现代地质 ›› 2017, Vol. 31 ›› Issue (03): 545-554.
收稿日期:
2016-11-18
修回日期:
2017-01-20
出版日期:
2017-06-10
发布日期:
2017-06-27
作者简介:
安永龙,男,助理工程师,1988年出生,地质工程专业,主要从事地质学、地球化学相关研究。Email:aylzfj@163.com。
基金资助:
AN Yonglong(), HUANG Yong, SUN Zhao, DENG Kaiwen, LI Di, HUANG Dan
Received:
2016-11-18
Revised:
2017-01-20
Online:
2017-06-10
Published:
2017-06-27
摘要:
选取北京通州环球影城附近某改造区为研究区域,共采集15件表层土壤样品,主要分析了该地区土壤中DDTs和HCHs的空间分布地球化学特征;采集垂向样品,并分析了DDTs和HCHs在土壤垂向剖面中的分布情况。表层土壤样品中大部分的DDTs和HCHs有检出,ΣDDTs的残留量为4.94~196.15 μg·kg-1,ΣHCHs为0.82~10.21 μg·kg-1。土壤垂向剖面分析结果表明,DDTs部分有检出,两剖面中残留量整体随深度变化不明显,但局部出现突变现象;HCHs全部检出,两剖面中残留量整体随着深度增加不断减少。参照国家相关标准对该区土壤环境整体进行评价,初步分析通州区环球影城地区土壤中残留DDTs除个别点符合二级标准外,其余都处于一级标准,残留风险较低;土壤中残留HCHs基本符合一级标准。结合不同异构体之间含量特征及分布,认为该地区局部近期可能存在HCHs输入现象。最后,对该改造区进行了健康风险评价,结果表明该区DDTs和HCHs在致癌风险和部分非致癌风险方面影响较小。
中图分类号:
安永龙, 黄勇, 孙朝, 邓凯文, 李迪, 黄丹. 北京通州某改造区土壤中DDTs和HCHs的地球化学特征及风险评价[J]. 现代地质, 2017, 31(03): 545-554.
AN Yonglong, HUANG Yong, SUN Zhao, DENG Kaiwen, LI Di, HUANG Dan. Geochemistry and Risk Assessment of DDTs and HCHs in Soil from a Renewal Area in the Tongzhou District of Beijing[J]. Geoscience, 2017, 31(03): 545-554.
p,p'-DDE | p,p'-DDD | o,p'-DDT | p,p'-DDT | ΣDDTs | |
---|---|---|---|---|---|
检出率/% | 100 | 100 | 100 | 86.67 | 100 |
标准差 | 44.13 | 1.14 | 0.83 | 5.41 | 51.51 |
最小值 | 4.62 | 0.01 | 0.14 | 0.17 | 4.94 |
最大值 | 171.00 | 4.34 | 3.61 | 17.20 | 196.15 |
平均值 | 26.59 | 1.08 | 0.89 | 5.04 | 33.60 |
百分比/% | 79.14 | 3.21 | 2.65 | 15.00 | 100 |
表1 表层土壤中DDT及代谢产物的含量(干重,wB/(μg·kg-1))
Table 1 Concentrations of DDT and its metabolites in the topsoil samples(μg·kg-1)
p,p'-DDE | p,p'-DDD | o,p'-DDT | p,p'-DDT | ΣDDTs | |
---|---|---|---|---|---|
检出率/% | 100 | 100 | 100 | 86.67 | 100 |
标准差 | 44.13 | 1.14 | 0.83 | 5.41 | 51.51 |
最小值 | 4.62 | 0.01 | 0.14 | 0.17 | 4.94 |
最大值 | 171.00 | 4.34 | 3.61 | 17.20 | 196.15 |
平均值 | 26.59 | 1.08 | 0.89 | 5.04 | 33.60 |
百分比/% | 79.14 | 3.21 | 2.65 | 15.00 | 100 |
α-HCH | β-HCH | γ-HCH | δ-HCH | ΣHCHs | |
---|---|---|---|---|---|
检出率/% | 100 | 100 | 100 | 93.33 | 100 |
标准差 | 0.15 | 0.93 | 1.11 | 0.44 | 2.63 |
最小值 | 0.03 | 0.24 | 0.53 | 0.02 | 0.82 |
最大值 | 0.49 | 3.23 | 4.82 | 1.67 | 10.21 |
平均值 | 0.27 | 1.10 | 1.74 | 0.33 | 3.44 |
百分比/% | 7.85 | 31.98 | 50.58 | 9.59 | 100 |
