Geoscience ›› 2022, Vol. 36 ›› Issue (02): 552-562.DOI: 10.19657/j.geoscience.1000-8527.2022.007
• Water Resources and Environmental Research • Previous Articles Next Articles
HAO Xin1(), YI Lixin1(
), LI Luxuan2, YANG Yongpeng2
Received:
2021-09-30
Revised:
2022-03-10
Online:
2022-04-10
Published:
2022-06-01
Contact:
YI Lixin
CLC Number:
HAO Xin, YI Lixin, LI Luxuan, YANG Yongpeng. Distribution Coefficient of Ra in Groundwater and Its Determination Technique[J]. Geoscience, 2022, 36(02): 552-562.
研究者 | 测定方法 | Kd/(mL·g-1) | 固体介质类型 |
---|---|---|---|
Nathwani[ | 实验法 | 10.1~1 779.7 | 粉质黏土、砂壤土、粉砂壤土、砂土 |
Vandenhove[ | 实验法 | 12~950 000 | 亚黏土、砂土 |
Kırıs[ | 实验法 | 2 185.9~7 882.9 | 沉积物 |
Vandenhove[ | 实验法 | 38~446 | 砂土、壤土、黏土 |
Gonneea[ | 实验法 | 210~475 | 砂 |
Rama[ | 实验法 | 45 | 沉积物 |
Cable[ | 实验法 | 0.15~296 | 石英砂 |
Briganti[ | 实验法 | 0.1~77.9 | 二氧化锰、沸石、黏土、火山岩 |
Sun[ | 实验法 | 4~85 | 沉积物 |
Krest[ | 实验法 | 120~280 | 泥炭层沉积物 |
Colbert[ | 实验法 | 1.2~6.4 | 长石、角闪石 |
Beck[ | 实验法 | 0.1~1 535 | 砂 |
Li[ | 实验法 | 235和2 100 | 沉积物 |
Kumar[ | 实验法 | 1 000 | 砂土 |
Webster[ | 离子交换法 | 75 | 高岭石、伊利石等黏土矿物 |
Liu[ | 离子交换法 | 30~3 983 | 砂 |
谷河泉[ | 离子交换法 | 24~450 | 粗粉砂、细砂 |
Urso[ | 热动力学吸附平衡计算法 | 42~393 | 亚黏土、砂土 |
Krishnaswa[ | Rn平衡法 | 7 100~12 300 | 结晶岩和长石砂岩 |
Sturchio[ | Rn平衡法 | 1~10 000 | 碳酸盐岩 |
Weaver[ | Rn平衡法 | 16~160 | 砂岩 |
Stackelberg[ | Rn平衡法 | 0.2~1 200.0 | 砂岩和碳酸盐岩 |
Table 1 Compilation of Kd
研究者 | 测定方法 | Kd/(mL·g-1) | 固体介质类型 |
---|---|---|---|
Nathwani[ | 实验法 | 10.1~1 779.7 | 粉质黏土、砂壤土、粉砂壤土、砂土 |
Vandenhove[ | 实验法 | 12~950 000 | 亚黏土、砂土 |
Kırıs[ | 实验法 | 2 185.9~7 882.9 | 沉积物 |
Vandenhove[ | 实验法 | 38~446 | 砂土、壤土、黏土 |
Gonneea[ | 实验法 | 210~475 | 砂 |
Rama[ | 实验法 | 45 | 沉积物 |
Cable[ | 实验法 | 0.15~296 | 石英砂 |
Briganti[ | 实验法 | 0.1~77.9 | 二氧化锰、沸石、黏土、火山岩 |
Sun[ | 实验法 | 4~85 | 沉积物 |
Krest[ | 实验法 | 120~280 | 泥炭层沉积物 |
Colbert[ | 实验法 | 1.2~6.4 | 长石、角闪石 |
Beck[ | 实验法 | 0.1~1 535 | 砂 |
Li[ | 实验法 | 235和2 100 | 沉积物 |
Kumar[ | 实验法 | 1 000 | 砂土 |
Webster[ | 离子交换法 | 75 | 高岭石、伊利石等黏土矿物 |
Liu[ | 离子交换法 | 30~3 983 | 砂 |
谷河泉[ | 离子交换法 | 24~450 | 粗粉砂、细砂 |
Urso[ | 热动力学吸附平衡计算法 | 42~393 | 亚黏土、砂土 |
Krishnaswa[ | Rn平衡法 | 7 100~12 300 | 结晶岩和长石砂岩 |
Sturchio[ | Rn平衡法 | 1~10 000 | 碳酸盐岩 |
Weaver[ | Rn平衡法 | 16~160 | 砂岩 |
Stackelberg[ | Rn平衡法 | 0.2~1 200.0 | 砂岩和碳酸盐岩 |
[1] | ERKAN K, HASAN B. Sediment distribution coefficients (Kd) and bioaccumulation factors (BAF) in biota for natural radionuclides in eastern Black Sea coast of Turkey[J]. Microchemical Journal, 2019, 149:104044. |
[2] | CIFFROY P, DURRIEU G, GARNIER J M. Probabilistic distribution coefficients (Kds) in freshwater for radioisotopes of Ag, Am, Ba, Be, Ce, Co, Cs, I, Mn, Pu, Ra, Ru, Sb, Sr and Th-implications for uncertainty analysis of models simulating the transport of radionuclides in rivers[J]. Journal of Environmental Radioactivity, 2008, 100(9): 785-794. |
