[26] |
ARCHER D, BUFFETT B, BROVKIN V. Ocean methane hydrates as a slow tipping point in the global carbon cycle[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106: 20596-20601.
DOI PMID |
[27] |
JAMES R H, BOUSQUET P, BUSSMANN I, et al. Effects of climate change on methane emissions from seafloor sediments in the Arctic Ocean:A review[J]. Limnology and Oceanography, 2016, 61: S283-S299.
DOI URL |
[28] | BIASTOCH A, TREUDE T, RÜPKE L H, et al. Rising Arctic Ocean temperatures cause gas hydrate destabilization and ocean acidification[J]. Geophysical Research Letters, 2011, 38(8): L08602. |
[29] |
HUNTER S J, GOLDOBIN D S, HAYWOOD A M, et al. Sensitivity of the global submarine hydrate inventory to scenarios of future climate change[J]. Earth and Planetary Science Letters, 2013, 367: 105-115.
DOI URL |
[30] |
KRETSCHMER K, BIASTOCH A, RUPKE, et al. Modeling the fate of methane hydrates under global warming[J]. Global Biogeochemical Cycles, 2015, 29: 610-625.
DOI URL |
[31] |
KVENVOLDEN K A. Methane hydrate-a major reservoir of carbon in the shallow geosphere[J]. Chemical Geology, 1988, 71: 41-51.
DOI URL |
[32] |
MCGUIRE A D, ANDERSON L G, CHRISTENSEN T R, et al. Sensitivity of the carbon cycle in the Arctic to climate change[J]. Ecological Monographs, 2009, 79: 523-555.
DOI URL |
[33] |
SHAKHOVA N, SEMILETOV I, SALYUK A, et al. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf[J]. Science, 2010, 327: 1246-1250.
DOI PMID |
[34] |
SCHUUR E A, MCGUIRE A D, SCHÃDEL C, et al. Climate change and the permafrost carbon feedback[J]. Nature, 2015, 520: 171-179.
DOI |
[35] | CIAIS P, SABINE C, BALA G, et al. Carbon and other biogeochemical cycles[M]// IPCC. Climate Change 2013: The Physical Science Basis. London: Cambridge University Press, 2013: 465-570. |
[36] | RUPPEL C. Methane hydrates and contemporary climate change[J]. Nature Education Knowledge, 2011, 3: 29. |
[37] |
PANIERI G, GRAVES C A, JAMES R H. Paleo-methane emissions recorded in foraminifera near the landward limit of the gas hydrate stability zone offshore western Svalbard[J]. Geochemistry,Geophysics,Geosystems, 2016, 17: 521-537.
DOI URL |
[38] | WESTBROOK G K, THATCHER K E, ROHLING E J. Escape of methane gas from the seabed along the West Spitsbergen continental margin[J]. Geophysical Research Letters, 2009, 36: L15608. |
[39] |
BERNDT C, FESEKER T, TREUDE T. Temporal constraints on hydrate-controlled methane seepage off Svalbard[J]. Science, 2014, 343: 284-287.
DOI PMID |
[40] |
HAUTALA S L, SOLOMON E A, JOHNSON H P, et al. Dissociation of Cascadia margin gas hydrates in response to contemporary ocean warming[J]. Geophysical Research Letters, 2014, 41: 8486-8494.
DOI URL |
[41] |
SKARKE A, RUPPEL C, KODIS M, et al. Widespread methane leakage from the sea floor on the northern US Atlantic margin[J]. Nature Geoscience, 2014, 7: 657-661.
DOI |
[42] |
SHAKHOVA N, SEMILETOV I, LEIFER I. Ebullition and storm-induced methane release from the East Siberian Arctic Shelf[J]. Nature Geoscience, 2013, 7: 64-70.
DOI |
[43] |
REAGAN M T, MORIDIS G J. Large-scale simulation of methane hydrate dissociation along the West Spitsbergen Margin[J]. Geophysical Research Letters, 2009, 36: L23612.