表2 表层土壤中HCH及异构体的含量(干重,wB/(μg·kg-1))
Table 2 Concentrations of HCH and its isomers in the topsoil samples
α-HCH | β-HCH | γ-HCH | δ-HCH | ΣHCHs | |
---|---|---|---|---|---|
检出率/% | 100 | 100 | 100 | 93.33 | 100 |
标准差 | 0.15 | 0.93 | 1.11 | 0.44 | 2.63 |
最小值 | 0.03 | 0.24 | 0.53 | 0.02 | 0.82 |
最大值 | 0.49 | 3.23 | 4.82 | 1.67 | 10.21 |
平均值 | 0.27 | 1.10 | 1.74 | 0.33 | 3.44 |
百分比/% | 7.85 | 31.98 | 50.58 | 9.59 | 100 |
地区 | 采样时间 | DDTs | HCHs | 参考文献 | ||||
---|---|---|---|---|---|---|---|---|
范围 | 平均值 | 检出率 | 范围 | 平均值 | 检出率 | |||
湖北武汉 | 2010 | ND-6.53 | 2.74 | - | 0.20~5.48 | 0.94 | - | [ |
新疆 | 2010 | 0.91~858.47 | 95.11 | 100 | 0.37~22.82 | 5.94 | 100 | [ |
乌鲁木齐 | 2011 | ND-40.03 | 18.51 | - | ND-30.86 | 14.37 | - | [ |
山东烟台 | 2011 | 10~2 660 | 160 | 33.82 | 26~561 | 165 | 1.96 | [ |
贵州草海 | 2012 | 0.08~39.77 | 3.89 | 100 | 0.06~16.66 | 1.74 | 100 | [ |
山东临沂 | 2012 | ND-0.32 | 0.04 | 71.56 | - | - | - | [ |
湖北黄石 | 2012 | 0.20~5.91 | 2.61 | - | 0.73~11.30 | 2.46 | - | [ |
西藏林芝 | 2012 | 0.70~43.90 | 9.87 | - | 0.37~2.07 | 1.15 | - | [ |
甘肃武威 | 2013 | ND | - | 0.00 | ND-0.62 | 0.32 | 72.70 | [ |
沈阳 | 2013 | ND-14.86 | 3.35 | 85.70 | ND-37.3 | 6.30 | 76.20 | [ |
湖北宜昌 | 2013 | 0.01~0.33 | 0.07 | 100 | 0.005~0.02 | 0.01 | 100 | [ |
湖北襄阳 | 2013 | 0.01~0.25 | 0.08 | 100 | 0.005~0.03 | 0.01 | 100 | [ |
本文研究区 | 2013 | 4.94~196.15 | 33.6 | 100 | 0.82~10.21 | 3.44 | 100 |
表3 不同地区土壤中HCHs和DDTs的含量(wB/(μg·kg-1))
Table 3 Comparison of HCHs and DDTs concentrations in soils from different areas(μg·kg-1)
地区 | 采样时间 | DDTs | HCHs | 参考文献 | ||||
---|---|---|---|---|---|---|---|---|
范围 | 平均值 | 检出率 | 范围 | 平均值 | 检出率 | |||
湖北武汉 | 2010 | ND-6.53 | 2.74 | - | 0.20~5.48 | 0.94 | - | [ |
新疆 | 2010 | 0.91~858.47 | 95.11 | 100 | 0.37~22.82 | 5.94 | 100 | [ |
乌鲁木齐 | 2011 | ND-40.03 | 18.51 | - | ND-30.86 | 14.37 | - | [ |
山东烟台 | 2011 | 10~2 660 | 160 | 33.82 | 26~561 | 165 | 1.96 | [ |
贵州草海 | 2012 | 0.08~39.77 | 3.89 | 100 | 0.06~16.66 | 1.74 | 100 | [ |
山东临沂 | 2012 | ND-0.32 | 0.04 | 71.56 | - | - | - | [ |
湖北黄石 | 2012 | 0.20~5.91 | 2.61 | - | 0.73~11.30 | 2.46 | - | [ |
西藏林芝 | 2012 | 0.70~43.90 | 9.87 | - | 0.37~2.07 | 1.15 | - | [ |
甘肃武威 | 2013 | ND | - | 0.00 | ND-0.62 | 0.32 | 72.70 | [ |