[3] | CHEN Z. A case against Kd-based transport models: natural attenuation at a mill tailings site[J]. Computers and Geosciences, 2003, 29(3): 351-359. |
[4] | 刘花台, 郭占荣, 袁晓婕, 等. 用镭同位素评价海水滞留时间及海底地下水排泄[J]. 地球科学--中国地质大学学报, 2013, 38(3):599-606. |
[5] | 郭占荣, 黄磊, 袁晓婕, 等. 用镭同位素评价九龙江河口区的地下水输入[J]. 水科学进展, 2011, 122(1):118-125. |
[6] | 杨英魁, 何炳毅, 孔凡翠, 等. 镭同位素示踪盐湖地下水排放通量--以大柴旦盐湖为例[J]. 地质学报, 2021, 95(7):2238-2248. |
[7] | KIRO Y, WEINSTEIN Y, STARINSKY A, et al. Application of radon and radium isotopes to groundwater flow dynamics: An example from the Dead Sea[J]. Chemical Geology, 2015, 411:155-171. |
[8] | LUO X, JIAO J, WANG X, et al. Groundwater discharge and hydrologic partition of the lakes in desert environment: Insights from stable 18O/2H and radium isotopes[J]. Journal of Hydrology, 2017, 546:189-203 |
[9] | DULAIOVA H, BURNETT C W. Evaluation of the flushing rates of Apalachicola Bay, Florida via natural geochemical tra-cers[J]. Marine Chemistry, 2007, 109(3): 395-408. |
[10] | PETERSON N R, BURNETT C W, MAKOTO T, et al. Determination of transport rates in the Yellow River-Bohai Sea mixing zone via natural geochemical tracers[J]. Continental Shelf Research, 2008, 28(19): 2700-2707. |
[11] | MORRE S W, JOSELENSE D O. Determination of residence time and mixing processes of the Ubatuba, Brazil, inner shelf waters using natural Ra isotopes[J]. Estuarine, Coastal and Shelf Science, 2007, 76(3): 512-521. |
[12] | MORRE S W. Ages of continental shelf waters determined from 223Ra and 224Ra[J]. Journal of Geophysical Research:Oceans, 2000, 105(9): 22117-22122. |
[13] | KIRO Y, YECHIELI Y, VOSS I C, et al. Modeling radium distribution in coastal aquifers during sea level changes: The Dead Sea case[J]. Geochimica et Cosmochimica Acta, 2012, 88: 237-254. |
[14] | RAM A, MORRE S W. Using the radium quartet for evaluating groundwater input and water exchange in salt marshes[J]. Geochimica et Cosmochimica Acta, 1996, 60: 4645-4652. |
[15] | 袁晓婕, 郭占荣, 刘洁, 等. 咸水环境下沉积物中镭的解吸特点[J]. 地球学报, 2014, 35(5):582-588. |
[16] | BECK J A, COCHRAN A M. Controls on solid-solution partitioning of radium in saturated marine sands[J]. Marine Chemistry, 2013, 156: 38-48. |
[17] | VANDENHOVE H, VAN H M, WOUTERS K, et al. Can we predict uranium bioavailability based on soil parameters? Part 1: effect of soil parameters on soil solution uranium concentration[J]. Environmental Pollution, 2007, 145(2): 587-595. |
[18] | RODRIGUEZ B P, LOZANO C J, TOME V, et al. Influence of soil conditions on the distribution coefficients of 226Ra in natural soils[J]. Chemosphere, 2018, 205: 188-193. |
[19] | WEAVER T R, BAHR J. Geochemical evolution in the Cam-brian-Ordovician sandstone aquifer, eastern Wisconsin: 1. Major ion and radionuclide distribution[J]. Groundwater, 1991, 29(3): 350-356. |
