现代地质 ›› 2018, Vol. 32 ›› Issue (01): 86-94.DOI: 10.19657/j.geoscience.1000-8527.2018.01.08
收稿日期:
2017-09-06
修回日期:
2017-12-12
出版日期:
2018-02-10
发布日期:
2018-02-05
通讯作者:
袁国礼,男,教授,博士生导师,1971年出生,地球化学专业,主要从事环境地球化学与岩石地球化学的研究工作。Email: 作者简介:
袁国礼,男,教授,博士生导师,1971年出生,地球化学专业,主要从事环境地球化学与岩石地球化学的研究工作。Email: yuangl@cugb.edu.cn。基金资助:
LI Ping1(), HUANG Yong2, LIN Yun1, HUA Peixue1, YUAN Guoli1(
)
Received:
2017-09-06
Revised:
2017-12-12
Online:
2018-02-10
Published:
2018-02-05
摘要:
在北京市怀柔区东南部农业区采集了977个表土样品,对其中Cr、V、Ni、As、Pb、Zn、Hg和Cd 8种重金属元素含量进行测试分析。通过地球化学成图清晰地呈现了这些元素的空间分布特征。利用数据统计分析,阐明了表土中这些重金属元素的含量分布特征,探讨了不同重金属的来源,并评估预测了其生态风险。研究结果表明Cr、V、Ni、As主要来源于成土母质;而Pb、Zn、Hg受交通和大气沉降等人类活动的影响较大;Cd则主要受到周边工厂以及农业施肥的影响。利用Hakanson法预测8种重金属的生态风险,除Cd外其他7种元素潜在生态风险均较低。本研究对怀柔区农业土壤的污染风险评价及土地利用规划具有一定的借鉴作用。
中图分类号:
李苹, 黄勇, 林赟, 华培学, 袁国礼. 北京市怀柔区土壤重金属的分布特征、来源分析及风险评价[J]. 现代地质, 2018, 32(01): 86-94.
LI Ping, HUANG Yong, LIN Yun, HUA Peixue, YUAN Guoli. Distribution,Source Identification and Risk Assessment of Heavy Metals in Topsoil of Huairou District in Beijing[J]. Geoscience, 2018, 32(01): 86-94.
潜在生态风险 系数(E(i)) | 单因子污染 的生态风险 | 潜在生态风险 指数(RI) | 潜在生态 危害程度 |
---|---|---|---|
E(i)<40 | 低 | RI<150 | 低 |
40≤E(i)<80 | 中 | 150≤RI<300 | 中 |
80≤E(i)<160 | 高 | 300≤RI<600 | 高 |
160≤E(i)<320 | 很高 | 600≤RI | 重 |
320≤E(i) | 极高 | — | — |
表1 重金属的生态风险评估系数和污染水平评估指数
Table 1 Potential ecological risk coefficient (E(i)) and pollution levels risk indices(RI) of the heavy metals
潜在生态风险 系数(E(i)) | 单因子污染 的生态风险 | 潜在生态风险 指数(RI) | 潜在生态 危害程度 |
---|---|---|---|
E(i)<40 | 低 | RI<150 | 低 |
40≤E(i)<80 | 中 | 150≤RI<300 | 中 |
80≤E(i)<160 | 高 | 300≤RI<600 | 高 |
160≤E(i)<320 | 很高 | 600≤RI | 重 |
320≤E(i) | 极高 | — | — |
重金属 | 北京地区背 景值[ | 富集 系数 | 最小值 | 最大值 | 均值 | 变异系 数/% |
---|---|---|---|---|---|---|
Cr | 60.8 | 0.84 | 14.00 | 91.0 | 50.9 | 20.7 |
V | 79.2 | 0.90 | 31.50 | 114.0 | 71.3 | 19.2 |
Ni | 24.7 | 0.88 | 1.40 | 53.2 | 21.7 | 32.5 |
As | 7.7 | 0.95 | 1.29 | 15.6 | 7.3 | 36.5 |
Pb | 23.7 | 1.09 | 24.90 | 22.6 | 25.9 | 37.5 |
Zn | 57.5 | 1.33 | 33.70 | 77.5 | 76.5 | 38.6 |
Hg | 0.059 | 0.71 | 0.007 | 0.372 | 0.042 | 93.6 |
Cd | 0.119 | 1.41 | 0.047 | 0.140 | 0.168 | 68.1 |
表2 研究区土壤表层重金属含量的统计结果(wB/(mg/kg))
Table 2 Heavy metal concentrations in the topsoil of the study area(mg/kg)
重金属 | 北京地区背 景值[ | 富集 系数 | 最小值 | 最大值 | 均值 | 变异系 数/% |
---|---|---|---|---|---|---|
