现代地质 ›› 2023, Vol. 37 ›› Issue (06): 1509-1523.DOI: 10.19657/j.geoscience.1000-8527.2023.033
张靓1(), 陈奇1,2(
), 高添1, 李雯1, 钱金龙1,2, 刘俐君1,2, 王长明1,2
收稿日期:
2022-08-27
修回日期:
2023-03-15
出版日期:
2023-12-10
发布日期:
2024-01-24
通讯作者:
陈奇,男,博士研究生,1994年出生,矿物学、岩石学、矿床学专业,主要从事矿床学与矿床地球化学研究。Email: cq94@foxmail.com。
作者简介:
张靓,女,本科生,2001年出生,地质学专业,主要从事矿床学与矿床地球化学研究。Email: 2080905262@qq.com。
基金资助:
ZHANG Liang1(), CHEN Qi1,2(
), GAO Tian1, LI Wen1, QIAN Jinlong1,2, LIU Lijun1,2, WANG Changming1,2
Received:
2022-08-27
Revised:
2023-03-15
Online:
2023-12-10
Published:
2024-01-24
摘要:
近年来,斑岩矿床成矿时间尺度的研究趋向精细化和多样化。利用高精度同位素测年、元素扩散年代学以及热力学数值模拟等方法,斑岩矿床的成矿时间尺度被精确限定在几十年到几十万年之间。石英作为一种在各个成矿阶段脉体中稳定存在的矿物,成为精细研究热液脉冲过程的良好对象。本文以三江特提斯马厂箐斑岩铜钼矿床为研究对象,基于对各阶段脉体关系和矿物组合精细梳理,利用石英中Ti和Al的扩散年代学方法,在限定成矿时间尺度同时也对扩散年代学的适用性提出几点思考。马厂箐矿床的脉体具有多阶段活动特征,据其脉体穿插关系和矿物组成划分出多个热液脉冲阶段。选取样品中可以分别代表两个成矿阶段的A2脉和B3脉石英进行元素扩散模拟。结果显示,早阶段石英CL强度和Ti元素关联度更高,使用Ti扩散模型限定的成矿时间尺度为10.5~57.5 ka;而主成矿阶段CL强度和Al元素关联度更高,使用Al扩散模型限定的成矿时间尺度为522.3 ka。综合分析认为,使用元素扩散年代学限定斑岩成矿的时间尺度可能会受到温压条件、模拟位置、元素测试分辨率和精度等因素的影响,因而需要结合成矿条件和矿物生长特征合理构建扩散模型。
中图分类号:
张靓, 陈奇, 高添, 李雯, 钱金龙, 刘俐君, 王长明. 三江特提斯马厂箐斑岩铜钼矿床成矿时间尺度探讨:来自石英中Ti-Al扩散年代学的约束[J]. 现代地质, 2023, 37(06): 1509-1523.
ZHANG Liang, CHEN Qi, GAO Tian, LI Wen, QIAN Jinlong, LIU Lijun, WANG Changming. Delicate Timescale of the Machangqing Porphyry Copper-Molybdenum Deposit in Sanjiang Tethyan Domain, SW China: Constraints from the Diffusion Chronology of Ti and Al in Quartz[J]. Geoscience, 2023, 37(06): 1509-1523.
图1 东特提斯构造域主要地块分布(a)和金沙江—哀牢山成矿带主要钾侵入体及伴生斑岩矿床分布图(b)(据文献[30]和[56])
Fig.1 Map showing the distribution of major tectonic terranes in the Eastern Tethyan tectonic domain (a) and distributions of major potassic intrusions and associated porphyry deposits (b)(modified after refs.[30] and [56])
图2 马厂箐矿床地质简图((a),据文献[42,57])和A-A'剖面图((b),据文献[58])
Fig.2 Simplified geologic map of the Machangqing deposit (a) (modified after refs.[42] and [57]) and geologic profile along line A-A' at Machangqing deposit (b) (modified after refs.[58] )
图3 马厂箐矿床典型脉体关系手标本照片 (a)石英-钾长石脉(A1脉)切穿石英-黑云母脉(EB脉);(b)—(d)石英-钾长石脉(A1脉)与石英-辉钼矿脉(A2脉);(e)贫矿石英粗脉(B1脉)被石英-辉钼矿(B2脉)切穿;(f)辉钼矿大量富集的脉体(B2脉);(g)石英-黄铜矿-黄铁矿脉(B3脉)切穿贫矿石英脉(B1);(h)石英-辉钼矿脉(B2脉)间隙被后期黄铁矿-石英-方解脉(D脉)充填;Bt.黑云母;Cal.方解石;Ccp.黄铜矿;Kfs.钾长石;Py.黄铁矿;Qtz.石英;Mol.辉钼矿
Fig.3 Representative hand-specimen photographs of typical vein relationship at Machangqing deposit
图4 马厂箐矿床脉体类型镜下照片 (a)石英-钾长石脉(A1脉)切穿石英-黑云母脉(EB脉);(b)石英-钾长石脉(A1脉);(c)石英-辉钼矿脉(A2脉);(d)豆粒状石英为主的A1脉和长条状石英为主的贫矿石英粗脉(B1脉);(e)石英-辉钼矿-黄铜矿-黄铁矿脉(B2脉)裂隙被方解石-黄铁矿脉充填;(f)石英-黄铜矿-黄铁矿脉(B3脉)。矿物代号同图3
Fig.4 Representative photomicrographs of the vein types at Machangqing deposit