[20] | GONNEEA E M, MORRIS J P, DULAIOVA H, et al. New perspectives on radium behavior within a subterranean estuary[J]. Marine Chemistry, 2007, 109(3): 250-267. |
[21] | CABLE E J, SMITH G C, BLANFIRD J W. Dispersivity and distribution coefficients in marine sediments using 3H and 226Ra[J]. Radioprotection, 2009, 44(5): 185-190. |
[22] | LIU Y, JIAO J J, MAO R, et al. Spatial characteristics reveal the reactive transport of radium isotopes (224Ra, 223Ra, and 228Ra) in an intertidal aquifer[J]. Water Resources Research, 2019, 55(12): 10282-10302. |
[23] | 谷河泉, 赵峰, 季韬, 等. 盐度对镭同位素在海南红树林沉积物解吸行为的影响[J]. 海洋与湖沼, 2015, 46(1):65-76. |
[24] | LI Y H, MATHIEU G, BISCAYE P, et al. The flux of 226Ra from estuarine and continental shelf sediments[J]. Earth and Planetary Science Letters, 1977, 37(2): 237-241. |
[25] | WHITEHOUSE G U, JEFFREY M L, DEBBRECHT D J. Differential settling tendencies of clay minerals in saline waters[J]. Clays and Clay Minerals, 1958, 7(1): 1-79. |
[26] | LAURIA C D, GODOY M J. Abnormal high natural radium concentration in surface waters[J]. Journal of Environmental Radioactivity, 2002, 61(2): 159-168. |
[27] | TACHI Y, SHIBUTANI T, SATI H, et al. Experimental and modeling studies on sorption and diffusion of radium in bentonite[J]. Journal of Contaminant Hydrology, 2001, 47(2): 171-186. |
[28] | URSO L, HORMANN V, DIENER A, et al. Modelling partition coefficients of radium in soils[J]. Applied Geochemistry, 2019, 105: 78-86. |
[29] | CHARETTE A M, SHOLKVITZ R E. Oxidative precipitation of groundwater-derived ferrous iron in the subterranean estuary of a coastal bay[J]. Geophysical Research Letters, 2002, 29(10):1444. |
[30] | SPITERI C, REGNIER P, SLOMP P C, et al. pH-dependent iron oxide precipitation in a subterranean estuary[J]. Journal of Geochemical Exploration, 2005, 88(1): 399-403. |
[31] | MORRE S W, REID F D. Extraction of radium from natural waters using manganese-impregnated acrylic fibers[J]. Journal of Geophysical Research, 1973, 78: 8880-8886. |
[32] | NATHWANI J S, PHILLIPS C R. Adsorption of 226Ra by soils in the presence of Ca2+ ions: Specific adsorption (II)[J]. Pergamon, 1979, 8(5): 293-299. |
[33] | VANDENHOVE H, GIL-GARCíA C, RIGOL A, et al. New best estimates for radionuclide solid-liquid distribution coefficients in soils: Part 2. Naturally occurring radionuclides[J]. Journal of Environmental Radioactivity, 2009, 100(9): 697-703. |
[34] | BRIGANTI A, VOLTAGGIO M, TUCCIMEI P, et al. Radium in groundwater hosted in porous aquifers: estimation of retardation factor and recoil rate constant by using NAPLs[J]. SN Applied Sciences, 2020, 2(11):1934. |
[35] | SUN Y, TORGERSEN T. Adsorption-desorption reactions and bioturbation transport of 224Ra in marine sediments: a one-dimensional model with applications[J]. Marine Chemistry, 2001, 74(4): 227-243. |