DOI URL |
[44] | FERRE B, MIENERT J, FESEKER T. Ocean temperature variability for the past 60 years on the Norwegian-Svalbard margin influences gas hydrate stability on human time scales[J]. Journal of Geophysical Research, 2012, 117: C10017. |
[45] | SARKAR S, BERNDT C, MINSHULL T A, et al. Seismic evidence for shallow gas-escape features associated with a retreating gas hydrate zone offshore west Svalbard[J]. Journal of Geophysical Research, 2012, 117: B09102. |
[46] |
WALCZOWSKI W, PIECHURA J. New evidence of warming propagating toward the Arctic Ocean[J]. Geophysical Research Letters, 2006, 33: L12601.
DOI URL |
[47] |
DOWDESWELL J A, HOGAN K, EVANS J, et al. Past ice-sheet flow east of Svalbard inferred from streamlined subglacial landforms[J]. Geology, 2010, 38: 163-166.
DOI URL |
[48] |
MATTINGSDAL R, KNIES J, ANDREASSEN K, et al. A new 6 Myr stratigraphic framework for the Atlantic-Arctic gateway[J]. Quaternary Science Reviews, 2014, 92: 170-178.
DOI URL |
[49] | ANDREASSEN K, WINSBORROW M. Signature of ice streaming in Bjørnøyrenna,Polar North Atlantic,through the Pleistocene and implications for ice-stream dynamics[J]. Annals of Glaciology, 2009, 50: 17-26. |
[50] |
PATTON H, ANDREASSEN K, BJARNADÓTTIR L R, et al. Geophysical constraints on the dynamics and retreat of the Barents Sea ice sheet as a paleo-benchmark for models of marine ice sheet deglaciation[J]. Reviews of Geophysics, 2015, 53: 1051-1098.
DOI URL |
[51] |
SAHLING H, RÖMER M, PAOE T, et al. Gas emissions at the continental margin west of Svalbard:Mapping,sampling,and quantification[J]. Biogeosciences, 2014, 11: 6029-6046.
DOI URL |
[52] |
MYHRE C L. Extensive release of methane from Arctic seabed west of Svalbard during summer 2014 does not influence the atmosphere[J]. Geophysical Research Letters, 2016, 43: 4624-4631.
DOI URL |
[53] |
AURIAC A, WHITEHOUSE P L, BENTLEY M J, et al. Glacial isostatic adjustment associated with the Barents Sea ice sheet:A modelling inter-comparison[J]. Quaternary Science Reviews, 2016, 147: 122-135.
DOI URL |
[54] |
PATTON H, HUBBARD A, ANDREASSEN K, et al. The buildup,configuration,and dynamical sensitivity of the Eurasian ice-sheet complex to Late Weichselian climatic and oceanic forcing[J]. Quaternary Science Reviews, 2016, 153: 97-121.
DOI URL |
[55] |
SEROV P, VADAKKEPULIYAMBATTA S, MIENERT J, et al. Postglacial response of Arctic Ocean gas hydrates to climatic amelioration[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(24): 6215.
DOI PMID |
[56] |
JESSEN S P, RASMUSSEN T L, NIELSEN T, et al. A new Late Weichselian and Holocene marine chronology for the western Svalbard slope 30,0000 cal years BP[J]. Quaternary Science Reviews, 2010, 29: 1301-1312.
DOI URL |
[57] |
LUCCHI R G, CAMERLENGHI A, REBESCO M, et al. Postglacial sedimentary processes on the Storfjorden and Kveithola trough mouth fans:Significance of extreme glacimarine sedimentation[J]. Global and Planet Change, 2013, 111: 309-326.
DOI URL |
[58] |
RASMUSSEN T L, THOMSEN E. Palaeoceanographic development in Storfjorden,Svalbard,during the deglaciation and Holocene:evidence from benthic foraminiferal records[J]. Boreas, 2015, 44: 24-44.
DOI URL |
[59] |
RASMUSSEN T L, ERIK T, MARTA A Å, et al. Paleoceanographic evolution of the SW Svalbard margin (76°N) since 20,000 14C yr BP[J]. Quaternary Research, 2007, 67: 100-114.
DOI URL |
[60] |
BARRY M A, BOUDREAU B P, JOHNSON B D. Gas domes in soft cohesive sediments[J]. Geology, 2012, 40: 379-382.
