现代地质 ›› 2019, Vol. 33 ›› Issue (03): 561-573.DOI: 10.19657/j.geoscience.1000-8527.2019.03.09
刘庆山1,2(), 魏玉帅1,2(
), 张宝森1,2, 潘婉莹1,2
收稿日期:
2018-07-24
修回日期:
2019-04-25
出版日期:
2019-06-23
发布日期:
2019-06-24
通讯作者:
魏玉帅
作者简介:
魏玉帅,男,副教授,1975 年出生,古生物学与地层学专业,主要从事青藏高原地质研究。Email: cdutwys@163.com。基金资助:
LIU Qingshan1,2(), WEI Yushuai1,2(
), ZHANG Baosen1,2, PAN Wanying1,2
Received:
2018-07-24
Revised:
2019-04-25
Online:
2019-06-23
Published:
2019-06-24
Contact:
WEI Yushuai
摘要:
特提斯喜马拉雅南亚带作为印度被动大陆北缘的主要构造单元,相较于其他类似构造单元发育着多套特殊的石英砂岩,意味着被动大陆边缘物源区陆源碎屑供应能力的多次变化,而引起印度被动大陆北缘石英砂岩沉积的构造背景和构造意义尚不明确。以特提斯喜马拉雅南亚带的岗巴地区古新统基堵拉组石英砂岩为例,通过砂岩碎屑成分分析、古流向恢复、重矿物分析和碎屑锆石年代学方法,对基堵拉组石英砂岩的沉积学及物源区特征,以及蕴含的成因和构造意义进行探讨。从沉积相分析结果来看,在早古新世岗巴地区所属的板块为印度被动大陆边缘,处于新特提斯洋的海岸线附近,以滨岸相为主,显示了一种浅海陆棚到陆相的变化。从砂岩岩相学的结果分析,基堵拉组的陆源碎屑物主要是成熟度极高的石英砂岩,同时古水流近NNE方向。从碎屑锆石年代学数据分析结果可知,基堵拉组的碎屑锆石年龄特征与早白垩世德干高原地区相吻合。故认为基堵拉组石英砂岩的形成是由于印度北缘的陆源碎屑供应量突然增多与被动大陆边缘物源区构造抬升导致,而引起被动大陆边缘物源区构造抬升的原因主要与德干大火成岩省形成相关。最终认为石英砂岩的发育成因与印度大陆北缘德干大火成岩省形成时构造隆升所导致的稳定克拉通再活化有关。
中图分类号:
刘庆山, 魏玉帅, 张宝森, 潘婉莹. 古新世特提斯喜马拉雅南亚带石英砂岩成因及其构造意义:以藏南岗巴地区古新统基堵拉组为例[J]. 现代地质, 2019, 33(03): 561-573.
LIU Qingshan, WEI Yushuai, ZHANG Baosen, PAN Wanying. Genesis and Tectonic Significance of Quartz Sandstones in the Southern Subzone of Tethyan Himalayas: A Case Study on the Paleocene Jidula Formation in Gamba Area, Southern Tibet[J]. Geoscience, 2019, 33(03): 561-573.