沈阳 | 2013 | ND-14.86 | 3.35 | 85.70 | ND-37.3 | 6.30 | 76.20 | [ |
湖北宜昌 | 2013 | 0.01~0.33 | 0.07 | 100 | 0.005~0.02 | 0.01 | 100 | [ |
湖北襄阳 | 2013 | 0.01~0.25 | 0.08 | 100 | 0.005~0.03 | 0.01 | 100 | [ |
本文研究区 | 2013 | 4.94~196.15 | 33.6 | 100 | 0.82~10.21 | 3.44 | 100 |
污染物类别 | 经口摄入 | 皮肤接触 | 呼吸摄入 | 总值 | |||
---|---|---|---|---|---|---|---|
风险值 | 贡献率/% | 风险值 | 贡献率/% | 风险值 | 贡献率/% | 风险值 | |
DDE | 1.42×108 | 77.53 | 4.03×109 | 22.05 | 7.59×1011 | 0.42 | 1.83×108 |
DDD | 4.06×1010 | 91.69 | 1.15×1010 | 7.82 | 2.19×1012 | 0.49 | 5.23×1010 |
DDT | 2.87×1010 | 77.53 | 2.45×1011 | 22.05 | 1.54×1012 | 0.42 | 3.13×1010 |
α-HCH | 2.62×109 | 74.64 | 7.45×1010 | 21.23 | 1.41×1011 | 4.13 | 3.38×109 |
β-HCH | 3.12×109 | 85.71 | 8.87×1010 | 9.75 | 1.72×1010 | 4.54 | 4.18×109 |
γ-HCH | 2.99×109 | 72.86 | 3.4×1010 | 26.94 | 1.58×1010 | 0.21 | 3.49×109 |
表4 致癌风险Risk计算结果(95%置信上限值计算)
Table 4 Results of cancer risk(95% confidence upper limit calculated)
污染物类别 | 经口摄入 | 皮肤接触 | 呼吸摄入 | 总值 | |||
---|---|---|---|---|---|---|---|
风险值 | 贡献率/% | 风险值 | 贡献率/% | 风险值 | 贡献率/% | 风险值 | |
DDE | 1.42×108 | 77.53 | 4.03×109 | 22.05 | 7.59×1011 | 0.42 | 1.83×108 |
DDD | 4.06×1010 | 91.69 | 1.15×1010 | 7.82 | 2.19×1012 | 0.49 | 5.23×1010 |
DDT | 2.87×1010 | 77.53 | 2.45×1011 | 22.05 | 1.54×1012 | 0.42 | 3.13×1010 |
α-HCH | 2.62×109 | 74.64 | 7.45×1010 | 21.23 | 1.41×1011 | 4.13 | 3.38×109 |
β-HCH | 3.12×109 | 85.71 | 8.87×1010 | 9.75 | 1.72×1010 | 4.54 | 4.18×109 |
γ-HCH | 2.99×109 | 72.86 | 3.4×1010 | 26.94 | 1.58×1010 | 0.21 | 3.49×109 |
污染物类别 | 经口摄入危害商 | 皮肤接触危害商 | 总和 |
---|---|---|---|
DDT | 6.50×10-5 | 2.07×10-5 | 8.57×10-5 |
α-HCH | 2.00×10-6 | 6.36×10-7 | 2.64×10-6 |
γ-HCH | 3.49×10-4 | 1.11×10-4 | 4.60×10-4 |
表5 非致癌风险HQ计算结果(95%置信上限值计算)
Table 5 Results of non-cancer risk HQ(95% confidenceupper limit calculated)
污染物类别 | 经口摄入危害商 | 皮肤接触危害商 | 总和 |
---|---|---|---|
DDT | 6.50×10-5 | 2.07×10-5 | 8.57×10-5 |
α-HCH | 2.00×10-6 | 6.36×10-7 | 2.64×10-6 |
γ-HCH | 3.49×10-4 | 1.11×10-4 | 4.60×10-4 |
[1] |
LI Y F. Global technical hexachlorocyclohexane usage and its contamination consequences in the environment:from 1948 to 1997[J]. Science of the Total Environment, 1999, 232 (3):121-158.