图5 马厂箐矿床成矿早阶段(A脉)及成矿主阶段(B脉)热液脉石英阴极发光(CL)图 (a)A1脉中与钾长石共生的石英未发育明显环带;(b)A1脉豆粒状CL亮石英被CL暗带石英切穿;(c)A2脉中与辉钼矿伴生的主要为半自形可见暗带的石英;(d)—(e)B2脉石英显示为蛛网状,未见明显环带;(f)B3脉石英亮度较低,显示良好的生长环带结构。矿物代号同图3
Fig.5 Quartz cathodoluminescence (CL) diagrams of hydrothermal vein in the early-ore A vein and main-stage B vein at Machangqing deposit
图7 马厂箐矿床A2脉石英的钛扩散模拟图 (a)(c)(e)扩散剖面拟合线图; (b)(d)(f)温度误差范围内(±10 ℃)时间尺度误差图解;扩散模拟位置见图6
Fig.7 Titanium diffusion modeling of A2 vein quartz at Machangqing deposit
序号 | 样品号 | 脉体类型 | CL特征 | Al2O3 | SiO2 | K2O | FeO | TiO2 | Total |
---|---|---|---|---|---|---|---|---|---|
1 | MC08B1-5 | A2脉 | 亮 | 0.0166 | 99.54 | 0.0013 | 0 | 0.0072 | 99.57 |
2 | MC08B1-6 | A2脉 | 暗 | 0.0052 | 99.21 | 0.0001 | 0 | 0 | 99.22 |
3 | MC08B1-8 Line 001 | A2脉 | 亮 | 0.0104 | 99.66 | 0.0023 | 0 | 0.0050 | 99.68 |
4 | MC08B1-8 Line 002 | A2脉 | 暗 | 0.0044 | 99.64 | 0.0012 | 0 | 0.0021 | 99.65 |
5 | MC08B1-8 Line 003 | A2脉 | 亮 | 0.0096 | 99.66 | 0 | 0 | 0.0059 | 99.68 |
6 | MC08B1-8 Line 004 | A2脉 | 亮 | 0.0133 | 99.58 | 0.0052 | 0.0028 | 0.0046 | 99.61 |
7 | MC08B1-8 Line 005 | A2脉 | 暗 | 0.0066 | 99.80 | 0.0002 | 0 | 0.0027 | 99.81 |
8 | MC08B1-8 Line 006 | A2脉 | 暗 | 0.0115 | 99.57 | 0.0054 | 0.0028 | 0 | 99.59 |
9 | MC08B1-8 Line 007 | A2脉 | 暗 | 0.0009 | 99.37 | 0.0008 | 0.0006 | 0.0002 | 99.38 |
10 | MC08B1-8 Line 008 | A2脉 | 暗 | 0.0031 | 99.72 | 0.0010 | 0 | 0 | 99.72 |
11 | ZK1103-354 Line 001 | B3脉 | 灰 | 0.3673 | 99.69 | 0.0007 | 0.0007 | 0 | 100.06 |
12 | ZK1103-354 Line 002 | B3脉 | 灰 | 0.3472 | 99.76 | 0.0013 | 0.0001 | 0 | 100.11 |
13 | ZK1103-354 Line 003 | B3脉 | 亮 | 0.4313 | 99.16 | 0.0022 | 0 | 0 | 99.59 |
14 | ZK1103-354 Line 004 | B3脉 | 亮 | 1.0337 | 98.43 | 0.0022 | 0 | 0 | 99.47 |
15 | ZK1103-354 Line 005 | B3脉 | 暗 | 0.1498 | 99.58 | 0.0013 | 0.0024 | 0 | 99.73 |
16 | ZK1103-354 Line 006 | B3脉 | 灰 | 0.1775 | 99.71 | 0.0029 | 0.0003 | 0 | 99.89 |
17 | ZK1103-354 Line 007 | B3脉 | 灰 | 0.1336 | 99.81 | 0.0033 | 0 | 0 | 99.95 |
18 | ZK1103-354 Line 008 | B3脉 | 灰 | 0.1495 | 99.64 | 0.0029 | 0.0103 | 0 | 99.80 |
19 | ZK1103-354 Line 009 | B3脉 | 灰 | 0.1176 | 99.66 | 0.0017 | 0.0005 | 0 | 99.78 |
20 | ZK1103-354 Line 010 | B3脉 | 灰 | 0.0927 | 99.76 | 0.0023 | 0.0040 | 0 | 99.86 |
表1 马厂箐矿床成矿热液脉石英A2和B3脉热液石英脉的EMPA元素含量(%)
Table 1 EMPA of trace elements in hydrothermal quartz veins (A2 and B3 veins) at Machangqing deposit
序号 | 样品号 | 脉体类型 | CL特征 | Al2O3 | SiO2 | K2O | FeO | TiO2 | Total |
---|---|---|---|---|---|---|---|---|---|
1 | MC08B1-5 | A2脉 | 亮 | 0.0166 | 99.54 | 0.0013 | 0 | 0.0072 | 99.57 |
2 | MC08B1-6 | A2脉 | 暗 | 0.0052 | 99.21 | 0.0001 | 0 | 0 | 99.22 |
3 | MC08B1-8 Line 001 | A2脉 | 亮 | 0.0104 | 99.66 | 0.0023 | 0 | 0.0050 | 99.68 |
