[1] |
RIDING R. Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms[J]. Sedimentology, 2000, 47(s1): 179-214.
DOI
URL
|
[2] |
HOFMANN H J, GREY K, HICKMAN A H, et al. Origin of 3.45 Ga coniform stromatolites in Warrawoona Group, Western Australia[J]. Geological Society of America Bulletin, 1999, 111(8): 1256-1262.
DOI
URL
|
[3] |
夏正楷, 张昀, 杨德军, 等. 泥河湾层中叠层石的发现及其古环境意义[J]. 中国科学:B辑, 1993, 23(8): 874-879.
|
[4] |
王自强, 全秋琦. 宜昌峡东地区的现代叠层石[J]. 地质科学, 1982(4): 403-406.
|
[5] |
田友萍, 何复胜. 川黔地区地表钙华中发现现代淡水叠层石及藻席[J]. 地质论评, 2000, 46(5): 549-555.
|
[6] |
BACKUS D H, JOHNSON M E. Stromatolitic mats from an uplifted Pleistocene lagoonat Punta Chivato on the gulf of California(Mexico)[J]. Palaios, 2014, 29(9): 460-466.
DOI
URL
|
[7] |
KAZMIERCZAK J, KEMPE S. Genuine modern analogues of Precambrian stromatolites from caldera lakes of Niuafoou Island, Tonga[J]. Naturwissenschaften, 2006, 93(3): 119-126.
DOI
URL
|
[8] |
VAN KRANENDONK M J, PHILIPPOT P, LEPOT K, et al. Geological setting of Earth's oldest fossils in the ca. 3.5 Ga Dresser Formation, Pilbara Craton, Western Australia[J]. Precambrian Research, 2008, 167(1): 93-124.
DOI
URL
|
[9] |
伊海生, 林金辉, 周恳恳, 等. 可可西里地区中新世湖相叠层石成因及其古气候意义[J]. 矿物岩石, 2008, 28(1): 106-113.
|
[10] |
CHAKRABARTI G, SHOME D, BAULUZ B, et al. Provenance and weathering history of Mesoproterozoic clastic sedimentary rocks from the basal Gulcheru Formation, Cuddapah Basin[J]. Journal of the Geological Society of India, 2009, 74(1): 119-130.
DOI
URL
|
[11] |
ANDREWS J E, BRASIER A T. Seasonal records of climatic change in annually laminated tufas: short review and future prospects[J]. Journal of Quaternary Science, 2005, 20(5): 411-421.
DOI
URL
|
[12] |
FRANTZ C M, PETRYSHYN V A, MARENCO P J, et al. Dramatic local environmental change during the Early Eocene Climatic Optimum detected using high resolution chemical analyses of Green River Formation stromatolites[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 405: 1-15.
DOI
URL
|
[13] |
温志峰, 钟建华, 刘云田, 等. 柴达木盆地中新世叠层石沉积特征及其环境和构造意义[J]. 地质科学, 2005, 40(4): 547-557.
|
[14] |
温志峰, 钟建华, 李勇, 等. 柴达木盆地中新世叠层石成因与古环境研究[J]. 西北地质, 2005, 38(2): 40-48.
|
[15] |
温志峰, 钟建华, 王冠民, 等. 柴达木盆地古近纪—新近纪湖相叠层石与藻礁的沉积组合特征与意义[J]. 地质学报, 2005, 79(4): 444-452.
|
[16] |
温志峰, 钟建华, 郭泽清, 等. 柴西地区第三纪叠层石岩石学特点与油气储集特征[J]. 石油勘探与开发, 2004, 31(3): 49-53.
|
[17] |
梅冥相. 微生物碳酸盐岩分类体系的修订:对灰岩成因结构分类体系的补充[J]. 地学前缘, 2007, 14(5):222-234.
|
[18] |
宋春晖. 青藏高原北缘新生代沉积演化与高原构造隆升过程[D]. 兰州: 兰州大学, 2006:1-99.
|
[19] |
高军平, 李生喜, 戴霜, 等. 柴西西岔沟剖面新生界碎屑锆石裂变径迹年龄对物源区构造活动的制约[J]. 兰州大学学报(自然科学版), 2009, 45(3): 1-7.
|
[20] |
郭泽清, 郑得文, 刘卫红, 等. 柴达木盆地西部古近纪—新近纪湖相生物礁的发现及意义[J]. 地层学杂志, 2008, 32(1): 60-68.
|
[21] |
DILL R F, SHINN E A, JONES A T, et al. Giant subtidal stromatolites forming in normal salinity waters[J]. Nature, 1986, 324(6):55-58.
DOI
|
[22] |
ABELL P I, AWRAMIK S M, OSBORNE R H, et al. Plio-Pleistocene lacustrine stromatolites from Lake Turkana, Kenya: morphology, stratigraphy and stable isotopes[J]. Sedimentary Geology, 1982, 32(1): 1-26.