DOI URL |
[2] |
VOLDNER E C, LI Y F. Global usage of selected persistent organochlorines[J]. Science of the Total Environment, 1995, 160/161:201-210.
DOI URL |
[3] | 华小梅, 单正军. 我国农药的生产,使用状况及其污染环境因子分析[J]. 环境科学进展, 1996, 4(2):33-45. |
[4] |
MISHRA K, RAMESH C S, SUDHIR K. Contamination levels and spatial distribution of organochlorine pesticides in soils from India[J]. Ecotoxicology and Environmental Safety, 2012, 76(2):215-225.
DOI PMID |
[5] |
VIJGEN J, ABHILASH P C, LI Y F, et al. Hexachlorocyclohexane(HCH) as new stockholm convention POPs—A global perspective on the management of lindane and its waste isomers[J]. Environmental Science and Pollution Research, 2011, 18(2):152-162.
DOI URL |
[6] | HERMANSON M H, MOSS D J, MONOSMITH C L, et al. Spatial and temporal trends of gas and particle phase atmospheric DDT and metabolites in Michigan:Evidence of long-term persistence and atmospheric emission in a high-DDT-use fruit orchard[J]. Journal of Geophysical Research, 2007, 112:D04301. |
[7] | 刘洁, 高敏, 苏杨. 城市副中心的概念、选址和发展模式——以北京为例[J]. 人口与经济, 2015(3):1-12. |
[8] |
WANG G L, MA L M, SUN J H. Occurrence and distribution of organochlorine pesticides(DDT and HCH)in sediments from the middle and lower reaches of the Yellow River,China[J]. Environmental Monitoring and Assessment, 2010, 168(1/4):511-521.
DOI URL |
[9] |
CHEN W, JING M M, BU J W, et al. Organochlorine pesticides in the surface water and sediments from the Peacock River Drainage Basin in Xinjiang,China:a study of an arid zone in Central Asia[J]. Environmental Monitoring and Assessment, 2011, 177:1-21.
DOI URL |
[10] | BOATENG G O, KORSHLWOR K. Levels of organochlorine pesticides residue in cabbage cultivated in farms along River Oyansia,Accra-Ghana[J]. American Journal of Scientific and Industrial Research, 2013, 4(5):489-498. |
[11] |
WANG Y, WANG S R, LUO C L, et al. The effects of rice canopy on the air-soil exchange of polycyclic aromatic hydrocarbons and organochlorine pesticides using paired passive air samplers[J]. Environmental Pollution, 2015, 200:35-41.
DOI PMID |
[12] | 刘晨, 陈家玮, 杨忠芳. 北京郊区农田土壤中滴滴涕和六六六地球化学特征研究[J]. 地学前缘, 2008, 15(5):82-89. |
[13] | 张红艳, 高如泰, 江树人, 等. 北京市农田土壤中有机氯农药残留的空间分析[J]. 中国农业科学, 2006, 39(7):1403-1410. |
[14] | 环境保护部. HJ 25.3—2014 污染场地风险评估技术导则[S]. 北京: 中国环境科学出版社, 2014:1-55. |
[15] |
MAHMOO D A, MALIK R N, LI Jun, et al. Human health risk assessment and dietary intake of organochlorine pesticides through air,soil and food crops (wheat and rice)along two tri-butaries of river Chenab,Pakistan[J]. Food and Chemical Toxicology, 2014, 71:17-25.
DOI URL |
[16] |
CAI S R, SUN K, DONG S Y, et al. Assessment of organochlorine pesticide residues in water,sediment,and fish of the Songhua River,China[J]. Environmental Forensics, 2014, 15(4):352-357.
DOI URL |
[17] | 史雅娟, 郭非凡, 孟凡乔, 等. 果园土壤有机氯农药残留的时间趋势研究[J]. 环境科学学报, 2005, 25(3):313-318. |
[18] |
YOHANNES Y B, IKENAKA Y, SAENGTIENCHAI A, et al. Concentrations and human health risk assessment of organochlorine pesticides in edible fish species from a Rift Valley lake—Lake Ziway,Ethiopia[J]. Ecotoxicology and Environmental Safety, 2014, 106:95-101.