图1 喜马拉雅位置(a)、藏南地区区域地质简图(b)(修改自文献[2])和研究区地质简图(c)(修改自文献[13])
Fig.1 Location of Himalayas (a), geologic map of southern Tibet (b)(modified from reference[2]) and geologic map of the study area (c)(modified from reference[13])
图2 藏南岗巴地区基堵拉组实测剖面综合地层柱状图(宗山组与宗谱组沉积环境据文献[10])
Fig.2 Integrated stratigraphy of the measured section of the Jidula Formation in Gamba area of southern Tibet
样品 名称 | 采样 米数 /m | 分析 质量 /g | 重矿物 总量 /mg | Zr | Ru | Tur | Ap | Mon | Sph | Amp | Px | Grt | Ep | An | Cr-spl | Leu | Py | Clp | Hem | N.I. | tHMC | ZRT | RuZi |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
16GJ01S1 | 0 | 440 | 1438.0 | 306.6 | 79.7 | 0 | 0 | 24.4 | 61.1 | 0 | 0 | 0 | 0 | 10.8 | 38.1 | 249.7 | 0 | 0 | 557.3 | 74.6 | 1.1 | 74.2 | 26.0 |
16GJ01S2 | 5.0 | 790 | 492.0 | 234.8 | 34.3 | 0 | 0 | 4.5 | 13.0 | 0 | 0 | 0 | 0 | 0 | 1.9 | 2.8 | 0 | 0 | 163.0 | 37.7 | 9.4 | 93.3 | 14.6 |
16GJ01S3 | 9.0 | 510 | 52.0 | 25.6 | 4.5 | 0 | 0 | 0 | 0.3 | 0 | 0 | 0 | 0 | 0.3 | 0.1 | 7.0 | 0 | 0 | 9.3 | 5.0 | 58.1 | 97.8 | 17.5 |
16GJ02S1 | 25.0 | 240 | 183.0 | 65.9 | 30.4 | 9.3 | 0 | 0 | 0.1 | 0 | 0 | 0 | 0 | 7.8 | 0 | 38.3 | 0 | 0 | 1.3 | 13.9 | 8.1 | 93.0 | 46.2 |
16GJ02S2 | 26.0 | 210 | 35.0 | 3.3 | 2.1 | 7.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2.5 | 0 | 0.9 | 0 | 0 | 14.6 | 4.5 | 25.8 | 83.3 | 62.4 |
16GJ03S1 | 37.0 | 250 | 81.0 | 11.7 | 8.5 | 10.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16.5 | 0 | 3.9 | 0 | 0 | 21.6 | 8.4 | 17.9 | 64.9 | 72.1 |
16GJ04S1 | 41.0 | 420 | 714.0 | 13.7 | 17.6 | 17.5 | 0 | 1.5 | 0 | 0 | 0 | 0 | 0 | 38.7 | 0 | 3.8 | 0 | 0 | 551.3 | 69.9 | 0.7 | 54.8 | 127.8 |
16GJ05S1 | 48.0 | 190 | 10 | 3.1 | 2.5 | 0.6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.2 | 0 | 1.7 | 0 | 0 | 0.2 | 0.8 | 139.8 | 83.7 | 78.9 |
16GJ06S1 | 53.0 | 400 | 26.0 | 4.8 | 3.9 | 2.8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.4 | 0 | 4.3 | 0 | 0 | 5.9 | 2.9 | 76.7 | 89.1 | 80.9 |
16GJ07S1 | 63.0 | 840 | 193.0 | 36.7 | 30.4 | 9.6 | 0 | 0.3 | 0 | 0 | 0 | 0 | 0 | 6.7 | 0 | 56.9 | 0 | 0 | 38.2 | 14.9 | 18.9 | 91.7 | 82.9 |
16GJ08S1 | 73.0 | 330 | 155.0 | 15.6 | 19.0 | 2.3 | 0 | 0 | 0 | 0 | 0 | 0 | 0.2 | 25.5 | 0 | 33.2 | 0 | 0 | 46.8 | 12.5 | 8.6 | 58.9 | 121.9 |
16GJ09S1 | 137.0 | 590 | 32.0 | 7.3 | 3.9 | 2.8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3.2 | 0 | 5.2 | 0 | 0 | 6.6 | 3.1 | 98.7 | 81.5 | 54.1 |
16GJ10S1 | 148.0 | 530 | 182.0 | 6.7 | 3.9 | 10.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11.8 | 0 | 2.5 | 0 | 0 | 99.5 | 47.2 | 5.2 | 64.1 | 58.2 |
16GJ11S1 | 155.0 | 320 | 295.0 | 25.2 | 20.3 | 9.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 43.2 | 0 | 30.1 | 0 | 0 | 80.4 | 54.5 | 3.6 | 55.8 | 80.5 |
16GJ12S1 | 163.0 | 450 | 297.0 | 24.1 | 14.5 | 23.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 18.2 | 0 | 35.8 | 0 | 0 | 151.0 | 30.5 | 4.1 | 77.2 | 60.2 |
