Geoscience ›› 2022, Vol. 36 ›› Issue (02): 418-426.DOI: 10.19657/j.geoscience.1000-8527.2022.012
• Water Resources and Environmental Research • Previous Articles Next Articles
LI Zeyan1,2,3(), CAO Wengeng1,2,3(
), WANG Zhuoran4, LI Jincheng1,5, REN Yu1,2,3
Received:
2021-09-30
Revised:
2022-03-10
Online:
2022-04-10
Published:
2022-06-01
Contact:
CAO Wengeng
CLC Number:
LI Zeyan, CAO Wengeng, WANG Zhuoran, LI Jincheng, REN Yu. Hydrochemical Characterization and Irrigation Suitability Analysis of Shallow Groundwater in Hetao Irrigation District, Inner Mongolia[J]. Geoscience, 2022, 36(02): 418-426.
指标 | 分类标准 | 样品数 | 比例/% | |
---|---|---|---|---|
SAR | <10非常适用 | 495 | 99.20 | |
10~18较适用 | 4 | 0.80 | ||
18~26适用 | 0 | 0 | ||
>26不适用 | 0 | 0 | ||
PI | >75非常适用 | 499 | 100.00 | |
25~75适用 | 0 | 0 | ||
<25不适用 | 0 | 0 | ||
SC | <20非常适用 | 1 | 0.20 | |
20~40较适用 | 100 | 20.04 | ||
40~60适用 | 218 | 43.69 | ||
60~80不确定 | 139 | 27.86 | ||
>80不适用 | 41 | 8.21 | ||
RSC | <1.25非常适用 | 416 | 83.37 | |
1.25~2.50适用 | 23 | 4.61 | ||
>2.5不适用 | 60 | 12.02 |
Table 1 Evaluation results for groundwater irrigationsuitability
指标 | 分类标准 | 样品数 | 比例/% | |
---|---|---|---|---|
SAR | <10非常适用 | 495 | 99.20 | |
10~18较适用 | 4 | 0.80 | ||
18~26适用 | 0 | 0 | ||
>26不适用 | 0 | 0 | ||
PI | >75非常适用 | 499 | 100.00 | |
25~75适用 | 0 | 0 | ||
<25不适用 | 0 | 0 | ||
SC | <20非常适用 | 1 | 0.20 | |
20~40较适用 | 100 | 20.04 | ||
40~60适用 | 218 | 43.69 | ||
60~80不确定 | 139 | 27.86 | ||
>80不适用 | 41 | 8.21 | ||
RSC | <1.25非常适用 | 416 | 83.37 | |
1.25~2.50适用 | 23 | 4.61 | ||
>2.5不适用 | 60 | 12.02 |
控制 项目 | 指标 | 旱地作 物限值 | 地下水样品(n=499) | ||||||
---|---|---|---|---|---|---|---|---|---|
适宜灌溉 样品数 | 不适宜灌 溉样品数 | 适宜灌溉样 品占比/% | |||||||
基本 控制 项目 | 水温 | 35 | 499 | 0 | 100 | ||||
总铅 | 0.2 | 499 | 0 | 100 | |||||
总汞 | 0.001 | 499 | 0 | 100 | |||||
总镉 | 0.01 | 498 | 1 | 99.80 | |||||
六价铬 | 0.1 | 496 | 3 | 99.40 | |||||
pH | 5.5~8.5 | 460 | 39 | 92.18 | |||||
总砷 | 0.1 | 416 | 83 | 83.37 | |||||
氯化物 | 350 | 291 | 208 | 58.32 | |||||
选择 控制 项目 | 氰化物 | 0.5 | 499 | 0 | 100 | ||||
挥发酚 | 1 | 499 | 0 | 100 | |||||
总锌 | 2 | 499 | 0 | 100 | |||||
总铜 | 1 | 498 | 1 | 99.8 | |||||
总镍 | 0.2 | 498 | 1 | 99.8 | |||||
硒 | 0.02 | 498 | 1 | 99.8 | |||||
氟化物 | 3 | 488 | 11 | 97.8 |
Table 2 Evaluation results for groundwater according to the Irrigation Water Quality Standard
控制 项目 | 指标 | 旱地作 物限值 | 地下水样品(n=499) | ||||||
---|---|---|---|---|---|---|---|---|---|
适宜灌溉 样品数 | 不适宜灌 溉样品数 | 适宜灌溉样 品占比/% | |||||||
基本 控制 项目 | 水温 | 35 | 499 | 0 | 100 | ||||
总铅 | 0.2 | 499 | 0 | 100 | |||||
总汞 | 0.001 | 499 | 0 | 100 | |||||
总镉 | 0.01 | 498 | 1 | 99.80 | |||||