DOI URL |
[19] | 胡枭, 樊耀波, 王敏健, 等. 影响有机污染物在土壤中的迁移、转化行为的因素[J]. 环境科学进展, 1999, 7(5):14-22. |
[20] | 郑巍, 宣日成, 刘维屏. 新农药吡虫啉水解动力学和机理研究[J]. 环境科学学报, 1999, 19(1):101-104. |
[21] |
KONOPKA A. Anaerobic degradation of chloroacetanilide herbicides[J]. Applied Microbiology and Biotechnology, 1994, 42:440-445.
DOI URL |
[22] | 华小梅, 朱忠林, 单正军, 等. 涕灭威在土壤中的降解特性[J]. 生态与农村环境学报, 1995, 11(4):9-13. |
[23] | 孟祥周, 余莉萍, 郭英, 等. 滴滴涕类农药在广东省鱼类中的残留及人体暴露水平初步评价[J]. 生态毒理学报, 2006, 1(2):116-122. |
[24] | 国家环境保护局. GB 15618—1995 土壤环境质量标准[S]. 北京: 中国环境科学出版社, 1995:1-3. |
[25] | 关卉, 杨国义, 李丕学, 等. 雷州半岛典型区域土壤有机氯农药污染探查研究[J]. 生态环境, 2006, 15(2):323-326. |
[26] |
WANG X J, PIAO X Y, CHEN J, et al. Organochlorine pesticides in soil profiles from Tianjin,China[J]. Chemosphere, 2006, 64(9):1514-1520.
DOI URL |
[27] | 陈瑶. 湖南省农田土壤中HCH和DDT残留状况研究[J]. 中国环境监测, 2012, 28(5):44-47. |
[28] |
ZHANG H B, LUO Y M, ZHAO Q, et al. Residues of organochlorine pesticides in Hong Kong soils[J]. Chemosphere, 2006, 63(4):633-641.
PMID |
[29] |
BOUL M L, GARNHAM M L, HUCKER D, et al. Influence of agricultural practices on the levels of DDT and its residues in soil[J]. Environmental Science and Technology, 1994, 28(8):1397-1402.
DOI PMID |
[30] |
HITCH R, DAY H R. Unusual persistence of DDT in some western USA soils[J]. Bulletin of Environmental Contamination and Toxicology, 1992, 48(2):259-264.
PMID |
[31] |
LI J, ZHANG G, QI S H, et al. Concentrations,enantiomeric compositions,and sources of HCH,DDT and chlordane in soils from the Pearl River Delta,South China[J]. Science of the Total Environment, 2006, 372(1):215-224.
DOI URL |
[32] | 冯雪, 李剑, 滕彦国, 等. 吉林松花江沿岸土壤中有机氯农药残留特征及健康风险评价[J]. 环境化学, 2011, 30(9):1604-1610. |
[33] |
HU W Y, LU Y L, WANG T Y, et al. Factors affecting HCH and DDT in soils around watersheds of Beijing reservoirs,China[J]. Environmental Geochemistry and Health, 2010, 32(2):85-94.
DOI URL |
[34] | 郜红建, 蒋新, 王芳, 等. DDTs在土壤中的老化规律及生物有效性[J]. 土壤学报, 2007, 44(1):79-83. |
[35] |
TUOMAS L, MARJO A, ARI V, et al. Toxicity of copper and zinc assessed with three different earthworm tests[J]. Applied Soil Ecology, 2005, 30(2):133-146.
DOI URL |
[36] | 杨慧, 刘红玉, 张利, 等. 湖南省东北部蔬菜土壤中有机氯农药残留及其组成特征[J]. 农业环境科学学报, 2008, 27(2):555-559. |
[37] | HAYES W J, LAWS E R. Handbook of Pesticide Toxicology[M]. New York: Academic Press, 1991: 731-915. |
[38] |
JONES K, DE Voogt P. Persistent organic pollutants(POPS):State of the science[J]. Environmental Pollution, 1999, 100:209-221.
DOI URL |
[39] | 刘相梅, 彭平安, 黄伟林, 等. 六六六在自然界中的环境行为及研究动向[J]. 农业环境与发展, 2001(2):38-40. |
[40] | 王晶, 裴国霞, 郝拉柱, 等. 内蒙古土默川黄灌区表层土壤中HCHs的分布特征及来源解析[J]. 农业环境科学学报, 2016, 35(11):2131-2136. |
[41] |
WANG Y W, ZHANG Q H, LV J X, et al. Polybrominated diphenyl ethers and organochlorine pesticides in sewage sludge of wastewater treatment plants in China[J]. Chemosphere, 2007, 68(9):1683-1691.