16GJ13S1 | 167.0 | 310 | 1297.0 | 91.0 | 9.8 | 0 | 0 | 0 | 1.5 | 0 | 0 | 0 | 0 | 20.1 | 0 | 422.9 | 0 | 0 | 641.1 | 110.6 | 0.2 | 82.4 | 10.7 |
表1 岗巴地区基堵拉组样品矿物成分
Table 1 Mineral composition of samples from the Jidula Formation in Gamba, southern Tibet
样品 名称 | 采样 米数 /m | 分析 质量 /g | 重矿物 总量 /mg | Zr | Ru | Tur | Ap | Mon | Sph | Amp | Px | Grt | Ep | An | Cr-spl | Leu | Py | Clp | Hem | N.I. | tHMC | ZRT | RuZi |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
16GJ01S1 | 0 | 440 | 1438.0 | 306.6 | 79.7 | 0 | 0 | 24.4 | 61.1 | 0 | 0 | 0 | 0 | 10.8 | 38.1 | 249.7 | 0 | 0 | 557.3 | 74.6 | 1.1 | 74.2 | 26.0 |
16GJ01S2 | 5.0 | 790 | 492.0 | 234.8 | 34.3 | 0 | 0 | 4.5 | 13.0 | 0 | 0 | 0 | 0 | 0 | 1.9 | 2.8 | 0 | 0 | 163.0 | 37.7 | 9.4 | 93.3 | 14.6 |
16GJ01S3 | 9.0 | 510 | 52.0 | 25.6 | 4.5 | 0 | 0 | 0 | 0.3 | 0 | 0 | 0 | 0 | 0.3 | 0.1 | 7.0 | 0 | 0 | 9.3 | 5.0 | 58.1 | 97.8 | 17.5 |
16GJ02S1 | 25.0 | 240 | 183.0 | 65.9 | 30.4 | 9.3 | 0 | 0 | 0.1 | 0 | 0 | 0 | 0 | 7.8 | 0 | 38.3 | 0 | 0 | 1.3 | 13.9 | 8.1 | 93.0 | 46.2 |
16GJ02S2 | 26.0 | 210 | 35.0 | 3.3 | 2.1 | 7.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2.5 | 0 | 0.9 | 0 | 0 | 14.6 | 4.5 | 25.8 | 83.3 | 62.4 |
16GJ03S1 | 37.0 | 250 | 81.0 | 11.7 | 8.5 | 10.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16.5 | 0 | 3.9 | 0 | 0 | 21.6 | 8.4 | 17.9 | 64.9 | 72.1 |
16GJ04S1 | 41.0 | 420 | 714.0 | 13.7 | 17.6 | 17.5 | 0 | 1.5 | 0 | 0 | 0 | 0 | 0 | 38.7 | 0 | 3.8 | 0 | 0 | 551.3 | 69.9 | 0.7 | 54.8 | 127.8 |
16GJ05S1 | 48.0 | 190 | 10 | 3.1 | 2.5 | 0.6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.2 | 0 | 1.7 | 0 | 0 | 0.2 | 0.8 | 139.8 | 83.7 | 78.9 |
16GJ06S1 | 53.0 | 400 | 26.0 | 4.8 | 3.9 | 2.8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.4 | 0 | 4.3 | 0 | 0 | 5.9 | 2.9 | 76.7 | 89.1 | 80.9 |
16GJ07S1 | 63.0 | 840 | 193.0 | 36.7 | 30.4 | 9.6 | 0 | 0.3 | 0 | 0 | 0 | 0 | 0 | 6.7 | 0 | 56.9 | 0 | 0 | 38.2 | 14.9 | 18.9 | 91.7 | 82.9 |
16GJ08S1 | 73.0 | 330 | 155.0 | 15.6 | 19.0 | 2.3 | 0 | 0 | 0 | 0 | 0 | 0 | 0.2 | 25.5 | 0 | 33.2 | 0 | 0 | 46.8 | 12.5 | 8.6 | 58.9 | 121.9 |
16GJ09S1 | 137.0 | 590 | 32.0 | 7.3 | 3.9 | 2.8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3.2 | 0 | 5.2 | 0 | 0 | 6.6 | 3.1 | 98.7 | 81.5 | 54.1 |
16GJ10S1 | 148.0 | 530 | 182.0 | 6.7 | 3.9 | 10.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11.8 | 0 | 2.5 | 0 | 0 | 99.5 | 47.2 | 5.2 | 64.1 | 58.2 |
16GJ11S1 | 155.0 | 320 | 295.0 | 25.2 | 20.3 | 9.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 43.2 | 0 | 30.1 | 0 | 0 | 80.4 | 54.5 | 3.6 | 55.8 | 80.5 |
16GJ12S1 | 163.0 | 450 | 297.0 | 24.1 | 14.5 | 23.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 18.2 | 0 | 35.8 | 0 | 0 | 151.0 | 30.5 | 4.1 | 77.2 | 60.2 |