DOI URL |
[61] |
KOCH S, BERNDT C, BIALAS J, et al. Gas-controlled seafloor doming[J]. Geology, 2015, 43: 571-574.
DOI URL |
[62] |
MOROS M, JENSEN K G, KUIJPERS A. Mid-to late-Holocene hydrological and climatic variability in Disko Bugt,central West Greenland[J]. Holocene, 2006, 16: 357-367.
DOI URL |
[63] |
SMITH L M, SACHS J P, JENNINGS A E, et al. Light δ13C events during deglaciation of the East Greenland Continental Shelf attributed to methane release from gas hydrates[J]. Geophysical Research Letters, 2001, 28: 2217-2220.
DOI URL |
[64] |
PAULL C K, USSLER W, DILLON W P. Is the extent of glaciation limited by marine gas-hydrates?[J] Geophysical Research Letters, 1991, 18: 432-434.
DOI URL |
[65] |
SPIELHAGEN R F, WERNER K, SØRENSEN S A, et al. Enhanced modern heat transfer to the Arctic by warm Atlantic Water[J]. Science, 2011, 331: 450-453.
DOI PMID |
[66] |
WALCZOWSKI W. Frontal structures in the West Spitsbergen Current margins[J]. Ocean Science, 2013, 9: 957-975.
DOI URL |
[67] | BOSWELL R, COLLETT T S. Current perspectives on gas hydrate resources[J]. Energy & Environmental Science, 2011, 4: 1206-1215. |
[68] | JOHNSON A. Global resource potential of gas hydrate-A new calculation[J]. National Energy Technology Laboratory, 2011, 11: 1-4. |
[69] |
PIÑERO E, MARQUARDT M, HENSEN C, et al. Estimation of the global inventory of methane hydrates in marine sediments using transfer functions[J]. Biogeosciences, 2013, 10: 959-975.
DOI URL |
[70] |
RUPPEL C D, KESSLER J D. The interaction of climate change and methane hydrates[J]. Reviews of Geophysics, 2017, 55: 126-168.
DOI URL |
[71] | PISSO I, MYHRE C L, PLATT S M, et al. Constraints on oceanic methane emissions west of Svalbard from atmospheric in situ measurements and Lagrangian transport modeling[J]. Journal of Geophysical Research:Atmospheres, 2016, 121: 14188-14200. |
[72] | FISHER R E, SRISKANTHARAJAH S, LOWRY D, et al. Arctic methane sources:Isotopic evidence for atmospheric inputs[J]. Geophysical Research Letters, 2011, 38: L21803. |
[73] |
GENTZ T, DAMM E, DEIMLING J S S, et al. A water column study of methane around gas flares located at the West Spitsbergen continental margin[J]. Continental Shelf Research, 2014, 72: 107-118.
DOI URL |
[74] |
MAU S, RÖMER M, TORRES M E, et al. Widespread methane seepage along the continental margin off Svalbard-from Bjørnøya to Kongsfjorden[J]. Scientific Reports, 2017, 7: 42997.
DOI |
[75] |
KNITTEL K, BOETIUS A. Anaerobic oxidation of methane:Progress with an unknown process[J]. Annual Review of Microbiology, 2009, 63: 311-334.
DOI URL |
[76] |
MARTENS C S, BERNER R A. Methane production in interstitial waters of sulfate-depleted marine sediments[J]. Science, 1974, 185: 1167-1169.
DOI URL |
[77] |
ZEHNDER A J B, BROCK T D. Anaerobic methane oxidation:Occurrence and ecology[J]. Applied and Environmental Microbiology, 1980, 39: 194-204.
DOI URL |
[78] | HINRICHS K U, BOETIUS A. The anaerobic oxidation of methane:New insights in microbial ecology and biogeochemistry[M]// WEFER G. Ocean Margin Systems. Berlin: Springer, 2003: 457-477. |
[79] | MALINVERNO A, POHLMAN J W. Modeling sulfate reduction in methane hydrate-bearing continental margin sediments:Does a sulfate-methane transition require anaerobic oxidation of methane?[J]. Geochemistry, Geophysics, Geosystems, 2011, 12: Q07006. |
[80] |
BOETIUS A, RAVENSCHLAG K, SCHUBERT C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature, 2000, 407: 623-626.