六价铬 | 0.1 | 496 | 3 | 99.40 | |||||
pH | 5.5~8.5 | 460 | 39 | 92.18 | |||||
总砷 | 0.1 | 416 | 83 | 83.37 | |||||
氯化物 | 350 | 291 | 208 | 58.32 | |||||
选择 控制 项目 | 氰化物 | 0.5 | 499 | 0 | 100 | ||||
挥发酚 | 1 | 499 | 0 | 100 | |||||
总锌 | 2 | 499 | 0 | 100 | |||||
总铜 | 1 | 498 | 1 | 99.8 | |||||
总镍 | 0.2 | 498 | 1 | 99.8 | |||||
硒 | 0.02 | 498 | 1 | 99.8 | |||||
氟化物 | 3 | 488 | 11 | 97.8 |
指标 | 地下水样品 | 黄河水 | ||
---|---|---|---|---|
范围 | 均值 | 中位值 | ||
SAR | 0.17~12.52 | 1.98 | 1.38 | 1.14 |
PI | 129.90~27 848.57 | 1 938.49 | 1 256.08 | 196.12 |
SC | 17.82~94.98 | 54.64 | 53.44 | 29.23 |
RSC | -112.76~15.58 | -4.53 | -2.78 | -1.02 |
Table 3 Comparison for four indices between Yellow River water and groundwater in Hetao irrigation district
指标 | 地下水样品 | 黄河水 | ||
---|---|---|---|---|
范围 | 均值 | 中位值 | ||
SAR | 0.17~12.52 | 1.98 | 1.38 | 1.14 |
PI | 129.90~27 848.57 | 1 938.49 | 1 256.08 | 196.12 |
SC | 17.82~94.98 | 54.64 | 53.44 | 29.23 |
RSC | -112.76~15.58 | -4.53 | -2.78 | -1.02 |
[1] | 邹宇锋, 蔡焕杰, 张体彬, 等. 河套灌区不同灌溉方式春玉米耗水特性与经济效益分析[J]. 农业机械学报, 2020, 51(9): 237-248. |
[2] | 章超然. 地表水补给地下水化学特征和砷分布的影响[D]. 北京: 中国地质大学(北京), 2020. |
[3] | 王璐瑶. 河套灌区地下水开发利用的渠井结合比研究[D]. 武汉: 武汉大学, 2018. |
[4] | 沈来银, 胡铁松, 周姗, 等. 基于SHAW模型的河套灌区秋浇渠系优化配水模型研究[J]. 水利学报, 2020, 51(4): 458-467. |
[5] | 马贵仁, 屈忠义, 王丽萍, 等. 基于ArcGIS空间插值的河套灌区土壤水盐运移规律与地下水动态研究[J]. 水土保持学报, 2021, 35(4):209-216. |
[6] | 史海滨, 杨树青, 李瑞平, 等. 内蒙古河套灌区水盐运动与盐渍化防治研究展望[J]. 灌溉排水学报, 2020, 39(8):1-17. |
[7] | GUO H M, ZHANG Y. XING L N, et al. Spatial variation in arsenic and fluoride concentrations of shallow groundwater from the town of Shahai in the Hetao basin, Inner Mongolia[J]. Applied Geochemistry, 2012, 27(11): 2187-2196. |
[8] | CAO W G, GUO H M. ZHANG Y L, et al. Controls of paleochannels on groundwater arsenic distribution in shallow aquifers of alluvial plain in the Hetao Basin, China[J]. Science of Total Environment, 2018, 613/614: 958-968. |
[9] | CAO W G. Genesis of high arsenic groundwater in typical alluvial plain of Yellow River Basin[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2018. |
[10] | GUO H M, ZHANG Y, JIA Y F, et al. Dynamic behaviors of water levels and arsenic concentration in shallow groundwater from the Hetao Basin, Inner Mongolia[J]. Journal of Geochemical Exploration, 2013, 135: 130-140. |
[11] | GUO H M, YANG S Z, TANG X H, et al. Groundwater geochemistry and its implications for arsenic mobilization in shallow aquifers of the Hetao Basin, Inner Mongolia[J]. Science of Total Environment, 2008, 393(1): 131-44. |