16GJ13S1 | 167.0 | 310 | 1297.0 | 91.0 | 9.8 | 0 | 0 | 0 | 1.5 | 0 | 0 | 0 | 0 | 20.1 | 0 | 422.9 | 0 | 0 | 641.1 | 110.6 | 0.2 | 82.4 | 10.7 |
图3 藏南岗巴地区基堵拉组样品砂岩碎屑成分图解 (a)Q-F-L图;(b)Qm-F-L图;Q.石英;Qm.单晶石英颗粒; F.长石; L.岩屑
Fig.3 Clastic composition diagrams of sandstones from the Jidula Formation in Gamba, southern Tibet
图4 藏南岗巴地区基堵拉组层9(a)、层11(b)处冲洗交错层理及古流向玫瑰花图(c)
Fig.4 Interlaced cross-layering at the 9th and 11th layers of the basement block of the Jidula Formation (Gamba, southern Tibet) and paleo-flowing rose map
图7 岗巴地区基堵拉组16GJ02S2样品砂岩岩屑镜下照片 (a)单偏光镜下照片;(b)单晶石英(Qm)、多晶石英(Qp);(c)泥岩岩屑(t);(d)玉髓(c);(e)燧石(s);(f)泥岩岩屑(t)
Fig.7 Microscopic photographs for sandstone sample 16GJ02S2 from the Jidula Formation in Gamba, southern Tibet
图8 岗巴地区基堵拉组及邻区碎屑锆石年龄对比 (a)岗巴基堵拉组碎屑锆石年龄谱(本文测试数据);(b)和(c)低喜马拉雅碎屑锆石年龄谱[40];(d)高喜马拉雅碎屑锆石年龄谱[40];(e)特提斯喜马拉雅碎屑锆石年龄谱[41,42];(f)东高止山脉(EGMB)碎屑锆石年龄谱[43];(g)阿拉瓦利德利活动带(ADMB)碎屑锆石年龄谱[44,45];(h)印度中部构造带(CITZ)碎屑锆石年龄谱[46];(i)拉萨地块碎屑锆石年龄谱[47]
Fig.8 Comparison of detrital zircon ages of samples from the Jidula Formation in Gamba and its surrounding areas
[1] |
WILLEMS H, ZHOU Z, ZHANG B, et al. Stratigraphy of the Upper Cretaceous and Lower Tertiary strata in the Tethyan Himalayas of Tibet (Tingri area, China)[J]. Geologische Rundschau, 1996,85(4):723-754.
DOI URL |
[2] |
YIN A. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation[J]. Earth-Science Reviews, 2006,76(1/2):1-131.
DOI URL |
[3] |
CAWOOD P A, JOHNSON M R W, NEMCHIN A A. Early Paleozoic orogenesis along the Indian margin of Gondwana: tectonic response to Gondwana assembly[J]. Earth and Planetary Science Letters, 2007,255:70-84.
DOI URL |
[4] | DING L, MAKSATBEK S, CAI F, et al. Processes of initial collision and suturing between India and Asia[J]. Science China Earth(Sciences), 2017,60(4):635-651. |
[5] | WILLEMS H, ZHANG B G. Cretaceous and Lower Tertiary sediments of Tethys Himalaya in the area of Gamba (South Tibet, PR China)[J]. Berichte aus Fachbereich Geowissenschaften der Universitat Bremen, 1993,38:3-27. |
[6] |
JADOUL F, BERRA F, GARZANTI E. The Tethys Himalayan passive margin from Late Triassic to Early Cretaceous (south Tibet)[J]. Journal of Asian Earth Sciences, 1998,16(2/3):173-194.
DOI URL |
[7] |
GARZANTI E. Stratigraphy and sedimentary history of the Nepal Tethys Himalaya passive margin[J]. Journal of Asian Earth Sciences, 1999,17(5/6):805-827.
DOI URL |
[8] |
HU X, GARZANTI E, WANG J, et al. The timing of India-Asia collision onset:facts, theories, controversies[J]. Earth-Science Reviews, 2016,160:264-299.
DOI URL |
[9] |
LI J, HU X, GARZANTI E, et al. Paleogene carbonate microfacies and sandstone provenance(Gamba area, south tibet): Stratigraphic response to initial India-Asia continental collision[J]. Journal of Asian Earth Sciences, 2015,104:39-54.