DOI |
[81] | MAU S, VALENTINE D L, CLARK J F, et al. Dissolved methane distributions and air-sea flux in the plume of a massive seep field,Coal Oil Point,California[J]. Geophysical Research Letters, 2007, 34: 60-64. |
[82] |
MEDINA M C, MEILE C D, HUNTER K S, et al. The rise and fall of methanotrophy following a deepwater oil-well blowout[J]. Nature Geoscience, 2014, 7: 423-427.
DOI |
[83] |
PACK M A, HEINTZ M B, REEBURGH W S, et al. Methane oxidation in the eastern tropical North Pacific Ocean water column[J]. Journal of Geophysical Research:Biogeosciences, 2015, 120: 1078-1092.
DOI URL |
[84] | WÅHLSTRÖM I, MEIER H E M. A model sensitivity study for the sea-air exchange of methane in the Laptev Sea,Arctic Ocean[J]. Chemical and Physical Meteorology, 2014, 66: 24174. |
[85] |
RUDELS B, LARSSON A M, SEHLSTEDT P L. Stratification and water mass formation in the Arctic Ocean:Some implications for the nutrient distribution[J]. Polar Research, 1991, 10: 19-32.
DOI URL |
[86] | REHDER G, COLLIER R W, HEESCHEN K, et al. Enhanced marine CH4 emissions to the atmosphere off Oregon caused by coastal upwelling[J]. Global Biogeochemical Cycles, 2002, 16: GB001391. |
[87] | MCCLELLAND J W, DERY S J, PETERSON B J, et al. A pan-Arctic evaluation of changes in river discharge during the latter half of the 20th century[J]. Geophysical Research Letters, 2006, 33: L06715. |
[88] | CAPOTONDI A, ALEXANDER M A, BOND N A, et al. Enhanced upper ocean stratification with climate change in the CMIP3 models[J]. Journal of Geophysical Research:Oceans, 2012, 117: C04031. |
[89] | NUMMELIN A, LI C, SMEDSRUD L H. Response of Arctic Ocean stratification to changing river runoff in a column model[J]. Journal of Geophysical Research, 2015, 120: 2655-2675. |
[90] |
LOOSE B, MCGILLIS W R, PEROVICH D, et al. A parameter model of gas exchange for the seasonal sea ice zone[J]. Ocean Science, 2014, 10: 17-28.
DOI URL |
[91] |
KITIDIS V, UPSTILL-GODDARD R C, ANDERSON L G. Methane and nitrous oxide in surface water along the North-West Passage Arctic Ocean[J]. Marine Chemistry, 2010, 121: 80-86.
DOI URL |
[92] |
HE X, SUN L, XIE Z, et al. Sea ice in the Arctic Ocean:Role of shielding and consumption of methane[J]. Atmospheric Environment, 2013, 67: 8-13.
DOI URL |
[93] | LONG Z, PERRIE W. Air-sea interactions during an Arctic storm[J]. Journal of Geophysical Research, 2012, 117: D15103. |
[94] |
ZHANG J, LINDSAY R, SCHWEIGER A, et al. The impact of an intense summer cyclone on 2012 Arctic sea ice retreat[J]. Geophysical Research Letters, 2013, 40: 720-726.
DOI URL |
[95] |
THOMSON J, ROGERS W E. Swell and sea in the emerging Arctic Ocean[J]. Geophysical Research Letters, 2014, 41: 3136-3140.
DOI URL |
[96] |
MASLIN M, OWEN M, DAY S, et al. Linking continental-slope failures and climate change:Testing the clathrate gun hypothesis[J]. Geology, 2004, 32: 53-56.