Cr | 60.8 | 0.84 | 14.00 | 91.0 | 50.9 | 20.7 |
V | 79.2 | 0.90 | 31.50 | 114.0 | 71.3 | 19.2 |
Ni | 24.7 | 0.88 | 1.40 | 53.2 | 21.7 | 32.5 |
As | 7.7 | 0.95 | 1.29 | 15.6 | 7.3 | 36.5 |
Pb | 23.7 | 1.09 | 24.90 | 22.6 | 25.9 | 37.5 |
Zn | 57.5 | 1.33 | 33.70 | 77.5 | 76.5 | 38.6 |
Hg | 0.059 | 0.71 | 0.007 | 0.372 | 0.042 | 93.6 |
Cd | 0.119 | 1.41 | 0.047 | 0.140 | 0.168 | 68.1 |
重金属 | 主成分 | ||
---|---|---|---|
1 | 2 | 3 | |
Cr | 0.918 | 0.056 | 0.044 |
V | 0.863 | 0.035 | -0.045 |
Ni | 0.844 | 0.010 | 0.060 |
As | 0.747 | 0.167 | 0.067 |
Pb | 0.117 | 0.652 | 0.364 |
Zn | 0.178 | 0.747 | 0.403 |
Hg | -0.025 | 0.904 | -0.104 |
Cd | 0.007 | 0.195 | 0.935 |
特征值 | 3.144 | 2.015 | 0.807 |
方差/% | 36.3 | 23.4 | 14.9 |
累积方差/% | 36.3 | 59.7 | 74.6 |
表3 研究区土壤重金属含量的主成分分析
Table 3 Principal component analysis of the heavy metal concentrations in the soil of the study area
重金属 | 主成分 | ||
---|---|---|---|
1 | 2 | 3 | |
Cr | 0.918 | 0.056 | 0.044 |
V | 0.863 | 0.035 | -0.045 |
Ni | 0.844 | 0.010 | 0.060 |
As | 0.747 | 0.167 | 0.067 |
Pb | 0.117 | 0.652 | 0.364 |
Zn | 0.178 | 0.747 | 0.403 |
Hg | -0.025 | 0.904 | -0.104 |
Cd | 0.007 | 0.195 | 0.935 |
特征值 | 3.144 | 2.015 | 0.807 |
方差/% | 36.3 | 23.4 | 14.9 |
累积方差/% | 36.3 | 59.7 | 74.6 |
重金属 | 潜在生态风险系数E(i) | ||
---|---|---|---|
平均值 | 最小值 | 最大值 | |
Cr | 1.70 | 0.46 | 6.25 |
V | 1.81 | 0.64 | 4.14 |
Ni | 4.50 | 0.29 | 45.14 |
As | 9.61 | 1.68 | 24.16 |
Pb | 5.46 | 2.70 | 41.20 |
Zn | 1.33 | 0.59 | 9.07 |
Hg | 31.27 | 4.75 | 694.92 |
Cd | 42.30 | 11.85 | 385.71 |
表4 重金属的潜在生态风险系数(E(i))
Table 4 The potential ecological risk factors (E(i)) of the heavy metals
重金属 | 潜在生态风险系数E(i) | ||
---|---|---|---|
平均值 | 最小值 | 最大值 | |
Cr | 1.70 | 0.46 | 6.25 |
V | 1.81 | 0.64 | 4.14 |
Ni | 4.50 | 0.29 | 45.14 |
As | 9.61 | 1.68 | 24.16 |
Pb | 5.46 | 2.70 | 41.20 |
Zn | 1.33 | 0.59 | 9.07 |
Hg | 31.27 | 4.75 | 694.92 |
Cd | 42.30 | 11.85 | 385.71 |
[1] | 陆泗进, 王业耀, 何立环. 湖南省某地农田土壤重金属生态风险评价研究[J]. 环境科学与技术, 2014, 37(12):100-105. |
[2] | 栾文楼, 温小亚, 马忠社, 等. 冀东平原土壤中重金属元素的地球化学特征[J]. 现代地质, 2008, 22(6):939-947. |
[3] | ALLOWAY B J. Sources of heavy metals and metalloids in soils[J]. Heavy Metals in Soils, 2013, 22:11-50. |
[4] |
NICHOLSON F A, SMITH S R, ALLOWAY B J, et al. An inventory of heavy metals inputs to agricultural soils in England and Wales[J]. Science of the Total Environment, 2003, 311(1/3): 205-219.