DOI URL |
[10] |
HU X, SINCLAIR H D, WANG J, et al. Late Cretaceous-Paleogene stratigraphic and basin evolution in the Zhepure Mountain of southern Tibet: implications for the timing of India-Asia initial collision[J]. Basin Research, 2012,24(5):520-543.
DOI URL |
[11] |
WAN X Q, JANSA L F, SARTI M. Cretaceous and Paleogene boundary strata in southern Tibet and their implication for the India-Eurasia[J]. Lethaia, 2010,35(2):131-146.
DOI URL |
[12] |
YIN A. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000,28(28):211-280.
DOI URL |
[13] |
WU F Y, JI W Q, WANG J G, et al. Zircon U-Pb and Hf isotopic constraints on the onset time of India-Asia collision[J]. American Journal of Science, 2014,314(2):548-579.
DOI URL |
[14] | 丁林, 蔡福龙, 张清海, 等. 冈底斯—喜马拉雅碰撞造山带前陆盆地系统及构造演化[J]. 地质科学, 2009,44(4):1289-1311. |
[15] |
LIU G, EINSELE G. Sedimentary history of the Tethyan basin in the Tibetan Himalayas[J]. Geologische Rundschau, 1994,83(1):32-61.
DOI URL |
[16] |
DING L, KAPP P, ZHONG D L, et al. Cenozoic volcanism in Tibet: Evidence for a transition from oceanic to continental subduction[J]. Journal of Petrology, 2003,44(10):1833-1865.
DOI URL |
[17] | 李国彪, 万晓樵, 丁林, 等. 藏南古近纪前陆盆地演化过程及其沉积响应[J]. 沉积学报, 2004,22(3):455-464. |
[18] |
WAN X, LAMOLDA M A, SI J, et al. Foraminiferal stratigraphy of Late Cretaceous red beds in southern Tibet[J]. Cretaceous Research, 2005,26(1):43-48.
DOI URL |
[19] |
SCIUNNACH D, GARZANTI E. Subsidence history of the Tethys Himalaya[J]. Earth-Science Reviews, 2012,111(1/2):179-198.
DOI URL |
[20] |
HU X, GARZANTI E, MOORE T, et al. Direct stratigraphic dating of India-Asia collision onset at the Selandian(Middle Paleocene,59±1 Ma)[J]. Geology, 2015,43(10):859-862.
DOI URL |
[21] |
GARZANTI Eduardo. From static to dynamic provenance analysis-sedimentary petrology upgraded[J]. Sedimentary Geology, 2016,336:3-13.
DOI URL |
[22] |
SUTTNER L J, BASU A, INGERSOLL R V, et al. The effect of grain size on detrital modes: a test of the Gazzi-Dickinson point-counting method[J]. Journal of Sedimentary Research, 1985,55(4):616-617.
DOI URL |
[23] | MANGE M A, MAURER H F W. Heavy Minerals in Colour[M]. London: Chapman & Hall, 1992: 147. |
[24] | NICHOLS G. Sedimentology and Stratigraphy[M]. London:John Wiley & Sons, 2009: 1-50. |
[25] |
VAVRA G, GEBAUER D, SCHMID R, et al. Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (southern Alps): an ion microprobe (SHRIMP) study[J]. Contributions to Mineralogy and Petrology, 1996,122(4):337-358.
DOI URL |
[26] |
VAVRA G, SCHMID R, GEBAUER D. Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons: geochronology of the Ivrea Zone (Southern Alps)[J]. Contributions to Mineralogy and Petrology, 1999,134(4):380-404.
DOI URL |
[27] |
BELOUSOVA E, GRIFFIN W, O REILLY S Y, et al. Igneous zircon: trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002,143(5):602-622.
DOI URL |
[28] | SAKAI H. Rifting of the Gondwana land and uplifting of the Himalayas recorded in Mesozoic and Tertiary fluvial sediments in the Nepal Himalayas[M] //TAIRA A,MASUDA F. Sedimentary Facies in the Active Plate Margin. Tokyo: Terra Scientific Publication Company, 1989: 723-732. |
[29] | YE Z, BAOCHUN H. The influence of Cretaceous paleolatitude variation of the Tethyan Himalaya on the India-Asia collision pattern[J]. Science China(Earth Sciences), 2017,60(6):47-56. |
[30] |
CLIFT P D, CARTER A, JONELL T N. U-Pb dating of detrital zircon grains in the Paleocene Stumpata Formation, Tethyan Himalaya,Zanskar,India[J]. Journal of Asian Earth Sciences, 2013,82(3):80-89.