[12] | WEN D G, ZHANG F C, ZHANG E Y, et al. Arsenic, fluoride and iodine in groundwater of China[J]. Journal of Geochemical Exploration, 2013, 135: 1-21. |
[13] | 陈国梁, 冯涛, 陈章, 等. 砷在农作物中的累积及其耐受机制研究综述[J]. 生态环境学报, 2017, 26(11): 1997-2002. |
[14] | 段明宇, 吴攀, 张翅鹏, 等. 高砷煤矿污染土壤的小麦砷累积研究[J]. 麦类作物学报, 2017, 37(7): 985-991. |
[15] | 崔佳琪, 李仙岳, 史海滨, 等. 河套灌区地下水化学演变特征及形成机制[J]. 环境科学, 2020, 41(9): 4011-4020. |
[16] | BIAN J M, NIE S Y, WANG R, et al. Hydrochemical charac-teristics and quality assessment of groundwater for irrigation use in central and eastern Songnen Plain, Northeast China[J]. Environmental Monitoring and Assessment, 2018, 190(7):382-398. |
[17] | 袁宏颖, 杨树青, 张万锋, 等. 河套灌区浅层地下水NO3--N时空变化及驱动因素[J/OL]. 环境科学, 2021.https://doi.org/10.13227/j.hjkx.202107. |
[18] | 曹文庚. 黄河流域典型冲积平原高砷地下水成因机制[D]. 郑州: 华北水利水电大学, 2018. |
[19] | 付宇, 曹文庚, 张娟娟. 基于随机森林建模预测河套盆地高砷地下水风险分布[J]. 岩矿测试, 2021, 40(6):860-870. |
[20] | 袁成福, 冯绍元, 庄旭东. 内蒙古河套灌区典型耕、荒地水盐动态分析[J]. 干旱地区农业研究, 2022, 40(1):77-85. |
[21] | 赖黎明, 美丽, 杨旸. 内蒙古河套灌区农业土壤特征与发展分析[J]. 江苏农业科学, 2022, 50(2):213-218. |
[22] | SELVAM S, JESURAJA K, ROY P D, et al. Assessment of groundwater from an industrial coastal area of south India for human health risk from consumption and irrigation suitability[J]. Environmental Research, 2021, 200: 111-461. |
[23] | 朱丹尼, 邹胜章, 李军, 等. 会仙岩溶湿地丰平枯水期地表水污染及灌溉适用性评价[J]. 环境科学, 2021, 42(5):2241-2250. |
[24] | 唐金平, 张强, 胡漾, 等. 湔江冲洪积扇地下水化学特征及控制因素分析[J]. 环境科学, 2019, 40(7):28-33. |
[25] | 高延康, 刘祖发, 卓文珊, 等. 基于模糊综合优化模型的湛江市地下水灌溉适宜性评价[J]. 亚热带资源与环境学报, 2019, 14(3):29-37. |
[26] | Staff of US Salinity Laboratory. Diagnosis and Improvement of Saline and Alkaline Soils:U.S. Department of Agriculture Hand Book[M]. Washington: Government Printing Office Washington, 1954. |
[27] | DONEEN L D. Notes on water quality in agriculture[M]//Water Science and Engineering Paper 4001. Davis: University of California, 1964. |
[28] | BISHWAKARMA K, WANG G X, ZHANG F, et al. Hydrochemical characterization and irrigation suitability of the Ganges Brahmaputra River System: review and assessment[J]. Journal of Mountain Science, 2022, 19(2): 388-402. |
[29] | EATON F M. Significance of carbonate irrigation water[J]. Soil Science, 1950, 69 (2):123-133. |
[30] | ZHI C S, CAO W G, WNAG Z, et al. High-arsenic groundwater in paleochannels of the lower Yellow River, China: distribution and genesis mechanisms[J]. Water, 2021, 13(3): 338-342. |
[31] | REDDY A G S, KUMAR K N. Identification of the hydrogeochemical processes in groundwater using major ion chemistry: a case study of Penna-Chitravathi river basins in Southern India[J]. Environmental Monitoring & Assessment, 2010, 170(1/4):365-382. |