4 | MC08B1-8 Line 002 | A2脉 | 暗 | 0.0044 | 99.64 | 0.0012 | 0 | 0.0021 | 99.65 |
5 | MC08B1-8 Line 003 | A2脉 | 亮 | 0.0096 | 99.66 | 0 | 0 | 0.0059 | 99.68 |
6 | MC08B1-8 Line 004 | A2脉 | 亮 | 0.0133 | 99.58 | 0.0052 | 0.0028 | 0.0046 | 99.61 |
7 | MC08B1-8 Line 005 | A2脉 | 暗 | 0.0066 | 99.80 | 0.0002 | 0 | 0.0027 | 99.81 |
8 | MC08B1-8 Line 006 | A2脉 | 暗 | 0.0115 | 99.57 | 0.0054 | 0.0028 | 0 | 99.59 |
9 | MC08B1-8 Line 007 | A2脉 | 暗 | 0.0009 | 99.37 | 0.0008 | 0.0006 | 0.0002 | 99.38 |
10 | MC08B1-8 Line 008 | A2脉 | 暗 | 0.0031 | 99.72 | 0.0010 | 0 | 0 | 99.72 |
11 | ZK1103-354 Line 001 | B3脉 | 灰 | 0.3673 | 99.69 | 0.0007 | 0.0007 | 0 | 100.06 |
12 | ZK1103-354 Line 002 | B3脉 | 灰 | 0.3472 | 99.76 | 0.0013 | 0.0001 | 0 | 100.11 |
13 | ZK1103-354 Line 003 | B3脉 | 亮 | 0.4313 | 99.16 | 0.0022 | 0 | 0 | 99.59 |
14 | ZK1103-354 Line 004 | B3脉 | 亮 | 1.0337 | 98.43 | 0.0022 | 0 | 0 | 99.47 |
15 | ZK1103-354 Line 005 | B3脉 | 暗 | 0.1498 | 99.58 | 0.0013 | 0.0024 | 0 | 99.73 |
16 | ZK1103-354 Line 006 | B3脉 | 灰 | 0.1775 | 99.71 | 0.0029 | 0.0003 | 0 | 99.89 |
17 | ZK1103-354 Line 007 | B3脉 | 灰 | 0.1336 | 99.81 | 0.0033 | 0 | 0 | 99.95 |
18 | ZK1103-354 Line 008 | B3脉 | 灰 | 0.1495 | 99.64 | 0.0029 | 0.0103 | 0 | 99.80 |
19 | ZK1103-354 Line 009 | B3脉 | 灰 | 0.1176 | 99.66 | 0.0017 | 0.0005 | 0 | 99.78 |
20 | ZK1103-354 Line 010 | B3脉 | 灰 | 0.0927 | 99.76 | 0.0023 | 0.0040 | 0 | 99.86 |
样号 | 阶段 | 建模 点号 | 扩散距离 (μm) | 浓度梯度 (10-6) | 估测温度 (℃) | 扩散速率D (m2/s) | 最佳拟合时间 (ka) | 时间尺度误差范围 (ka) |
---|---|---|---|---|---|---|---|---|
MC08B1 | 早阶段: A2脉 | A | 10 | 43 | 611 | 3.01×10-24 | 10.5 | +30.8/-7.8 |
B | 10 | 30 | 578 | 1.23×10-24 | 57.5 | +227.8/-45.9 | ||
C | 10 | 35 | 593 | 5.49×10-24 | 40.2 | +86.5/-27.4 | ||
ZK1103-354 | 成矿主阶 段:B3脉 | A | 15 | 1441 | 440 | 3.82×10-25 | 522.3 | +37516.0/-515.1 |
表2 马场箐矿床不同热液石英脉(A2脉和B3脉)时间尺度
Table 2 Timescale of different hydrothermal quartz veins (A2 and B3 veins) in the Machangqing deposit
样号 | 阶段 | 建模 点号 | 扩散距离 (μm) | 浓度梯度 (10-6) | 估测温度 (℃) | 扩散速率D (m2/s) | 最佳拟合时间 (ka) | 时间尺度误差范围 (ka) |
---|---|---|---|---|---|---|---|---|
MC08B1 | 早阶段: A2脉 | A | 10 | 43 | 611 | 3.01×10-24 | 10.5 | +30.8/-7.8 |
B | 10 | 30 | 578 | 1.23×10-24 | 57.5 | +227.8/-45.9 | ||
C | 10 | 35 | 593 | 5.49×10-24 | 40.2 | +86.5/-27.4 | ||
ZK1103-354 | 成矿主阶 段:B3脉 | A | 15 | 1441 | 440 | 3.82×10-25 | 522.3 | +37516.0/-515.1 |
[1] | 陈奇, 王长明, 祝佳萱, 等. 斑岩矿床成矿时间尺度的研究进展: 以藏东玉龙斑岩铜(钼)矿床为例[J]. 岩石学报, 2022, 38(1): 109-123. |
[2] |
CHELLE-MICHOU C, ROTTIER B, CARICCHI L, et al. Tempo of magma degassing and the genesis of porphyry copper deposits[J]. Scientific Reports, 2017, 7: 40566.