DOI
URL
|
[23] |
VALERO-GARCS B L, ARENAS C, DELGADO-HUERTAS A. Depositional environments of Quaternary lacustrine travertines and stromatolites from high-altitude Andean lakes, northwestern Argentina[J]. Canadian Journal of Earth Sciences, 2001, 38(8): 1263-1283.
DOI
URL
|
[24] |
ANDREWS S D, TREWIN N H. Palaeoenvironmental significance of lacustrine stromatolite forms from the Middle Old Red Sandstone of the Orcadian Basin[J]. Geological Magazine, 2014, 151(3): 414-429.
DOI
URL
|
[25] |
宋华颖, 伊海生, 范爱春, 等. 柴达木盆地西部西岔沟剖面湖相碳酸盐岩岩石学特征与沉积环境分析[J]. 中国地质, 2010, 37(1): 117-126.
|
[26] |
YIN A, DANG Y Q, ZHANG M, et al. Cenozoic tectonic evolution of the Qaidam basin and its surrounding regions (Part 3): Structural geology, sedimentation, and regional tectonic reconstruction[J]. Geological Society of America Bulletin, 2008, 120(7/8): 847-876.
DOI
URL
|
[27] |
惠博, 伊海生, 夏国清, 等. 柴达木盆地西部新生代沉积演化特征[J]. 中国地质, 2011, 38(5): 1274-1281.
|
[28] |
宋博文. 柴达木盆地北缘早始新世—上新世环境演变及生物群研究[D]. 武汉: 中国地质大学, 2013:1-30.
|
[29] |
SUN Z, FENG X, LI D, et al. Cenozoic Ostracoda and palaeoenvironments of the northeastern Tarim Basin, western China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 148(1): 37-50.
DOI
URL
|
[30] |
WANG J, WANG Y J, LIU Z C, et al. Cenozoic environmental evolution of the Qaidam Basin and its implications for the uplift of the Tibetan Plateau and the drying of central Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 152(1): 37-47.
DOI
URL
|
[31] |
尹成明, 李伟民, 刘永江, 等. 柴达木盆地新生代以来的气候变化研究: 来自碳氧同位素的证据[J]. 吉林大学学报(地球科学版), 2007, 37(5): 901-907.
|
[32] |
伊海生, 林金辉, 周恳恳, 等. 青藏高原北部新生代湖相碳酸盐岩的碳氧同位素特征及古环境意义[J]. 古地理学报, 2007, 9(3): 303-312.
|
[33] |
RAMSTEIN G, FLUTEAU F, BESSE J, et al. Effect of orogeny, plate motion and land-sea distribution on Eurasian climate change over the past 30 million years[J]. Nature, 1997, 386: 788-795.
DOI
|
[34] |
ZUBAKOV V A, BORZENKOVA I I. Global paleoclimate of the Late Cenozoic[M]. Amsterdam: Elsevier, 1990: 1-337.
|
[35] |
汤懋苍. 青藏高原季风的形成、演化及振荡特性[J]. 甘肃气象, 1998, 16(1): 1-14.
|
[36] |
金之钧, 李京昌, 汤良杰, 等. 柴达木盆地新生代波动过程及与油气关系[J]. 地质学报, 2006, 80(3): 359-365.
|
[37] |
荣建锋. 柴达木盆地西部干柴沟地区上、下油砂山组高频沉积旋回及成因机制研究[D]. 成都: 成都理工大学, 2009:1-90.
|
[38] |
武向峰. 柴达木盆地西部上、下干柴沟组湖平面变化程式及控制因素[D]. 成都: 成都理工大学, 2010:1-79.
|
[39] |
韩文霞. 柴达木盆地新生代地层记录的亚洲内陆干旱气候演化[D]. 兰州: 兰州大学, 2008:1-99.
|
[40] |
伊海生, 时志强, 惠博, 等. 湖相叠层石纹层的碳氧同位素特征及其生长节律的古环境意义[J]. 地学前缘, 2009, 16(6): 168-176.
|
[41] |
惠博, 伊海生, 时志强, 等. 青藏高原沱沱河盆地渐新世湖相叠层石: 韵律纹层记录的古气候条件[J]. 地质通报, 2010, 29(1): 62-69.
|
[42] |
曾德勇, 时志强, 张华, 等. 青藏高原五道梁地区中新世湖相叠层石特征、分类及古气候意义[J]. 矿物岩石, 2011, 31(3): 111-119.
|
[43] |
张克信, 王国灿, 骆满生, 等. 青藏高原新生代构造岩相古地理演化及其对构造隆升的响应[J]. 地球科学: 中国地质大学学报, 2010, 35(5): 697-712.
|
[44] |
吴珍汉, 吴中海, 胡道功, 等. 青藏高原腹地中新世早期古大湖的特征及其构造意义[J]. 地质通报, 2006, 25(7):782-791.
|
[45] |
WU Z H, PATRICK J B, WU Z H, et al. Vast early Miocene lakes of the central Tibetan Plateau[J]. Geological Society of America Bulletin, 2008, 120(9/10): 1326-1337.
DOI
URL
|