[36] | KREST M J, HARVEY W J. Using natural distributions of short-lived radium isotopes to quantify groundwater discharge and recharge[J]. Limnology and Oceanography, 2003, 48(1): 290-298. |
[37] | COLBERT L S, HAMMOND E D. Shoreline and seafloor fluxes of water and short-lived Ra isotopes to surface water of San Pedro Bay, CA[J]. Marine Chemistry, 2008, 108(1): 1-17. |
[38] | LI Y H, CHAN L H. Desorption of Ba and 226Ra from river-borne sediments in the Hudson estuary[J]. Earth and Planetary Science Letters, 1979, 43(3): 343-350. |
[39] | KUMAR S, KAR S A, RAWAT N, et al. Distribution coefficients of radionuclides around uranium mining area and effect of different analytical parameters on their determination[J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 304(2): 727-733. |
[40] | WEBSTER T I, HANCOCK J G, MURRAY S A. Modelling the effect of salinity on radium desorption from sediments[J]. Geochimica et Cosmochimica Acta, 1995, 59(12): 2469-2476. |
[41] | KRISHNASWAMI S, GRAUSTEIN C W, TUREKIAN K K, et al. Radium, thorium and radioactive lead isotopes in groundwaters: Application to the in situ determination of adsorption-desorption rate constants and retardation factors[J]. Water Resources Research, 1982, 18(6): 1663-1675. |
[42] | STYRCHIO C N, BANNER L J, BINZ M C, et al. Radium geochemistry of ground waters in Paleozoic carbonate aquifers, midcontinent, USA[J]. Applied Geochemistry, 2001, 16(1): 109-122. |
[43] | STACKELBERG E P, SZABO Z, JURGRNS C B. Radium mobility and the age of groundwater in public-drinking-water supplies from the Cambrian-Ordovician aquifer system, north-central USA[J]. Applied Geochemistry, 2018, 89: 34-48. |
[44] | MOISE T, STARINSKY A, KATZ A, et al. Ra isotopes and Rn in brines and ground waters of the Jordan-Dead Sea Rift Valley: enrichment, retardation, and mixing[J]. Geochimica et Cosmochimica Acta, 2000, 64(14): 2371-2388. |
[45] | LUO S, KU T, ROBACK R, et al. In-situ radionuclide transport and preferential groundwater flows at INEEL (Idaho): decay-series disequilibrium studies[J]. Geochimica et Cosmochimica Acta, 2000, 64(5): 867-881. |
[46] | HORMANN V, FISCHER W H. Estimating the distribution of radionuclides in agricultural soils-Dependence on soil parameters[J]. Journal of Environmental Radioactivity, 2013, 124: 278-286. |
[47] | 谷河泉, 杜金洲, 吴梅桂, 等. 镭延迟符合计数器(RaDeCC)测量海水中的224Ra和223Ra[J]. 海洋环境科学, 2015, 34(4): 570-577. |
[48] | MORRE S W, ARNOLD R. Measurement of 223Ra and 224Ra in coastal waters using a delayed coincidence counter[J]. Journal of Geophysical Research: Oceans, 1996, 101:1321-1329. |
[49] | ELSINGER J R, MOORE S W. 226Ra and 228Ra in the mixing zones of the Pee Dee River-Winyah Bay, Yangtze River and Delaware Bay Estuaries[J]. Estuarine, Coastal and Shelf Science, 1984, 18(6): 601-613. |
