Geoscience ›› 2021, Vol. 35 ›› Issue (03): 711-719.DOI: 10.19657/j.geoscience.1000-8527.2020.061
• Water Resources and Environmental Geology • Previous Articles Next Articles
HOU Ying1(), XU Jinming2(
), LI Ping1, MAO Junyan3, ZHANG Yuanhao1, SU Junjie1, CHEN Nan1, HU Weiwu1
Received:
2019-01-18
Revised:
2020-06-23
Online:
2021-06-23
Published:
2021-06-24
Contact:
XU Jinming
CLC Number:
HOU Ying, XU Jinming, LI Ping, MAO Junyan, ZHANG Yuanhao, SU Junjie, CHEN Nan, HU Weiwu. Fe/Ag Catalytic Ozonation for the Degradation of Phenol[J]. Geoscience, 2021, 35(03): 711-719.
催化剂类型 | 比表面积/(m2/g) | 孔隙体积/(cm2/g) | 孔径/nm |
---|---|---|---|
Fe | 5.159 | 0.012 | 2.708 |
Fe/Ag | 3.985 | 0.006 | 2.708 |
Table 1 BET data of Fe and Fe/Ag
催化剂类型 | 比表面积/(m2/g) | 孔隙体积/(cm2/g) | 孔径/nm |
---|---|---|---|
Fe | 5.159 | 0.012 | 2.708 |
Fe/Ag | 3.985 | 0.006 | 2.708 |
类型 | 苯酚 | COD | |||
---|---|---|---|---|---|
K/min-1 | R2 | K/min-1 | R2 | ||
单独臭氧 | 0.027 | 0.990 | 0.010 | 0.940 | |
Fe | 0.037 | 0.994 | 0.016 | 0.935 | |
Fe/Ag | 0.098 | 0.973 | 0.022 | 0.952 |
Table 2 Reaction rate constant (K) for the removal of phenol and COD, with added catalyst and ozone alone
类型 | 苯酚 | COD | |||
---|---|---|---|---|---|
K/min-1 | R2 | K/min-1 | R2 | ||
单独臭氧 | 0.027 | 0.990 | 0.010 | 0.940 | |
Fe | 0.037 | 0.994 | 0.016 | 0.935 | |
Fe/Ag | 0.098 | 0.973 | 0.022 | 0.952 |
投加量/g | 苯酚 | COD | |||
---|---|---|---|---|---|
K/min-1 | R2 | K/min-1 | R2 | ||
0.25 | 0.086 | 0.971 | 0.012 | 0.902 | |
0.50 | 0.065 | 0.977 | 0.016 | 0.928 | |
1.00 | 0.098 | 0.973 | 0.022 | 0.952 | |
2.50 | 0.061 | 0.985 | 0.022 | 0.936 |
Table 3 Fe/Ag ozonation reaction rate constant (K) for the removal of phenol and COD with different catalyst dosage
投加量/g | 苯酚 | COD | |||
---|---|---|---|---|---|
K/min-1 | R2 | K/min-1 | R2 | ||
0.25 | 0.086 | 0.971 | 0.012 | 0.902 | |
0.50 | 0.065 | 0.977 | 0.016 | 0.928 | |
1.00 | 0.098 | 0.973 | 0.022 | 0.952 | |
2.50 | 0.061 | 0.985 | 0.022 | 0.936 |
[1] |
RIBEIRO A R, NUNES O C, PEREIRA M F R, , et al. An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU[J]. Environment International, 2015, 75:33-51.