PMID |
[42] | 马晓轩, 冉勇. 珠江三角洲土壤中的有机氯农药的分布特征[J]. 生态环境学报, 2009, 18(1):134-137. |
[43] |
REKHA P N, AMBUJAM N K, KRISHNANI K K, et al. Groundwater quality in paper mill effluent irrigated area with special reference to organochlorine residues and heavy metals[J]. Bulletin of Environmental and Contamination Toxicology, 2004, 72(2):312-318.
DOI URL |
[44] | 胡春华, 陈禄禄, 李艳红, 等. 环鄱阳湖区水稻—土壤有机氯农药污染及健康风险评价[J]. 环境化学, 2016, 35(2):355-363. |
[45] | 周晓燕, 崔兆杰. 土壤及果树中HCH和DDT残留及分布规律研究[J]. 环境科学与技术, 2009, 32(5):62-65. |
[46] | 胡英, 祁士华, 兰兰, 等. 岩溶地下河中HCHs和DDTs的分布特征与健康风险评价[J]. 中国环境科学, 2010, 30(6):802-807. |
[47] | 张家泉, 祁士华, 谭凌智, 等. 福建武夷山北段土壤中有机氯农药的残留及空间分布[J]. 中国环境科学, 2011, 31(4):662-667. |
[48] | 刘希雯, 胡立嵩, 陆云平, 等. 武汉北湖地区土壤中有机氯农药残留分布特征[J]. 武汉工程大学学报, 2010, 32(11):31-35. |
[49] | 冉聃, 鲁建江, 姚晓瑞, 等. 新疆典型农业地区土壤中有机氯农药(OCPs)分布特征及风险评价[J]. 农业工程学报, 2012, 28(3):225-229. |
[50] | 陈敏, 陈莉, 黄平. 乌鲁木齐地区土壤中有机氯农药残留特征及来源分析[J]. 中国环境科学, 2014, 34(7):1838-1846. |
[51] | 庞绪贵, 王红晋, 高宗军, 等. 山东烟台市土壤中有机氯农药的分布特征[J]. 物探与化探, 2011, 35(5):671-674. |
[52] | 张家春, 林绍霞, 张清海, 等. 贵州草海耕地土壤与农作物中DDTs和HCHs残留及污染特征[J]. 农业环境科学学报, 2014, 33(7):1351-1357. |
[53] | 喻超, 王增辉, 王红晋, 等. 山东省临沂市土壤有机氯农药滴滴涕残留量与空间分布特征[J]. 环境科学, 2015, 36(7):2642-2647. |
[54] | 李秀, 张家泉, 张黎, 等. 黄石典型农场表层土壤中有机氯农药污染特征[J]. 湖北农业科学, 2014, 53(14):3271-3273. |
[55] | 罗东霞, 张淑娟, 杨瑞强. 藏东南色季拉山土壤中有机氯农药和多环芳烃的浓度分布及来源解析[J]. 环境科学, 2016, 37(7):2745-2755. |
[56] | 李彦荣, 魏玉杰, 谢忠清, 等. 武威平原区饮用水源地土壤六六六和滴滴涕残留特征研究[J]. 干旱区资源与环境, 2016, 30(4):197-202. |
[57] | 崔健, 王晓光, 都基众, 等. 沈阳郊区表层土壤有机氯农药残留特征及风险评价[J]. 中国地质, 2014, 41(5):1705-1715. |
[58] | 刘彬, 李爱民, 张强, 等. 有机氯农药在湖北省菜地土壤中的污染研究[J]. 中国环境监测, 2016, 32(3):87-91. |
[59] | 史冰洁, 李小娜, 帅琴, 等. 山东烟台地区苹果果园土壤中DDTs和HCHs残留分布特征与来源解析[J]. 岩矿测试, 2012, 31(2):318-324. |
[60] | 裴绍峰, 刘海月, 叶思源. 我国南方主要城市土壤有机氯农药残留及分布特征[J]. 山东农业大学学报(自然科学版), 2014, 45(5):768-774. |