[32] | CAO W G, DONG Q Y, TAN J, et al. The mechanism of Yellow River diversion in controlling high arsenic groundwater distribution since the Late Pleistocene[J]. South-to-North Water Transfers and Water Science and Technology, 2020, 19(1): 140-150. |
[33] | MA L, HUANG T W, QIU H, et al. Hydrogeochemical characteristic evaluation and irrigation suitability assessment of shallow groundwater in Dangshan County, China[J]. Geosciences Journal, 2021, 25(5): 731-748. |
[34] | SMEDLEY P L, KINNIBURGH D G. A review of the source, behaviour and distribution of arsenic in natural waters[J]. Applied Geochemistry, 2002, 17: 517-568. |
[35] | WANG Y X, XIE X J, JOHNSON T M, et al. Coupled iron, sulfur and carbon isotope evidences for arsenic enrichment in groundwater[J]. Journal of Hydrology, 2014, 519: 414-422. |
[36] | LI J X, WANG Y X, GUO W, et al. Iodine mobilization in groundwater system at Datong basin, China: evidence from hydrochemistry and fluorescence characteristics[J]. Science of the Total Environment, 2014, 468/469: 738-45. |
[37] | 曹文庚, 董秋瑶, 谭俊. 河套盆地晚更新世以来黄河改道对高砷地下水分布的控制机制[J]. 南水北调与水利科技, 2020, 19(1): 140-150. |
[38] | KOUZANA L, MAMMOU A B, FELFOUL M S. Seawater intrusion and associated processes: Case of the Korba aquifer (Cap-Bon, Tunisia)[J]. Comptes Rendus Geoscience, 2009, 341(1): 21-35. |
[39] | 王一舒, 荣楠, 侯静, 等. 乌梁素海水体交换特征及影响因素分析[J]. 水电能源科学, 2021, 39(10): 39-42,88. |
[1] | LI Junlei, ZHANG Xujiao, YU Hailin, WANG Yifan, ZHANG Xiangge, LI Qiurong, LI Caihong, ZHANG Lilei. Lajia Ruins in Qinghai Province Might Be Caused by Seismic-induced Liquefaction Mudflows of Sands and Soils: Implication from the Jishishan Earthquake in Gansu Province on December 18, 2023 [J]. Geoscience, 2024, 38(01): 248-259. |
[2] | LI Junlei, ZHANG Xujiao, WANG Yifan, ZHANG Xiangge, WANG Chongge, YUAN Xiaoning, LIU Xinlan, WANG Kaiya, RAO Haoshu, LIU Jiang, QIN Yuan. Route Planning and Ponder of Geoscience Study Travel in Hualong County, Qinghai Province [J]. Geoscience, 2023, 37(05): 1411-1422. |
[3] | ZHANG Zhuo, CHEN Sheming, LIU Futian, GAO Zhipeng, NIU Xiaotong. Enrichment Mechanism of Deep Groundwater with High Fluoride in Coastal Plains: A Case Study of the Luanhe Delta [J]. Geoscience, 2023, 37(04): 925-932. |
[4] | PENG Hongming, WANG Zhanwei, LUO Yinfei, YUAN Youjin, WANG Wanping. Evaluation of Exploitable Groundwater Resources in the Buha River Basin Based on Groundwater Numerical Simulation [J]. Geoscience, 2023, 37(04): 943-953. |