DOI URL |
[97] | LEE J, SANTAMARINA J C, RUPPEL C. Volume change associated with formation and dissociation of hydrate in sediment[J]. Geochemistry, Geophysics, Geosystems, 2010, 11: Q03007. |
[98] | SULTAN N, MARSSET B, KER S, et al. Hydrate dissolution as a potential mechanism for pockmark formation in the Niger delta[J]. Journal of Geophysical Research:Solid Earth, 2010, 115: 4881-4892. |
[99] |
SIMMONS C T, FENSTEMAKER T R, SHARP J M. Variable-density groundwater flow and solute transport in heterogeneous porous media:Approaches,resolutions and future challenges[J]. Journal of Contaminant Hydrology, 2001, 52: 245-275.
DOI URL |
[100] | WAITE W F, SANTAMARINA J C, CORTES D D, et al. Physical properties of hydrate-bearing sediments[J]. Reviews of Geophysics, 2009, 47: 465-484. |
[101] |
HANDWERGER A L, REMPEL A W, SKARBEK R M. Submarine landslides triggered by destabilization of high-saturation hydrate anomalies[J]. Geochemistry, Geophysics, Geosystems, 2017, 18: 2429-2445.
DOI URL |
[102] |
VANNESTE M, MIENERT J, BÜNZ S. The Hinlopen slide:A giant,submarine slope failure on the northern Svalbard margin,Arctic Ocean[J]. Earth and Planetary Science Letters, 2006, 245: 373-388.
DOI URL |
[103] |
YANG S L, CHOI J C, VANNESTE M, et al. Effects of gas hydrates dissociation on clays and submarine slope stability[J]. Bulletin of Engineering Geology and the Environment, 2017, 76: 1-12.
DOI URL |
[104] |
BOETIUS A, SUESS E. Hydrate ridge:a natural laboratory for the study of microbial life fueled by methane from near-surface gas hydrates[J]. Chemical Geology, 2004, 205: 291-310.
DOI URL |
[105] |
LÖSEKANN T, KNITTEL K, NADALIG T, et al. Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano,Barents Sea[J]. Applied and Environmental Microbiology, 2007, 73: 3348-3362.
DOI URL |
[106] |
BOWDEN D A, ROWDEN A A, THURBER A R, et al. Cold seep epifaunal communities on the Hikurangi Margin,New Zealand:composition,succession,and vulnerability to human activities[J]. Plos One, 2013, 8: e76869.
DOI URL |
[107] |
CORDES E E, CUNHA M R, GALERON J, et al. The influence of geological,geochemical,and biogenic abitat heterogeneity on seep biodiversity[J]. Marine Ecology, 2010, 31: 51-65.
DOI URL |
[108] |
QUATTRINI A M, NIZINSKI M S, CHAYTOR J D, et al. Exploration of the canyon-incised continental margin of the northeastern United States reveals dynamic habitats and diverse communities[J]. Plos One, 2015, 10: e0139904.
DOI URL |
[109] |
LEVIN L A, MENDOZA G F, GRUPE B M, et al. Biodiversity on the Rocks:macrofaunal inhabiting authigenic carbonate at Costa Rica methane seeps[J]. Plos One, 2015, 10: e0136129.
DOI URL |
[110] | VANREUSEL A, ANDERSEN A C, BOETIUS A, et al. Biodiversity of cold seep ecosystems along the European margins[J]. Oceanography, 2009, 22: 110-127. |
[111] | LEVIN L A, BACO A R, BOWDEN D A, et al. Hydrothermal vents and methane seeps:rethinking the sphere of influence[J]. Frontiers in Marine Science, 2016, 3: 72. |
[112] | LEVY E M, LEE K. Potential contribution of natural hydrocarbon seepage to benthic productivity and the fisheries of Atlantic Canada[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1988, 35: 349-352. |
[113] | DANDO P R. Biological communities at marine shallow water vent and seep sites[M]// STEFFEN K. The Vent and Seep Biota. Dordrecht: Springer, 2010: 333-378. |
[114] |
SAHLING H, GALKIN S V, SALYUK A, et al. Depth-related structure and ecological significance of cold-seep communities-a case study from the Sea of Okhotsk[J]. Deep Sea Research Part I, 2003, 50: 1391-1409.
DOI URL |
[115] | LEVIN L. Ecology of cold seep sediments:interactions of fauna with flow,chemistry and microbes[J]. Oceanography and Marine Biology: An Annual Review, 2005, 43: 1-46. |
[116] |
RENAUD P E, MORATA N, CARROLL M L, et al. Pelagic-benthic coupling in the western Barents Sea:processes and time scales[J]. Deep Sea Research Part II, 2008, 55: 2372-2380.