DOI |
[3] |
KORGES M, WEIS P, ANDERSEN C. The role of incremental magma chamber growth on ore formation in porphyry copper systems[J]. Earth and Planetary Science Letters, 2020, 552:116584.
DOI URL |
[4] |
LI Y, SELBY D, CONDON D, et al. Cyclic magmatic-hydrothermal evolution in porphyry systems: High-precision U-Pb and Re-Os geochronology constraints on the Tibetan Qulong porphyry Cu-Mo deposit[J]. Economic Geology, 2017, 112(6): 1419-1440.
DOI URL |
[5] |
CHIARADIA M, CARICCHI L. Stochastic modelling of deep magmatic controls on porphyry copper deposit endowment[J]. Scientific Reports, 2017, 7: 44523.
DOI PMID |
[6] |
CHELLE-MICHOU C, CHIARADIA M, SELBY D, et al. High-resolution geochronology of the Coroccohuayco porphyry-skarn deposit, Peru: A rapid product of the Incaic Orogeny[J]. Economic Geology, 2015, 110(2): 423-443.
DOI URL |
[7] |
CHEN Q, WANG C M, BAGAS L, et al. Time scales of multistage magma-related hydrothermal fluids at the giant Yulong porphyry Cu-Mo deposit in eastern Tibet: Insights from titanium diffusion in quartz[J]. Ore Geology Reviews, 2021, 139:104459.
DOI URL |
[8] |
SILLITOE R H. Porphyry copper systems[J]. Economic Geology, 2010, 105(1): 3-41.
DOI URL |
[9] |
WANG C M, ZHU J X, BAGAS L, et al. Whether short-lived or prolonged duration of multistage combined magmatic and hydrothermal events in the giant Chalukou porphyry Mo deposit, China[J]. Ore Geology Reviews, 2022, 140:104576.
DOI URL |
[10] |
CHIARADIA M, SCHALTEGGER U, SPIKINGS R, et al. How accurately can we date the duration of magmatic-hydrothermal events in porphyry systems? : An invited paper[J]. Economic Geology, 2013, 108(4): 565-584.
DOI URL |
[11] |
WARK D A, HILDRETH W, SPEAR F S, et al. Pre-eruption recharge of the Bishop magma system[J]. Geology, 2007, 35(3): 235-235.
DOI URL |
[12] |
CHANG J, LI J W, SELBY D, et al. Geological and chronological constraints on the long-lived Eocene Yulong porphyry Cu-Mo deposit, eastern Tibet, China: Implications for lifespan of magmatic-hydrothermal processes forming giant and supergiant porphyry Cu deposits[J]. Economic Geology, 2017, 112: 1719-1746.
DOI URL |
[13] | 王潇逸, 张静, 边晓龙, 等. 云南马厂箐铜钼矿床石榴子石LA-ICP-MS原位U-Pb定年及成分研究[J]. 岩石学报, 2022, 38(1): 124-142. |
[14] |
MATTHEWS N E, HUBER C, PYLE D M, et al. Timescales of magma recharge and reactivation of largesilicic systems from Ti diffusion in quartz[J]. Journal of Petrology, 2012, 53(7): 1385-1416.
DOI URL |
[15] |
RUSK B G, LOWERS H A, REED M H. Trace elements in hydrothermal quartz: Relationships to cathodoluminescent textures and insights into vein formation[J]. Geology, 2008, 36(7): 547-550.
DOI URL |
[16] |
HOU Z Q, ZHANG H R, PAN X F, et al. Porphyry Cu (-Mo-Au) deposits related to melting of thickenedmafic lower crust: Examples from the eastern Tethyan metallogenic domain[J]. Ore Geology Reviews, 2011, 39(1/2): 21-45.