DOI URL |
[5] |
LUO Lei, MA Yibing, ZHANG Shuzhen, et al. An inventory of trace element inputs to agricultural soils in China[J]. Journal of Environmental Management, 2009, 90(8): 2524-2530.
DOI PMID |
[6] |
BELON E, BOISSON M, DEPORTES I Z, et al. An inventory of trace elements inputs to French agricultural soils[J]. Science of the Total Environment, 2012, 439:87-95.
DOI URL |
[7] |
TENG Yanguo, WU Jin, LU Sijin, et al. Soil and soil environmental quality monitoring in China: a review[J]. Environment International, 2014, 69:177-199.
DOI PMID |
[8] |
SUN Yuebing, ZHOU Qixing, XIE Xiaokui, et al. Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang, China[J]. Journal of Hazardous Materials, 2010, 174(1/3):455-462.
DOI URL |
[9] |
REDON P O, BUR T, GUIRESSE M, et al. Modelling trace metal background to evaluate anthropogenic contamination in arable soils of southwestern France[J]. Geoderma, 2013, 206(9):112-122.
DOI URL |
[10] |
YUAN Guoli, SUN Tianhe, HAN Peng, et al. Environmental geochemical mapping and multivariate geostatistical analysis of heavy metals in topsoils of a closed steel smelter: Capital Iron & Steel Factory, Beijing, China[J]. Journal of Geochemical Exploration, 2013, 130:15-21.
DOI URL |
[11] | ZHAO Long, XU Yafei, HOU Hong, et al. Source identification and health risk assessment of metals in urban soils around the Tanggu chemical industrial district, Tianjin, China[J]. Science of the Total Environment, 2014, 468-469:654-662. |
[12] |
COLGAN A, HANKARD P K, SPURGEON D J, et al. Closing the Loop: A spatial analysis to link observed environmental damage to predicted heavy metal emissions[J]. Environmental Toxicology and Chemistry, 2003, 22(5):970-976.
PMID |
[13] |
GIL C, BOLUDA R, RAMOS J. Determination and evaluation of cadmium, lead and nickel in greenhouse soils of Almeria (Spain)[J]. Chemosphere, 2004, 55(7):1027-1034.
DOI URL |
[14] | 胡克林, 张凤荣, 吕贻忠, 等. 北京市大兴区土壤重金属含量的空间分布特征[J]. 环境科学学报, 2004, 24(3):463-468. |
[15] | 付华, 吴雁华, 魏立华. 北京南部地区农业土壤重金属分布特征与评价[J]. 农业环境科学学报, 2006, 25(1):182-185. |
[16] |
XIA Xinghui, CHEN Xi, LIU Ruimin, et al. Heavy metals in urban soils with various types of land use in Beijing, China[J]. Journal of Hazardous Materials, 2011, 186(2/3):2043-2050.
DOI URL |
[17] |
WANG Meie, BAI Yanying, CHEN Weiping, et al. A GIS technology based potential eco-risk assessment of metals in urban soils in Beijing, China[J]. Environment Pollution, 2012, 161:235-242.
DOI URL |
[18] |
ZHENG Yuanming, CHEN Tongbin, HE Jizheng. Multivariate geostatistical analysis of heavy metals in topsoils from Beijing, China[J]. Journal of Soils and Sediments, 2008, 8(1):51-58.
DOI URL |
[19] |
WU Shan, XIA Xinghui, LIN Chunye, et al. Levels of arsenic and heavy metals in the rural soils of Beijing and their changes over the last two decades (1985—2008)[J]. Journal of Hazardous Materials, 2010, 179(1/3):860-868.
DOI URL |
[20] |
LU Anxiang, WANG Jihua, QIN Xiangyang, et al. Multivariate and geostatistical analyses of the spatial distribution and origin of heavy metals in the agricultural soils in Shunyi, Beijing, China[J]. Science of the Total Environment, 2012, 425(1):66-74.
DOI URL |
[21] |
FACCHINELLI A, SACCHI E, MALLEN L. Multivariate statistical and GIS-based approach to identify heavy metal sources in soils[J]. Environment Pollution, 2001, 114(3):313-324.
DOI URL |
[22] |
YUAN Guoli, SUN Tianhe, HAN Peng, et al. Source identification and ecological risk assessment of heavy metals in topsoil using environmental geochemical mapping: typical urban renewal area in Beijing, China[J]. Journal of Geochemical Exploration, 2014, 136:40-47.
DOI URL |
[23] |
GOOVAERTS P. Factorial kriging analysis: a useful tool for exploring the structure of multivariate spatial soil information[J]. Journal of Soil Science, 1992, 43(4):597-619.