DOI URL |
[2] | HUANOSTA-GUTIÉRREZ T, DANTAS R F, RAMÍREZ-ZAMORA R M, et al. Evaluation of copper slag to catalyze advanced oxidation processes for the removal of phenol in water[J]. Journal of Hazardous Materials, 2012, 213:325-330. |
[3] | 杨琦, 尚海涛, 王雪莲, 等. Fenton 氧化膜-生物反应器出水中丙烯腈的实验研究[J]. 现代地质, 2004, 18(4): 586-590. |
[4] | 盛益之, 张旭, 翟晓波, 等. 化学氧化技术异位处理地下水非水相有机污染物中试研究[J]. 现代地质, 2019, 33(2): 422-430. |
[5] |
CHAICHANAWONG J, YAMAMOTO T, OHMORI T. Enhancement effect of carbon adsorbent on ozonation of aqueous phenol[J]. Journal of Hazardous Materials, 2010, 175(1/3): 673-679.
DOI URL |
[6] | IKHLAQ A, BROWN D R, KASPRZYK-HORDERN B. Catalytic ozonation for the removal of organic contaminants in water on ZSM-5 zeolites[J]. Applied Catalysis B: Environmental, 2014, 154:110-122. |
[7] |
WANG J, BAI Z. Fe-based catalysts for heterogeneous catalytic ozonation of emerging contaminants in water and wastewater[J]. Chemical Engineering Journal, 2017, 312:79-98.
DOI URL |
[8] |
SCAFETTA M D, MAY S J. Effect of cation off-stoichiometry on optical absorption in epitaxial LaFeO3 films[J]. Physical Chemistry Chemical Physics, 2017, 19(16): 10371-10376.
DOI URL |
[9] |
HE H, LIU Y, WU D, et al. Ozonation of dimethyl phthalate catalyzed by highly active CuxO-Fe3O4 nanoparticles prepared with zero-valent iron as the innovative precursor[J]. Environmental Pollution, 2017, 227:73-82.
DOI URL |
[10] |
XIAO J, XIE Y, CAO H. Organic pollutants removal in wastewater by heterogeneous photocatalytic ozonation[J]. Chemosphere, 2015, 121:1-17.
DOI URL |
[11] | 李来胜, 祝万鹏. 催化臭氧化——一种有前景的水处理高级氧化技术[J]. 给水排水, 2001, 27(6): 26-29. |
[12] | 宋明光, 王筠松, 郭耘, 等. 改性二氧化钛负载贵金属Ru催化剂催化降解苯胺溶液[J]. 催化学报, 2017, 38(7): 1155-1165. |
[13] | 许珊珊, 林存旺, 丁亚磊, 等. MgO/活性炭催化臭氧化降解有机物的作用机制[J]. 环境科学, 2018, 39(2): 838-843. |
[14] | 胡应模, 李梦灿, 安文峰, 等. 新型高分子改性剂的合成及含电气石功能聚合物的制备[J]. 现代地质, 2019, 33(1): 246-250. |
[15] | 蒲清三, 张祝豪, 史硕, 等. COD快速消解法测定地表水体中的总氮[J]. 三峡生态环境监测, 2017, 2(1): 58-63. |
[16] | 陈东洋, 冯家力, 张昊, 等. 固相萃取/高效液相色谱法测定饮用水中苯并(a)芘及双酚A[J]. 分析测试学报, 2015, 34(7): 848-851. |
[17] | LUO J, WU J, LIU Z, et al. Controlled synjournal of porous Co3O4 nanostructures for efficient electrochemical sensing of glucose[J]. Journal of Nanomaterials, 2019, 19:1-7. |
[18] |
KANDAMBETH S, VENKATESH V, SHINDE D B, et al. Self-templated chemically stable hollow spherical covalent organic framework[J]. Nature Communications, 2015, 6:6786.
DOI URL |
[19] |
HAMMOUDA S B, ZHAO F, SAFAEI Z, et al. Degradation and mineralization of phenol in aqueous medium by heterogeneous monopersulfate activation on nanostructured cobalt based-perovskite catalysts ACoO3(A=La, Ba, Sr and Ce): Characterization, kinetics and mechanism study[J]. Applied Catalysis B: Environmental, 2017, 215:60-73.