DOI URL |
[117] |
BERGE J, JOHNSEN G, NILSEN F, et al. Ocean temperature oscillations enable reappearance of blue mussels Mytilus edulis in Svalbard after a 1000 year absence[J]. Marine Ecology Progress Series, 2005, 303: 167-175.
DOI URL |
[118] |
BERGE J, RENAUD P E, DARNIS G, et al. In the dark:a review of ecosystem processes during the Arctic polar night[J]. Progress in Oceanography, 2015, 139: 258-271.
DOI URL |
[119] | GRAVES C A, STEINLE L, REHDER G, et al. Fluxes and fate of dissolved methane released at the seafloor at the landward limit of the gas hydrate stability zone offshore western Svalbard[J]. Journal of Geophysical Research, 2015, 120: 6185-6201. |
[1] | 刘一林, 李灿苹, 勾丽敏, 汪洪涛, 曾宪军, 陈凤英, 郭子豪, 田鑫裕. 冷泉羽状流地震波场频谱特征与气含量关系研究[J]. 现代地质, 2022, 36(01): 172-181. |
[2] | 滕田田, 苏新, 刘浩东, 崔鸿鹏, 陈芳, 程思海, 杨胜雄, 王宏斌, 梁金强, 苏丕波. 南海东沙深海冷泉区973-5重力柱沉积物古菌多样性[J]. 现代地质, 2020, 34(01): 104-116. |
[3] | 张舜尧, 杨帆, 张富贵, 施泽明, 杨志斌, 周亚龙, 王惠艳. 青藏高原冻土区湿地甲烷排放及同位素特征研究[J]. 现代地质, 2018, 32(05): 1089-1096. |
[4] | 袁建飞, 邓国仕, 徐芬, 唐业旗, 李鹏岳. 川西南喜德热田地下水水文地球化学特征[J]. 现代地质, 2017, 31(01): 200-208. |
[5] | 王淑红, 颜文, 陈忠. 海底冷泉系统中的钙同位素示踪研究进展[J]. 现代地质, 2010, 24(3): 589-597. |
[6] | 黄华谷, 邸鹏飞, 陈莹莹, 冯东, 陈多福. 意大利亚平宁地区第三纪中新世“Calcari a Lucina”冷泉碳酸盐岩中结晶扇的沉积岩石学及地球化学特征[J]. 现代地质, 2010, 24(3): 545-551. |
[7] | 栾锡武, 刘鸿, 岳保静. 海底冷泉在旁扫声纳图像上的识别[J]. 现代地质, 2010, 24(3): 474-480. |
[8] | 柳长峰,张浩然,於炀森,周志广,刘文灿,张华锋. 内蒙古中部四子王旗地区北极各岩体锆石定年及其岩石化学特征[J]. 现代地质, 2010, 24(1): 112-119. |
[9] | 苏新,陈芳,陆红锋,黄永样. 南海北部深海甲烷冷泉自生碳酸盐岩显微结构特征与流体活动关系初探[J]. 现代地质, 2008, 22(3): 376-381. |
[10] | 陈忠,杨华平,黄奇瑜,颜文,陆钧. 南海东沙西南海域冷泉碳酸盐岩特征及其意义[J]. 现代地质, 2008, 22(3): 382-389. |
[11] | 冯东, 陈多福. 黑海西北部冷泉碳酸盐岩的沉积岩石学特征及氧化还原条件的稀土元素地球化学示踪[J]. 现代地质, 2008, 22(3): 390-396. |
[12] | 苏新, 陈芳,魏士平,张勇,程思海等. 南海北部冷泉区沉积物中微生物丰度与甲烷浓度变化关系的初步研究[J]. 现代地质, 2007, 21(1): 101-104. |
[13] | 冯东. 陈多福. 苏正. 刘芊.. 海底天然气渗漏系统微生物作用及冷泉碳酸盐岩的特征[J]. 现代地质, 2005, 19(1): 26-32. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||