[50] | 孔凡翠, 沙占江, 杜金洲, 等. 青海湖西岸镭同位素的解吸和扩散特征[J]. 湖泊科学, 2016, 28(5):1103-1114. |
[51] | 罗浩, 李林蔚, 王锦龙, 等. 钦州湾河流沉积物中镭的解吸行为[J]. 海洋学报, 2019, 41(4):27-41. |
[52] | 林鸿溢, 李映雪. 分形论:奇异的探索[M]. 北京: 北京理工大学出版社, 1992. |
[53] | DRUILLENNEC L T, IELSCH G, BOUR O, et al. Hydrogeological and geochemical control of the variations of 222Rn concentrations in a hard rock aquifer: Insights into the possible role of fracture-matrix exchanges[J]. Applied Geochemistry, 2009, 25(3): 345-356. |
[54] | SUKANYA S, NOBLE J, JOSEPH S. Factors controlling the distribution of radon (222Rn) in groundwater of a tropical mountainous river basin in southwest India[J]. Chemosphere, 2021, 263: 1-14. |
[55] | SANTOS O T, BONOTTO M D. 222Rn, 226 Ra and hydroche-mistry in the Bauru Aquifer System, São José do Rio Preto (SP), Brazil[J]. Applied Radiation and Isotopes, 2014, 86: 109-117. |
[56] | PAYNE E T, BRENDLER V, OCHS M, et al. Guidelines for thermodynamic sorption modelling in the context of radioactive waste disposal[J]. Environmental Modelling and Software, 2013, 42: 143-156. |
[57] | SAJIH M, BRYAN D N, LIVENS R F, et al. Adsorption of radium and barium on goethite and ferrihydrite: A kinetic and surface complexation modelling study[J]. Geochimica et Cosmochimica Acta, 2014, 146: 150-163. |
[58] | DONALD L, ARTHUR R C. The thermodynamic properties of radium[J]. Pergamon, 1985, 49(7): 1593-1601. |
[59] | DACIDSON R M, DICKSON L B. A porous flow model for steady state transport of radium in groundwater[J]. Water Resources Research, 1986, 22(1): 34-44. |
[60] | TRICCA A, PORCELLI D, WASSERBURG J G. Factors controlling the groundwater transport of U, Th, Ra, and Rn[J]. Journal of Earth System Science, 2000, 109(1): 95-108. |
[61] | TRICCA A, WASSERBURG J G, PORCELLI D, et al. The transport of U-and Th-series nuclides in a sandy unconfined aquifer[J]. Geochimica et Cosmochimica Acta, 2001, 65(8): 1187-1210. |
[62] | BECK J A, RAPAGLIA P J, COCHRAN K J, et al. Radium mass-balance in Jamaica Bay, NY: Evidence for a substantial flux of submarine groundwater[J]. Marine Chemistry, 2007, 106(3): 419-441. |
[63] | MORRE S W. Radium isotopes in the Chesapeake Bay[J]. Estuarine, Coastal and Shelf Science, 1981, 12(6): 713-723. |
[1] | WANG Ying, HU Weiwu, CHEN Nan, FENG Chuanping. Effect of the Sand Mixing Ratio of North China Brown Soil on Sewage Purification Performance in Infiltration System [J]. Geoscience, 2023, 37(04): 914-924. |
[2] | PENG Hongming, WANG Zhanwei, LUO Yinfei, YUAN Youjin, WANG Wanping. Evaluation of Exploitable Groundwater Resources in the Buha River Basin Based on Groundwater Numerical Simulation [J]. Geoscience, 2023, 37(04): 943-953. |