DOI URL |
[24] |
LIN Yuping. Multivariate geostatistical methods to identify and map spatial variations of soil heavy metals[J]. Environmental Geology, 2002, 42(1):1-10.
DOI URL |
[25] |
NANOS N, RODRÍGUEZ MARTÍN J A. Multiscale analysis of heavy metal contents spatial in soils: variability in the Duero river basin (Spain)[J]. Geoderma, 2012, 189/190:554-562.
DOI URL |
[26] |
Lü Jianshu, LIU Yang, ZHANG Zulu, et al. Factorial kriging and stepwise regression approach to identify environmental factors influencing spatial multi-scale variability of heavy metals in soils[J]. Journal of Hazardous Materials, 2013, 261(13):387-397.
DOI URL |
[27] |
MAMAT Z, YIMIT H, JI R Z, et al. Source identification and hazardous risk delineation of heavy metal contamination in Yanqi basin, northwest China[J]. Science of the Total Environment, 2014, 493:1098-1111.
DOI URL |
[28] |
HOU Yong, GAO Zhiling, HEIMANN L, et al. Nitrogen Balances of smallholder farms in major cropping systems in a peri-urban area of Beijing, China[J]. Nutrient Cycling in Agroecosystems, 2012, 92(3):347-361.
DOI URL |
[29] | 蔡庆空, 蒋金豹, 崔希民, 等. 环境因子对土壤水分空间异质性的影响——以北京市怀柔区为例[J]. 山地学报, 2013, 13(3):294-299. |
[30] |
HAKANSON L. An ecological risk index for aquatic pollution control: a sedimentological approach[J]. Water Research, 1980, 14(8):975-1001.
DOI URL |
[31] | 张芬, 杨长明, 潘睿捷, 等. 青山水库表层沉积物重金属污染特征及生态风险评价[J]. 应用生态学报, 2013, 24(9):2625-2630. |
[32] | WANG Hongyan, LU Shenggao. Spatial distribution, source identification and affecting factors of heavy metals contamination in urban-suburban soils of Lishui city, China[J]. Journal of Environment and Earth Science, 2011, 64(7): 1921-1929. |
[33] | 陈同斌, 郑袁明, 陈煌, 等. 北京市土壤重金属含量背景值的系统研究[J]. 环境科学, 2004, 25(1):117-122. |
[34] |
ZHAO Yongcun, WANG Zhigang, SUN Weixia, et al. Spatial interrelations and multi-scale sources of soil heavy metal variability in a typical urban-rural transition area in Yangtze River Delta region of China[J]. Geoderma, 2010, 156(3/4): 216-227.
DOI URL |
[35] | 赵小明, 刘圣德, 张权绪, 等. 鄂西长阳南华系地球化学特征的气候指示意义及地层对比[J]. 地质学报, 2011, 85(4):576-585. |
[36] |
HAN Yongming, DU Peixuan, CAO Junji, et al. Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China[J]. Science of the Total Environment, 2006, 355(1/3):176-186.
DOI URL |
[37] |
LUO Wei, WANG Tieyu, LU Yonglong, et al. Landscape ecology of the Guanting Reservoir, Beijing, China: Multivariate and geostatistical analyses of metals in soils[J]. Environmental Pollution, 2007, 146(2):567-576.
DOI PMID |
[38] |
杨勇, 刘爱军, 单玉梅, 等. 锡林郭勒露天煤矿矿区草原土壤重金属分布特征[J]. 生态环境学报, 2016, 25(5): 885-892.
DOI |
[39] |
FACCHINELLIA A, SACCHI E, MALLEN L. Multivariate statistics and GIS-based approach to identify heavy metal sources in soils[J]. Environmental Pollution, 2011, 114(3):313-324.
DOI URL |
[40] | 谢小进, 康建成, 李卫江, 等. 上海宝山区农用土壤重金属分布与来源分析[J]. 环境科学, 2010, 31(3):768-774. |
[41] | 董辰寅, 张卫国, 王冠, 等. 上海宝山区城市土壤铅污染来源的同位素判别[J]. 环境科学, 2012, 33(3):754-759. |
[42] | 赵秀峰, 王强盛, 石宁宁, 等. 石化园区周边农田土壤重金属污染分析与评价[J]. 环境科学学报, 2010, 30(1):133-141. |
[43] |
LUO Xiaosan, YU Shen, ZHU Yongguan, et al. Trace metal contamination in urban soils of China[J]. Science of the Total Environment, 2012, 421/422(3):17-30.
DOI URL |
[44] |
BI Xiangyang, LIANG Siyuang, LI Xiangdong. A novel in situ method for sampling urban soil dust: particle size distribution, trace metal concentrations, and stable lead isotopes[J]. Environmental Pollution, 2013, 177(4):48-57.