DOI URL |
[17] |
HUANG R F, ANDREAS A. The titanium-in-quartz (TitaniQ) thermobarometer: A critical examination and re-calibration[J]. Geochimica et Cosmochimica Acta, 2012, 84(1): 75-89.
DOI URL |
[18] |
CHERNIAK D J, WATSON E B, WARK D A. Ti diffusion in quartz[J]. Chemical Geology, 2007, 236(1/2): 65-74.
DOI URL |
[19] |
JOLLANDS M C, BLOCH E, MÜNTENER O. New Ti-in-quartz diffusivities reconcile natural Ti zoning with time scales and temperatures of upper crustal magma reservoirs[J]. Geology, 2020, 48(7): 654-657.
DOI URL |
[20] |
LAWLEY C J M, SELBY D. Re-Os geochronology of quartz-enclosed ultrafine molybdenite: Implications for ore geochronology[J]. Economic Geology, 2012, 107(7): 1499-1505.
DOI URL |
[21] |
MERCER C N, REED M H, MERCER C M. Time scales of porphyry Cu deposit formation: Insights from titanium diffusion in quartz[J]. Economic Geology, 2015, 110(3): 587-602.
DOI URL |
[22] |
WEIS P, DRIESNER T, HEINRICH C A. Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes[J]. Science, 2012, 338: 1613-1616.
DOI PMID |
[23] | 马倩, 杨岳衡, 赵志丹, 等. 云南哀牢山—红河剪切带新生代富碱侵入岩中榍石年代学和地球化学特征[R]. 岩石学报, 2020, 36(9): 2751-64. |
[24] |
侯增谦, 杨志明, 王瑞, 等. 再论中国大陆斑岩Cu-Mo-Au矿床成矿作用[J]. 地学前缘, 2020, 27(2): 20-44.
DOI |
[25] | 张弢, 沈忠义, 吕晓宏, 等. 云南马厂箐铜钼矿床碱性杂岩体期次划分及LA-ICP-MS锆石U-Pb定年[J]. 矿产勘查, 2013, 4(6): 662-670. |
[26] |
YANG L F, WANG C M, BAGAS L, et al. Mesozoic-Cenozoic sedimentary rock records and applications for provenance of sediments and affiliation of the Simao Terrane, SW China[J]. International Geology Review, 2019, 61(18): 2291-2312.
DOI URL |
[27] |
CHIARADIA M, VALLANCE J, FONTBOTE L, et al. U-Pb, Re-Os, and 40Ar/39Ar geochronology of the Nambija Au skarn and Pangui porphyry Cu deposits, Ecuador: Implications for the Jurassic metallogenic belt of the Northern Andes[J]. Mineralium Deposita, 2009, 44(4): 371-387.
DOI URL |
[28] |
HART-MADIGAN L, WILKINSON J, LASALLE S, et al. U-Pb dating of hydrothermal titanite resolves multiple phases of propylitic alteration in the Oyu Tolgoi porphyry district, Mongolia[J]. Economic Geology, 2020, 115(8): 1605-1618.
DOI URL |
[29] |
LIU Q F, SUN X M, LI D F, et al. Geochronology and fluid evolution of the Machangqing Cu-Mo polymetallic deposit, western Yunnan, SW China[J]. Ore Geology Reviews, 2020, 127: 103828.
DOI URL |
[30] | 王长明, 陈晶源, 杨立飞, 等. 三江特提斯兰坪盆地构造-流体-成矿系统[J]. 岩石学报, 2017, 33(7): 1957-1977. |
[31] |
HOU Z Q, ZAW K, PAN G T, et al. Sanjiang Tethyan metallogenesis in SW China: Tectonic setting, metallogenic epochs and deposit types[J]. Ore Geology Reviews, 2007, 31(1/2/3/4): 48-87.
DOI URL |
[32] |
DENG J, WANG Q F, LI G J, et al. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China[J]. Earth-Science Reviews, 2014, 138: 268-299.
DOI URL |
[33] |
DU B, WANG C M, YANG L F, et al. Petrogenesis of the Cenozoic Lianhuashan pluton (SW China): Constrained by zircon U-Pb geochronology, Lu-Hf isotope, and geochemistry[J]. Geological Journal, 2020, 55(5): 3377-3400.
DOI URL |
[34] |
WANG C M, YANG L F, BAGAS L, et al. Mineralization processes at the giant Jinding Zn-Pb deposit, Lanping Basin, Sanjiang Tethys Orogen: Evidence from in-situ trace element analysis of pyrite and marcasite[J]. Geological Journal, 2018, 53(4): 1279-1294.
DOI URL |
[35] |
CHEN Q, WANG C M, BAGAS L, et al. Petrogenesis of the Late Triassic Biluoxueshan granitic pluton, SW China: Implications for the tectonic evolution of the Paleo-Tethys Sanjiang Orogen[J]. Journal of Asian Earth Sciences, 2021, 211:104700.