DOI URL |
[31] |
GARZANTI E, HU X. Latest Cretaceous Himalayan tectonics: obduction, collision or Deccan-related uplift?[J]. Gondwana Research, 2015,28(1):165-178.
DOI URL |
[32] |
BICKFORD M E, SAHA D, SCHIEBER J, et al. New U-Pb ages of zircons in the Owk Shale(Kurnool Group)with reflections on proterozoic porcellanites in India[J]. Journal of the Geological Society of India, 2013,82(3):207-216.
DOI URL |
[33] |
GARZANTI E. Himalayan ironstones, superplumes and the breakup of Gondwana[J]. Geology, 1993,21:105-108.
DOI URL |
[34] |
HU X, JANSA L, CHEN L, et al. Provenance of Lower Cretaceous Wolong volcaniclastics in the Tibetan Tethyan Himalaya: Implications for the final breakup of eastern Gondwana[J]. Sedimentary Geology, 2010,223(3/4):193-205.
DOI URL |
[35] |
GARZANTI E, CASNEDI R, JADOUL F. Sedimentary evidence of a Cambro-Ordovician orogenic event in the northwestern Himalaya[J]. Sedimentary Geology, 1986,48(3/4):237-265.
DOI URL |
[36] | GEHRELS G E, DECELLES P G, MARTIN A, et al. Initiation of the Himalayan orogen as an Early Paleozoic thin-skinned thrust belt[J]. GSA Today, 2015,13(9):75-85. |
[37] |
ALAM M, ALAM M M, CURRAY J R, et al. An overview of the sedimentary geology of the Bengal Basin in relation to the regional tectonic framework and basin-fill history[J]. Sedimentary Geology, 2003,155(3):179-208.
DOI URL |
[38] | HALKETT A, WHITE N, CHANDRA K, et al. Dynamic uplift of the Indian Peninsula and the reunion plume[M] //AGU.AGU Fall Meeting Abstracts.Washington:AGU, 2001: 1-5. |
[39] |
LAKSHMINARAYANA G. Evolution in basin fill style during the Mesozoic Gondwana continental break-up in the Godavari Triple Junction, SE India[J]. Gondwana Research, 2002,5(1):227-244.
DOI URL |
[40] | MCQUARRIE N, ROBINSON D, LONG S, et al. Preliminary stratigraphic and structural architecture of Bhutan: Implications for the along strike architecture of the Himalayan system[J]. Earth and Planetary Science Letters, 2008,272(1/2):117. |
[41] | GEHRELS G E, DECELLES P G, OJHA T P, et al. Geologic and U-Pb geochronologic evidence for Early Paleozoic tectonism in the Dadeldhura thrust sheet, far-west Nepal Himalaya[J]. Journal of Asian Earth Sciences, 2006,28(4/6):408. |
[42] | GEHRELS G, KAPP P, DECELLES P, et al. Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen[J]. Tectonics, 2011, 30:TC5016. |
[43] |
HUGHES N C, MYROW P M, MCKENZIE N R, et al. Age and implications of the phosphatic Birmania Formation, Rajasthan, India[J]. Precambrian Research, 2015,267:164-173.
DOI URL |
[44] |
JOY S, JELSMA H, TAPPE S, et al. SHRIMP U-Pb zircon provenance of the Sullavai Group of Pranhita-Godavari Basin and Bairenkonda quartzite of Cuddapah Basin with implications for the southern Indian Proterozoic tectonic architecture[J]. Journal of Asian Earth Sciences, 2015,111:827-839.
DOI URL |
[45] |
TURNER C C, MEERT J G, PANDIT M K, et al. A detrital zircon U-Pb and Hf isotopic transect across the Son Valley sector of the Vindhyan Basin, India: Implications for basin evolution and paleogeography[J]. Gondwana Research, 2014,26(1):348-364.
DOI URL |
[46] |
PULLEN A, KAPP P, GEHRELS G E, et al. Gangdese retroarc thrust belt and foreland basin deposits in the Damxung area, southern Tibet[J]. Journal of Asian Earth Sciences, 2008,33(5):323-336.
DOI URL |
[47] |
ZHU D, ZHAO Z, NIU Y, et al. Lhasa terrane in southern Tibet came from Australia[J]. Geology, 2011,39(8):727-730.