[3] | JIANG Zhe, ZHOU Xun, CHEN Binghua, TAO Guangbin, LI Zhuang, CAO Ruwen, SUI Liai. Stable Isotope Characteristics of Geothermal Water and Calculation of Geothermal Reservoir Temperature in the Erdaoqiao Area of Kangding in Sichuan Province [J]. Geoscience, 2022, 36(04): 1183-1192. |
[4] | ZHAO Mingkun, SUN Yajun, DUAN Zhongfeng, SHEN Quanwei, LU Guijing. Geochemical Signature and Genesis of Geothermal Water in Minghuazhen Formation, Luohe, Henan Province [J]. Geoscience, 2022, 36(02): 507-514. |
[5] | LIU Maohan, LIU Haiyan, ZHANG Weimin, WANG Zhen, WU Tonghang, WANG Yugang. REE Concentration and Fractionation in Waters and Sediments from the Northern Branch of Ganjiang River, Poyang Lake Catchment [J]. Geoscience, 2022, 36(02): 389-405. |
[6] | LI Zeyan, CAO Wengeng, WANG Zhuoran, LI Jincheng, REN Yu. Hydrochemical Characterization and Irrigation Suitability Analysis of Shallow Groundwater in Hetao Irrigation District, Inner Mongolia [J]. Geoscience, 2022, 36(02): 418-426. |
[7] | WU Tonghang, LIU Haiyan, ZHANG Weimin, SUN Zhanxue, WANG Zhen, LIU Maohan. Hydrochemical Characteristics and Human Health Risk Assessment in Downstream Ganjiang River of the Poyang Lake Basin [J]. Geoscience, 2022, 36(02): 427-438. |
[8] | HU Zexiang, ZHAO Xueqin, LI Song, LI Junya, WANG Yujue, YANG Luo. Geothermal Hydrogeochemical Characteristics and Genetic Analysis of the Seda-Songpan Fault Block [J]. Geoscience, 2022, 36(02): 484-493. |
[9] | WANG Yixuan, ZHOU Xun, CHEN Mengying, MA Jingru, HAI Kuo, XIAO Meng, SHANG Ziqi, ZHANG Ying, YU Mingxiao. Hydrochemical Characteristics and Formation of Four Hot Springs in Northern Hebei [J]. Geoscience, 2022, 36(02): 494-506. |
[10] | GUO Zhengcai, GUO Huaming, WEI Liang, GAO Zhipeng. Adsorption Characteristics of Cu onto Typical Sewage Irrigated-Soils from Baoding, Hebei Province [J]. Geoscience, 2022, 36(02): 524-532. |
[11] | CAO Yuanyuan, GUO Huaming, GAO Zhipeng. Redox Dynamic Effect on Fluoride and Arsenic Released from Sediments in the Baiyangdian Plain, Hebei [J]. Geoscience, 2022, 36(02): 533-542. |
[12] | YU Lu, ZHENG Tianyuan, ZHENG Xilai. Review of Nitrate Source Apportionment and Nitrogen Isotope Fractionation in Groundwater [J]. Geoscience, 2022, 36(02): 563-573. |
[13] | LIU Wenjun, LIU Tong, HU Weiwu, CHEN Nan, FENG Chuanping. Study on Chinese Maifanite in Promotion of Heterotrophic Denitrification in Water [J]. Geoscience, 2022, 36(02): 574-582. |
[14] | LU Li, CHEN Yudao, DAI Junge, WANG Zhe, ZOU Shengzhang, FAN Lianjie, LIN Yongsheng, ZHOU Changsong. Hydrogeochemical Characteristics and Genesis of Zhuhe Hot Springs in Zhaojue, Sichuan Province [J]. Geoscience, 2021, 35(03): 703-710. |
[15] | HOU Ying, XU Jinming, LI Ping, MAO Junyan, ZHANG Yuanhao, SU Junjie, CHEN Nan, HU Weiwu. Fe/Ag Catalytic Ozonation for the Degradation of Phenol [J]. Geoscience, 2021, 35(03): 711-719. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||