DOI URL |
[20] | 陈昕海, 陈星, 王小丽, 等. Nd-Er/ZnO-TiO2光催化剂制备及对酸性品红的光催化降解效应[J]. 三峡生态环境监测, 2018, 3(1): 41-46. |
[21] | 王益平, 蓝月存, 饶义飞, 等. NiO/AC催化臭氧氧化去除水中的苯酚[J]. 环境工程学报, 2010, 4(11): 2441-2445. |
[22] |
HUANG C P, HUANG Y H. Comparison of catalytic decomposition of hydrogen peroxide and catalytic degradation of phenol by immobilized iron oxides[J]. Applied Catalysis A: General, 2008, 346(1/2): 140-148.
DOI URL |
[23] |
XU B, QI F, ZHANG J, et al. Cobalt modified red mud catalytic ozonation for the degradation of bezafibrate in water: catalyst surface properties characterization and reaction mechanism[J]. Chemical Engineering Journal, 2016, 284:942-952.
DOI URL |
[24] |
SUN J, MENG X, SHI Y, et al. A novel catalyst of Cu-Bi-V-O complex in phenol hydroxylation with hydrogen peroxide[J]. Journal of Catalysis, 2000, 193(2): 199-206.
DOI URL |
[25] | 董玉明, 王光丽, 蒋平平, 等. 陶瓷粉体催化臭氧化降解水中苯酚[J]. 水处理技术, 2010, 36(10): 28-31. |
[26] | 贾彦博, 王红青, 韩里明. 液相色谱-串联质谱法快速测定饮用水中6种雌激素[J]. 分析测试学报, 2011, 30(7): 808-812. |
[27] |
KASPRZYK-HORDERN B, ZIÓŁEK M, NAWROCKI J. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment[J]. Applied Catalysis B: Environmental, 2003, 46(4): 639-669.
DOI URL |
[28] |
SCHMITT G L, PIETRZYK D J. Liquid chromatographic separation of inorganic anions on an alumina column[J]. Analytical Chemistry, 1985, 57(12): 2247-2253.
DOI URL |
[29] | BAI Z, YANG Q, WANG J. Catalytic ozonation of sulfamethazine antibiotics using Fe3O4/multiwalled carbon nanotubes[J]. Environmental Progress & Sustainable Energy, 2018, 37(2): 678-685. |
[30] |
SUH M, BAGUS P S, PAK S, et al. Reactions of hydroxyl radicals on titania, silica, alumina, and gold surfaces[J]. The Journal of Physical Chemistry B, 2000, 104(12): 2736-2742.
DOI URL |
[31] |
VALDÉS H, TARDÓN R F, ZAROR C A. Methylene blue removal from contaminated waters using heterogeneous catalytic ozonation promoted by natural zeolite: mechanism and kinetic approach[J]. Environmental Technology, 2012, 33(16): 1895-1903.
DOI URL |
[32] |
HOIGNÉ J, BADER H. Rate constants of reactions of ozone with organic and inorganic compounds in water—I: non-dissociating organic compounds[J]. Water Research, 1983, 17(2): 173-183.
DOI URL |
[33] |
MA J, SUI M, ZHANG T, et al. Effect of pH on MnOx/GAC catalyzed ozonation for degradation of nitrobenzene[J]. Water Research, 2005, 39(5): 779-786.
DOI URL |
[34] |
VON GUNTEN U. Ozonation of drinking water: Part I. Oxidation kinetics and product formation[J]. Water Research, 2003, 37(7): 1443-1467.