DOI URL |
[36] |
HOU Z Q, YANG Z M, LU Y J, et al. A genetic linkage between subduction-and collision-related porphyry Cu deposits in continental collision zones[J]. Geology, 2015, 43(3): 247-250.
DOI URL |
[37] |
GAO S, LING W L, QIU Y M, et al. Contrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze craton: Evidence for cratonic evolution and redistribution of REE during crustal anatexis[J]. Geochimica et Cosmochimica Acta, 1999, 63(13/14): 2071-2088.
DOI URL |
[38] |
WANG C M, DENG J, BAGAS L, et al. Zircon Hf-isotopic mapping for understanding crustal architecture and metallogenesis in the Eastern Qinling Orogen[J]. Gondwana Research, 2017, 50: 293-310.
DOI URL |
[39] | ZHOU Y, HOU Z Q, ZHENG Y C, et al. Granulite xenoliths in Liuhe area: Evidence for composition and genetic mechanism of the lower crust from the Neoproterozoic to Cenozoic[J]. Acta Petrologica Sinica, 2017, 33(7): 2143-2160. |
[40] |
YANG M M, ZHAO F F, LIU X F, et al. Contribution of magma mixing to the formation of porphyry-skarn mineralization in a post-collisional setting: The Machangqing Cu-Mo-(Au) deposit, Sanjiang tectonic belt, SW China[J]. Ore Geology Reviews, 2020, 122: 103518.
DOI URL |
[41] |
WANG J H, YIN A, HARRISON T M, et al. A tectonic model for Cenozoic igneous activities in the eastern Indo-Asian collision zone[J]. Earth and Planetary Science Letters, 2001, 188(1/2): 123-133.
DOI URL |
[42] |
LU Y J, KERRICH R, MCCUAIG T C, et al. Geochemical,Sr-Nd-Pb, and zircon Hf-O isotopic compositions of Eocene-Oligocene shoshonitic and potassic adakite-like felsic intrusions in western Yunnan, SW China: Petrogenesis and tectonic implications[J]. Journal of Petrology, 2013, 54(7): 1309-1348.
DOI URL |
[43] |
ZHOU Y, XU B, HOU Z Q, et al. Petrogenesis of Cenozoic high-Sr/Y shoshonites and associated mafic microgranular enclaves in an intracontinental setting: Implications for porphyry Cu-Au mineralization in western Yunnan, China[J]. Lithos, 2019, 324/325: 39-54.
DOI URL |
[44] |
CHUNG S L, LEE T Y, LO C H, et al. Intraplate extension prior to continental extrusion along the Ailao Shan-Red River shear zone[J]. Geology, 1997, 25(4): 311-314.
DOI URL |
[45] |
CHUNG S L, LO C H, LEE T Y, et al. Diachronous uplift of the Tibetan plateau starting 40 Ma ago[J]. Nature, 1998, 394: 769-773.
DOI |
[46] |
BI X W, HU R Z, CORNELL D H. The alkaline porphyry associated Yao’an gold deposit, Yunnan, China: Rare earth element and stable isotope evidence for magmatic-hydrothermal ore formation[J]. Mineralium Deposita, 2004, 39(1): 21-30.
DOI URL |
[47] |
HU R Z, BURNARD P G, BI X W, et al. Helium and argon isotope geochemistry of alkaline intrusion-associated gold and copper deposits along the Red River-Jinshajiang fault belt, SW China[J]. Chemical Geology, 2004, 203(3/4): 305-317.
DOI URL |
[48] |
XU L L, BI X W, HU R Z, et al. Relationships between porphyry Cu-Mo mineralization in the Jinshajiang-Red River metallogenic belt and tectonic activity: Constraints from zircon U-Pb and molybdenite Re-Os geochronology[J]. Ore Geology Reviews, 2012, 48: 460-473.
DOI URL |
[49] | WANG D H, QU W J, LI Z W. The mineralization concentration stage of Jinshanjiang-Honghe metallogenetic belt porphyry copper, molybdenum deposit[J]. Science in China Series D-Earth Sciences, 2004, 34: 345-349. |
[50] |
HE W Y, MO X X, HE Z H, et al. The geology and mineralogy of the Beiya skarn gold deposit in Yunnan, southwest China[J]. Economic Geology, 2015, 110(6): 1625-1641.
DOI URL |
[51] |
DENG J, WANG Q F, LI G J, et al. Geology and genesis of the giant Beiya porphyry-skarn gold deposit, northwestern Yangtze Block, China[J]. Ore Geology Reviews, 2015, 70: 457-485.