DOI URL |
[45] |
ZHU Zongmin, SUN Guangyi, BI Xiangyang, et al. Identification of trace metal pollution in urban dust from kindergartens using magnetic, geochemical and lead isotopic analysis[J]. Atmospheric Environment, 2013, 77(3):9-15.
DOI URL |
[46] |
CHEN Xi, XIA Xinghui, WU Shan, et al. mercury in urban soils with various types of land use in Beijing, China[J]. Environmental Pollution, 2010, 158(1):48-54.
DOI PMID |
[47] | 从源, 郑萍, 陈岳龙, 等. 北京农田生态系统土壤重金属元素的生态风险评价[J]. 地质通报, 2008, 27(5):681-688. |
[1] | 李楠, 曹明杰, 郝喆, 侯永莉, 陈红丹, 张颖. 基于不同土地利用方式的土壤重金属污染与潜在风险评价:以辽河流域(浑太水系)山水林田湖草沙一体化保护和修复工程为例[J]. 现代地质, 2023, 37(06): 1655-1664. |
[2] | 张卓, 陈社明, 柳富田, 高志鹏, 牛笑童. 滨海平原区深层高氟地下水富集机理:以滦河三角洲为例[J]. 现代地质, 2023, 37(04): 925-932. |
[3] | 刘圣锋, 高柏, 易玲, 方正, 史天成, 丁燕. 海拉尔盆地水环境中砷和铀的分布特征及风险评价[J]. 现代地质, 2023, 37(04): 933-942. |
[4] | 胡庆海, 王学求, 韩志轩, 成晓梦, 吴慧, 田密, 刘福田, 孙彬彬, 陈卫明, 杜雪苗, 刘彬, 崔邢涛. 京津冀地区永清县土壤重金属地球化学特征及绿色食品产地的土壤质量评价[J]. 现代地质, 2023, 37(03): 778-789. |
[5] | 杜古尔·卫卫, 石海涛, 邢浩, 娄雪聪, 胡宏利, 布龙巴特. 新疆戈壁荒漠区典型露天煤矿土壤重金属来源解析及空间分布[J]. 现代地质, 2023, 37(03): 790-800. |
[6] | 李慧, 温汉辉, 蔡立梅, 徐耀辉, 罗杰, 梅敬娴, 徐述邦. 广东省揭阳市揭东区微量元素分布特征及其影响因素分析[J]. 现代地质, 2023, 37(01): 208-216. |
[7] | 周墨, 梁晓红, 张明, 文帮勇, 唐志敏, 湛龙. 南京市溧水区表层土壤锗地球化学特征及影响因素[J]. 现代地质, 2023, 37(01): 217-226. |
[8] | 刘同, 刘传朋, 康鹏宇, 赵秀芳, 邓俊, 王凯凯. 山东省沂南县东部土壤重金属地球化学特征及源解析[J]. 现代地质, 2022, 36(04): 1173-1182. |
[9] | 朱英海, 施泽明, 王新宇, 张凯亮, 朱伯丞. 攀西大梁子铅锌矿区水系沉积物重金属地球化学特征及源解析[J]. 现代地质, 2022, 36(03): 923-932. |
[10] | 吴通航, 刘海燕, 张卫民, 孙占学, 王振, 刘茂涵. 鄱阳湖流域赣江下游水化学特征及人类健康风险评价[J]. 现代地质, 2022, 36(02): 427-438. |
[11] | 郭正材, 郭华明, 魏亮, 高志鹏. 河北保定典型污灌区土壤Cu吸附特性研究[J]. 现代地质, 2022, 36(02): 524-532. |
[12] | 乔雯, 王议, 张德强, 殷秀兰, 白光宇, 何培雍. 某矿区土壤重金属分布特征及来源解析[J]. 现代地质, 2022, 36(02): 543-551. |
[13] | 黄勇, 段续川, 袁国礼, 李欢, 张沁瑞. 北京市延庆区土壤重金属元素地球化学特征及其来源分析[J]. 现代地质, 2022, 36(02): 634-644. |
[14] | 罗海怡, 罗先熔, 刘攀峰, 马明亮, 卓银义. 广西三江县土壤硒含量分布特征及其影响因素研究[J]. 现代地质, 2022, 36(02): 645-654. |
[15] | 朱超, 文美兰, 刘攀峰, 陈斌艳, 鲍厚银, 赵银强, 陈昊, 杨奕波. 桂林灵川县典型有机水稻田重金属元素分布特征及污染评价[J]. 现代地质, 2021, 35(05): 1433-1440. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||