[5] | YAN Baizhong, SUN Jian, CHEN Jiaqi, SUN Fengbo, LI Xiaomeng, FU Qingjie. Suitability Zoning for Groundwater Source Heat Pump Based on Adaptive BPNN-GIS Method [J]. Geoscience, 2023, 37(04): 963-971. |
[6] | ZHANG Li, LIU Fei, YUAN Huiqing, LIANG Kaixuan. Research Progress and Prospect of Groundwater Pump and Treat Technology [J]. Geoscience, 2023, 37(04): 977-985. |
[7] | HU Xinyu, SHEN Yuanyuan, CHU Tingwen, HE Wei, WEI Wei, SHEN Xiaopeng. Variation Regularity of Groundwater Level in the Yongding River Basin Under Ecological Replenishment [J]. Geoscience, 2023, 37(04): 986-993. |
[8] | WANG Chongge, LI Junlei, ZHANG Xujiao, YUAN Xiaoning, ZHANG Xiangge, WANG Yifan, WANG Kaiya, LIU Xinlan, RAO Haoshu, LIU Jiang, HOU Engang. Characteristics and Assessment of Geoheritage of the Proposed Hualong National Geopark in Qinghai Province [J]. Geoscience, 2023, 37(02): 512-528. |
[9] | LIU Xinlan, ZHANG Xujiao, LI Junlei, WANG Yifan, ZHANG Xiangge, YUAN Xiaoning, WANG Kaiya, WANG Chongge, LIU Jiang, HOU Engang. Characteristics and Scientific Values of “Canyon and Danxia” Landform in Hualong County, Qinghai Province [J]. Geoscience, 2023, 37(01): 233-244. |
[10] | WU Fuxian, LI Wei, LI Shuiyun, CHEN Xiaodan, XIE Linshen, CHENG Gong, CHANG Xu, CHEN Chunxing, HAN Long. Experimental Study on Oyster Shell Modification and Combined Oxygen Release Composite Materials for Remediation of Ammonia Nitrogen Pollution in Groundwater [J]. Geoscience, 2022, 36(02): 583-590. |
[11] | NAN Tian, CAO Wengeng, WANG Zhuoran, ZHANG Juanjuan, ZHANG Dong. Optimized Groundwater Numerical Simulation Model with Trending Parameter Field [J]. Geoscience, 2022, 36(02): 591-601. |
[12] | LI Bo, WU Xuan, ZHANG Yifei, XU Congcong, LIU Chunwei, GUAN Qin, LUO Fei. Hydrogeological Features and Groundwater Enrichment Model of Paleogene Zhujiagou Formation in Lower Chaiwen River Valley, Shandong Province [J]. Geoscience, 2021, 35(03): 675-681. |
[13] | LI Haixue, CHENG Xuxue, MA Yuekun, LIU Weipo, ZHOU Bin. Characteristics and Formation Mechanism of Strontium-rich Groundwater in Malian River Drainage Basin, Southern Ordos Basin [J]. Geoscience, 2021, 35(03): 682-692. |
[14] | HUANG Xiangui, PING Jianhua, YU Yan, ZHU Yaqiang, ZHANG Min. Groundwater Renewability Study Based on Tritium (3H) in the Middle and Lower Watershed of Anyang River [J]. Geoscience, 2021, 35(03): 693-702. |
[15] | SUN Zhibin, HU Zhenguo, LIU Fei, YANG Xinmin, ZHAO Bei, JIANG Guoliang. Analysis of Pollution Distribution Characteristics of Soil and Groundwater Around A Chemical Device [J]. Geoscience, 2020, 34(06): 1333-1340. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||