DOI URL |
[52] | 郭晓东. 云南省马厂箐斑岩型铜钼金矿床岩浆作用及矿床成因[D]. 北京: 中国地质大学(北京), 2009. |
[53] | 孙诺. 金沙江—哀牢山富碱斑岩成矿带典型矿床成矿模式[D]. 北京: 中国地质大学(北京), 2015. |
[54] | 黄明. 滇西宝兴厂斑岩型铜钼矿床成矿流体演化[D]. 北京: 中国地质大学(北京), 2014. |
[55] | 杨蜜蜜. 后碰撞背景下壳-幔岩浆混合作用对斑岩型矿床成矿作用的贡献: 以滇西马厂箐铜钼(金)矿床为例[D]. 成都: 成都理工大学, 2020. |
[56] |
HE W Y, MO X X, YANG L Q, et al. Origin of the Eocene porphyries and mafic microgranular enclaves from the Beiya porphyry Au polymetallic deposit, western Yunnan, China: Implications for magma mixing/mingling and mineralization[J]. Gondwana Research, 2016, 40:230-248.
DOI URL |
[57] |
FU Y, SUN X M, HOLLINGS P, et al. Geochronology and trace element geochemistry oftitanite in the Machangqing Cu-Mo-dominated polymetallic deposit, Yunnan Province, southwest China[J]. Journal of Asian Earth Sciences, 2018, 158: 398-414.
DOI URL |
[58] |
THOMAS J B, BRUCE WATSON E, SPEAR F S, et al. Titani Q under pressure: The effect of pressure and temperature on the solubility of Ti in quartz[J]. Contributions to Mineralogy and Petrology, 2010, 160(5): 743-759.
DOI URL |
[59] |
ZHANG C, LI X Y, ALMEEV R R, et al. Ti-in-quartz thermobarometry and TiO2 solubility in rhyolitic melts: New experiments and parametrization[J]. Earth and Planetary Science Letters, 2020, 538: 116213.
DOI URL |
[60] |
MERCER C N, REED M H. Porphyry Cu-Mostockwork formation by dynamic, transient hydrothermal pulses: Mineralogic insights from the deposit at butte, Montana[J]. Economic Geology, 2013, 108(6): 1347-1377.
DOI URL |
[61] |
MAO W, RUSK B, YANG F C, et al. Physical and chemical evolution of the Dabaoshan porphyry Mo deposit, South China: Insights from fluid inclusions, cathodoluminescence, and trace elements in quartz[J]. Economic Geology, 2017, 112(4): 889-918.
DOI URL |
[62] |
CERNUSCHI F, DILLES J H, GROCKE S B, et al. Rapid formation of porphyry copper deposits evidenced by diffusion of oxygen and titanium in quartz[J]. Geology, 2018, 46(7): 611-614.
DOI URL |
[63] | CARSLAW H S, JAEGER J C. Linear flow of heat: The infinite and semi-infinite solid, Conduction of Heat in Solids[M]. London: Oxford University Press, 1946. |
[64] | CRANK J. The mathematics of diffusion (2nd ed.)[M]. Oxford: Clarendon Press, 1976. |
[65] |
TAILBY N D, CHERNIAK D J, WATSON E B. Al diffusion in quartz[J]. American Mineralogist, 2018, 103(6): 839-847.
DOI URL |
[66] |
LANDTWING M R, PETTKE T. Relationships between SEM-cathodoluminescence response and trace-element composition of hydrothermal vein quartz[J]. American Mineralogist, 2005, 90(1): 122-131.
DOI URL |
[67] |
MÜLLER A, REN É M, BEHR H J, et al. Trace elements andcathodoluminescence of igneous quartz in topaz granites from the Hub Stock (Slavkovský Les Mts., Czech Republic)[J]. Mineralogy and Petrology, 2003, 79(3/4): 167-191.
DOI URL |
[68] |
MORGAN D J, BLAKE S, ROGERS N W, et al. Time scales of crystal residence and magma chamber volume from modelling of diffusion profiles in phenocrysts: Vesuvius 1944[J]. Earth and Planetary Science Letters, 2004, 222(3/4): 933-946.
DOI URL |
[69] |
RUSK B G, REED M H, DILLES J H, et al. Intensity of quartzcathodoluminescence and trace-element content in quartz from the porphyry copper deposit at Butte, Montana[J]. American Mineralogist, 2006, 91(8/9): 1300-1312.
DOI URL |
[70] |
WARK D A, WATSON E B. TitaniQ: A titanium-in-quartz geothermometer[J]. Contributions to Mineralogy and Petrology, 2006, 152(6): 743-754.
DOI URL |
[71] | XU B, HOU Z Q, WILLIAM L G, et al. Elevated magmatic Chlorine and Sulfur concentrations in the Eocene-Oligocene Machangqing Cu-Mo Porphyry Systems[J]. Society of Economic Geologists, 2022, 24(2):257-276. |
[72] |
YANG M M, ZHAO F F, LIU X F, et al. Petrogenesis and geodynamic setting of granitoids at Machangqing Cu-Mo (Au) deposit, western Yangtze craton, southwestern China: Constraints from zircon U-Pb and molybdenite Re-Os geochronology, Lu-Hf isotopes, and geochemistry[J]. Canadian Journal of Earth Sciences, 2020, 57(9): 1066-1088.