[61] | 方晓航, 仇荣亮. 农药在土壤环境中的行为研究[J]. 土壤与环境, 2002, 11(1):94-97. |
[62] | 郑小康, 李春晖, 黄国和, 等. 保定城区地表灰尘污染物分布特征及健康风险评价[J]. 环境科学学报, 2009, 29(10):2195-2202. |
[1] | 何云龙, 张国宾, 杨言辰, 冯玥, 孔金贵, 陈兴凯. 锡霍特—阿林造山带那丹哈达地体四平山金矿床成因与构造背景:锆石U-Pb年代学、岩石和流体地球化学制约[J]. 现代地质, 2024, 38(01): 128-153. |
[2] | 刘青占, 蒋孝君, 王果, 李天瑜, 李东鹏. 内蒙古南炮台花岗斑岩成因与构造环境:锆石U-Pb年代学、Hf同位素和全岩元素组成制约[J]. 现代地质, 2024, 38(01): 154-168. |
[3] | 周延, 范飞鹏, 康丛轩, 赵希林, 肖凡, 徐敏成, 沈莽庭, 朱意萍. 闽西南地区天池塘花岗闪长岩地质年代学和地球化学特征:对区域成矿作用的指示[J]. 现代地质, 2023, 37(06): 1467-1481. |
[4] | 宋彦博, 王建平, 沈存利, 车东, 杨文华, 郭海蛟. 内蒙古扎拉格阿木铜矿床成矿岩体地质地球化学及其成矿学意义[J]. 现代地质, 2023, 37(06): 1482-1494. |
[5] | 罗海怡, 罗先熔, 刘攀峰, 马明亮, 陆显盛, 蒋小明, 鲍官桂, 蒋羽雄. 广西崇左市那渠地区土壤地球化学特征及找矿前景[J]. 现代地质, 2023, 37(06): 1553-1566. |
[6] | 梁鸣, 高文, 罗先熔, 王晓东, 刘秀娟, 陈皓, 刘攀峰, 竹峰, 李伟. 冀北高尖子地区土壤地球化学特征及其找矿预测[J]. 现代地质, 2023, 37(06): 1567-1579. |
[7] | 杨元江, 邓昌州, 李成禄, 杨文鹏, 符安宗, 郑博, 袁茂文, 张立东. 小兴安岭翠峦地区早侏罗世A型花岗岩成因与动力学背景[J]. 现代地质, 2023, 37(06): 1597-1608. |
[8] | 杜俊, 刘洪微, 常洪伦. 斜长石中人工合成流体包裹体的实验研究[J]. 现代地质, 2023, 37(06): 1634-1643. |
[9] | 陈曦, 肖玲, 王明瑜, 郝晨曦, 王峰, 唐红南. 鄂尔多斯盆地西南缘长8油层组物源与古沉积环境恢复:来自岩石地球化学的证据[J]. 现代地质, 2023, 37(05): 1264-1281. |
[10] | 李志鹏, 余麒麟, 昝灵, 余文端, 张枝焕. 苏北盆地溱潼凹陷阜二段不同岩性烃源岩的地球化学特征及生烃潜力对比[J]. 现代地质, 2023, 37(05): 1345-1357. |
[11] | 可行, 赵青芳, 吴飘, 杨传胜, 廖晶, 龚建明. 胶莱盆地东北部白垩系烃源岩特征与评价[J]. 现代地质, 2023, 37(05): 1358-1368. |
[12] | 王瑞廷, 李青锋, 秦西社, 张斌, 王博闻, 冀月飞. 南秦岭太白河地区石英二长闪长岩锆石U-Pb同位素年代学、地球化学及其地质意义[J]. 现代地质, 2023, 37(03): 562-572. |
[13] | 鲁浩, 刘欢, 胡峰, 王海波, 王超, 孔祥超. 西昆仑造山带东段中生代碰撞造山事件的记录:来自新疆温泉—胜利达坂一带三叠纪侵入岩年代学、地球化学的证据[J]. 现代地质, 2023, 37(03): 573-585. |
[14] | 王向伟, 张保涛, 杨浩强, 韩进国. 青海省海晏县团宝山一带变质岩年代学、地球化学及其地质意义[J]. 现代地质, 2023, 37(03): 586-598. |
[15] | 薛仲凯, 范堡程, 黄豪擎, 唐卫东, 葛战林, 李朋伟, 胡建辉, 杨晓奇, 郭永超, 李空. 内蒙古北山地区中基性岩脉年代学和地球化学特征:对塔里木板块北缘构造演化的启示[J]. 现代地质, 2023, 37(03): 627-644. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||