DOI URL |
[1] | WANG Ying, HU Weiwu, CHEN Nan, FENG Chuanping. Effect of the Sand Mixing Ratio of North China Brown Soil on Sewage Purification Performance in Infiltration System [J]. Geoscience, 2023, 37(04): 914-924. |
[2] | PENG Hongming, WANG Zhanwei, LUO Yinfei, YUAN Youjin, WANG Wanping. Evaluation of Exploitable Groundwater Resources in the Buha River Basin Based on Groundwater Numerical Simulation [J]. Geoscience, 2023, 37(04): 943-953. |
[3] | JIANG Zhe, ZHOU Xun, CHEN Binghua, TAO Guangbin, LI Zhuang, CAO Ruwen, SUI Liai. Stable Isotope Characteristics of Geothermal Water and Calculation of Geothermal Reservoir Temperature in the Erdaoqiao Area of Kangding in Sichuan Province [J]. Geoscience, 2022, 36(04): 1183-1192. |
[4] | ZHAO Mingkun, SUN Yajun, DUAN Zhongfeng, SHEN Quanwei, LU Guijing. Geochemical Signature and Genesis of Geothermal Water in Minghuazhen Formation, Luohe, Henan Province [J]. Geoscience, 2022, 36(02): 507-514. |
[5] | LIU Maohan, LIU Haiyan, ZHANG Weimin, WANG Zhen, WU Tonghang, WANG Yugang. REE Concentration and Fractionation in Waters and Sediments from the Northern Branch of Ganjiang River, Poyang Lake Catchment [J]. Geoscience, 2022, 36(02): 389-405. |
[6] | LI Zeyan, CAO Wengeng, WANG Zhuoran, LI Jincheng, REN Yu. Hydrochemical Characterization and Irrigation Suitability Analysis of Shallow Groundwater in Hetao Irrigation District, Inner Mongolia [J]. Geoscience, 2022, 36(02): 418-426. |
[7] | WU Tonghang, LIU Haiyan, ZHANG Weimin, SUN Zhanxue, WANG Zhen, LIU Maohan. Hydrochemical Characteristics and Human Health Risk Assessment in Downstream Ganjiang River of the Poyang Lake Basin [J]. Geoscience, 2022, 36(02): 427-438. |
[8] | HU Zexiang, ZHAO Xueqin, LI Song, LI Junya, WANG Yujue, YANG Luo. Geothermal Hydrogeochemical Characteristics and Genetic Analysis of the Seda-Songpan Fault Block [J]. Geoscience, 2022, 36(02): 484-493. |
[9] | WANG Yixuan, ZHOU Xun, CHEN Mengying, MA Jingru, HAI Kuo, XIAO Meng, SHANG Ziqi, ZHANG Ying, YU Mingxiao. Hydrochemical Characteristics and Formation of Four Hot Springs in Northern Hebei [J]. Geoscience, 2022, 36(02): 494-506. |
[10] | GUO Zhengcai, GUO Huaming, WEI Liang, GAO Zhipeng. Adsorption Characteristics of Cu onto Typical Sewage Irrigated-Soils from Baoding, Hebei Province [J]. Geoscience, 2022, 36(02): 524-532. |
[11] | CAO Yuanyuan, GUO Huaming, GAO Zhipeng. Redox Dynamic Effect on Fluoride and Arsenic Released from Sediments in the Baiyangdian Plain, Hebei [J]. Geoscience, 2022, 36(02): 533-542. |
[12] | HAO Xin, YI Lixin, LI Luxuan, YANG Yongpeng. Distribution Coefficient of Ra in Groundwater and Its Determination Technique [J]. Geoscience, 2022, 36(02): 552-562. |
[13] | YU Lu, ZHENG Tianyuan, ZHENG Xilai. Review of Nitrate Source Apportionment and Nitrogen Isotope Fractionation in Groundwater [J]. Geoscience, 2022, 36(02): 563-573. |
[14] | LIU Wenjun, LIU Tong, HU Weiwu, CHEN Nan, FENG Chuanping. Study on Chinese Maifanite in Promotion of Heterotrophic Denitrification in Water [J]. Geoscience, 2022, 36(02): 574-582. |
[15] | LU Li, CHEN Yudao, DAI Junge, WANG Zhe, ZOU Shengzhang, FAN Lianjie, LIN Yongsheng, ZHOU Changsong. Hydrogeochemical Characteristics and Genesis of Zhuhe Hot Springs in Zhaojue, Sichuan Province [J]. Geoscience, 2021, 35(03): 703-710. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||