DOI URL |
[48] | FONT E, CARLUT J, REMAZEILLES C, et al. End-Cretaceous akaganéite and its potential as a mineral marker of Deccan volcanism in the global sedimentary record[M] //EGU.EGU General Assembly Conference Abstracts. Vienna:EGU, 2017: 1-2. |
[49] | ZHANG L, WANG C, WIGNALL P B, et al. Deccan volcanism caused coupled $ρ_{co_{2}}$ and terrestrial temperature rises, and pre-impact extinctions in northern China[J]. Geology, 2018,46(3):272-274. |
[1] | 朱拓, 何登洋, 黄雅琪, 邱昆峰. 华北克拉通胶莱盆地马山地区粗面英安岩磷灰石U-Pb年代学及其地质意义[J]. 现代地质, 2024, 38(01): 117-127. |
[2] | 曹玉璐, 曾宇轲, 张元元. 基于扫描电子显微镜的重矿物物源分析方法对比[J]. 现代地质, 2023, 37(02): 475-485. |
[3] | 吴龙, 柳长峰, 刘文灿, 张宏远. 青藏高原东北缘祁连山三叠系砂岩碎屑锆石U-Pb定年及其物源分析[J]. 现代地质, 2021, 35(05): 1178-1193. |
[4] | 李怡佳, 阮壮, 刘帅, 常秋红, 赖玮, 杨志辉. 鄂尔多斯盆地南缘长10-长8段物源及源区构造背景研究[J]. 现代地质, 2020, 34(04): 784-799. |
[5] | 徐银波, 李锋, 张家强, 孙平昌, 毕彩芹, 仝立华, 李昭. 黑龙江省老黑山盆地下白垩统穆棱组砂岩地球化学特征及其地质意义[J]. 现代地质, 2018, 32(04): 786-795. |
[6] | 武若晨, 顾雪祥, 章永梅, 何格, 康继祖, 余福承, 冯李强, 徐劲驰. 东昆仑造山带早古生代—早中生代构造演化的沉积地球化学记录[J]. 现代地质, 2017, 31(04): 716-733. |
[7] | 石海岩,苗卫良,马海州,李永寿,张西营,严玲琴,马维明,王振东. 云南思茅盆地白垩纪—古新世碎屑岩地球化学特征及地质意义[J]. 现代地质, 2016, 30(3): 541-554. |
[8] | 李小聪,王安东,万建军,李全忠,林乐夫. 赣江流域(南昌段)水系沉积物物源示踪研究:来自锆石U-Pb同位素证据的约束[J]. 现代地质, 2016, 30(3): 514-527. |
[9] | 蓝先洪,梅西,李日辉,张志珣,李杰,顾兆峰. 晚更新世以来南黄海北部泥质区沉积物元素的分布及来源分析[J]. 现代地质, 2015, 29(4): 777-788. |
[10] | 吴兆剑,韩效忠,易超,祁才吉,惠小朝,王明太. 鄂尔多斯盆地东胜地区直罗组砂岩的地球化学特征与物源分析[J]. 现代地质, 2013, 27(3): 557-567. |
[11] | 张世杰, 蒲秀刚, 李勇 , 颜照坤,钱赓,丘东洲等. 黄骅坳陷孔店南部枣Ⅲ油组物源分析[J]. 现代地质, 2013, 27(1): 186-190. |
[12] | 刘群明, 王丽娟, 饶良玉, 王国亭, 叶国, 刘毅. [J]. 现代地质, 2012, 26(2): 363-369. |
[13] | 王一剑, 刘洪军, 周娟萍 , 渠洪杰. 东准噶尔卡姆斯特北海相火山-沉积岩碎屑锆石LA-ICP-MS U-Pb年龄及地质意义[J]. 现代地质, 2011, 25(6): 1047-1058. |
[14] | 刘群明,陈开远,王键,徐雷,滕飞启,张培智. 柴达木盆地三湖坳陷第四系重矿物物源分析[J]. 现代地质, 2011, 25(2): 315-321. |
[15] | 邓焰平, 洪汉烈, 殷科, 徐耀明, 杜鹃, 张克信. 兰州盆地永登剖面晚古新世—早渐新世沉积物中粘土矿物的特征及其古气候指示意义[J]. 现代地质, 2010, 24(4): 793-800. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||