DOI URL |
[73] |
SUN M Y, MONECKE T, REYNOLDS T J, et al. Understanding the evolution of magmatic-hydrothermal systems based on microtextural relationships, fluid inclusion petrography, and quartz solubility constraints: Insights into the formation of the Yulong Cu-Mo porphyry deposit, eastern Tibetan Plateau, China[J]. Mineralium Deposita, 2021, 56(5): 823-842.
DOI |
[74] |
LI Y, ALLEN M B, LI X H. Millennial pulses of ore formation and an extra-high Tibetan Plateau[J]. Geology, 2022, 50(6): 665-669.
DOI URL |
[1] | 王瑞廷, 李青锋, 秦西社, 张斌, 王博闻, 冀月飞. 南秦岭太白河地区石英二长闪长岩锆石U-Pb同位素年代学、地球化学及其地质意义[J]. 现代地质, 2023, 37(03): 562-572. |
[2] | 付嵩, 李社宏, 马文恩, 蒋超, 谢卓麟, 吴金铭, 胡煦阚, 张紫桐. 广西龙围地区石英脉型铜矿中硫化物Re-Os测年及意义[J]. 现代地质, 2022, 36(04): 1146-1154. |
[3] | 杨培奇, 刘敬党, 刘淑梅, 杨飞, 杨孝伟. 内蒙古乌拉特中旗大乌淀石墨矿床石英片岩地球化学特征与SHRIMP锆石U-Pb年代学[J]. 现代地质, 2022, 36(02): 672-681. |
[4] | 第鹏飞, 汤庆艳, 刘聪, 宋宏, 张家和, 刘东晓, 王玉玺, 蒲万峰. 西秦岭夏河—合作地区早子沟和加甘滩金矿床石英微量元素特征及意义[J]. 现代地质, 2021, 35(06): 1608-1621. |
[5] | 逯永卓, 韩杰, 王明, 余福承, 王泰山, 袁博武. 柴达木盆地北缘三角顶金矿床成矿特征及其找矿意义[J]. 现代地质, 2021, 35(05): 1363-1370. |
[6] | 叶枫, 董国臣, 任建勋, 龚杰立, 李猛兴, 王权, 张兆琪, 赵三波. 山西黄榆沟岩体锆石U-Pb年代学、地球化学特征及其地质意义[J]. 现代地质, 2021, 35(03): 787-797. |
[7] | 姚宁, 龚庆杰, 王旭阳, 晁岳德, 彭程, 吴媛, 刘宁强. 北京怀柔地区白云岩蚀变过程中的元素含量两端元混合模型[J]. 现代地质, 2020, 34(05): 945-956. |
[8] | 袁伟恒, 顾雪祥, 章永梅, 杜泽忠, 于晓飞, 孙海瑞, 吕鑫. 甘肃北山地区小西弓金矿床成矿流体性质及矿床成因[J]. 现代地质, 2020, 34(03): 554-568. |
[9] | 岳相元, 杨波, 周雄, 龚大兴, 叶亚康, 谭红旗, 周玉, 朱志敏. 川西地区热达门石英闪长岩锆石U-Pb年龄和岩石地球化学特征:岩石成因与构造意义[J]. 现代地质, 2019, 33(05): 1015-1024. |
[10] | 陈瑞琛, 陈剑, 崔之久. 混杂堆积石英砂表面特征研究[J]. 现代地质, 2019, 33(05): 1128-1136. |
[11] | 刘庆山, 魏玉帅, 张宝森, 潘婉莹. 古新世特提斯喜马拉雅南亚带石英砂岩成因及其构造意义:以藏南岗巴地区古新统基堵拉组为例[J]. 现代地质, 2019, 33(03): 561-573. |
[12] | 郭林楠, 黄春梅, 张良, 陈炳翰, 李瑞红, 刘跃. 胶东罗山金矿床成矿流体来源:蚀变岩型和石英脉型矿石载金黄铁矿稀土与微量元素特征约束[J]. 现代地质, 2019, 33(01): 121-136. |
[13] | 黄岗,牛广智,王新录,郭俊,宇峰. 新疆东准噶尔早志留世弧岩浆岩:来自姜格尔库都克石英二长闪长岩岩石地球化学、锆石UPb年龄和Hf同位素证据[J]. 现代地质, 2016, 30(6): 1219-1233. |
[14] | 张龙,李胜荣,朱随洲,刘冉,李文涛,宋英昕,王碧雪,崔秋波,闵祥吉,王春. 胶东望儿山金矿床石英热释光和晶胞参数特征及其找矿意义[J]. 现代地质, 2016, 30(4): 792-801. |
[15] | 王文博,张静,陈良,李雷,苏蔷薇,王琦崧. 豫西熊耳山地区上道回钼矿床地质及流体包裹体研究[J]. 现代地质, 2016, 30(2): 328-340. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||