现代地质 ›› 2024, Vol. 38 ›› Issue (05): 1291-1305.DOI: 10.19657/j.geoscience.1000-8527.2023.108
出版日期:
2024-10-10
发布日期:
2024-11-13
通信作者:
郭丽彬,女,高级工程师,1981年出生,主要从事石油地质研究和勘探工作。Email: 641701035@qq.com。作者简介:
包汉勇,男,教授级高级工程师, 1981年出生,主要从事油气地质研究和管理工作。Email: baohy.jhyt@sinopec.com。
基金资助:
BAO Hanyong1(), GUO Libin1(
), GE Taoyuan2, JIANG Zaixing2
Published:
2024-10-10
Online:
2024-11-13
摘要:
江汉盆地潜江凹陷潜江组盐湖沉积中首次发现大范围的重力流沉积,关于其沉积特征、成因机制、主控因素和有利岩相尚有待深入研究。本研究通过对潜江凹陷北部20口取心井的精细观察,结合测录井、薄片、矿物成分和粒度分析,识别出10种重力流相关的岩相。研究区重力流沉积可分为4种成因相类型,包括风暴重力流沉积、滑动-滑塌沉积、碎屑流沉积和浊流沉积。根据岩相组合类型,将重力流沉积划分为近端、中端和远端沉积。地震、风暴和洪水为重力流沉积的诱发因素,潜40沉积期气候干旱,潭口地区的次级断裂带活动,引发斜坡带沉积物的滑动滑塌。潜40中沉积期为盐湖淡化期,洪水引发长距离搬运的超密度流体。碎屑流成因的纯净块状粉砂岩、细砂岩和浊流成因的平行层理砂岩为有利储集体。平行层理粉砂岩、块状粉砂岩和泥岩的组合是在流体转化过程中形成的优势岩相组合。
中图分类号:
包汉勇, 郭丽彬, 葛涛元, 姜在兴. 江汉盆地潜江凹陷北部潜江组盐湖重力流沉积特征与模式[J]. 现代地质, 2024, 38(05): 1291-1305.
BAO Hanyong, GUO Libin, GE Taoyuan, JIANG Zaixing. Characteristics and Modeling of Saline Lake Gravity Flow Deposition in the Qianjiang Formation, Northern Qianjiang Depression, Jianghan Basin[J]. Geoscience, 2024, 38(05): 1291-1305.
图1 江汉盆地潜江凹陷北部区域构造与地层特征 (a)江汉盆地区域构造特征,据文献[1]修改;(b)潜江凹陷北部构造区域,据文献[1]和[23]修改;(c)潜江凹陷北部地震剖面(剖面位置见图(b))
Fig.1 Regional tectonic and stratigraphic characteristics of the Northern Qianjiang Depression, Jianghan Basin
图3 滑动-滑塌沉积和风暴沉积 (a)灰色粉砂岩,卷曲构造,潭26井,1038.5 m;(b)黄褐色细砂岩,发育滑移面,王57井,2667 m;(c)灰色粉砂岩,滑塌构造,钟98井,2644.41 m;(d)灰色细砂岩,重荷模、包卷层理和火焰构造,广斜73井,3409.48 m;(e)黄褐色细砂岩,球枕构造,周30井,2597.98 m;(f)深灰色粉砂质泥岩,液化脉,广24井,3165.38 m;(g)阶梯状断层和变形构造,黄20-斜10,2280.65 m;(h)灰褐色粉砂岩,发育“V”字型泥砾,广斜73井,3406.17 m;(i)灰褐色粉砂岩,洼状层理,广斜73井,3415.10 m;(j)灰褐色粉砂岩,洼状层理,广斜73井,3415.10 m
Fig.3 Sliding-slumping and storm deposition
图4 砂质碎屑流和浊流沉积 (a)块状细砂岩,含泥质条带,钟62井,2351.8 m;(b)块状细砂岩,钟98井,2916.72 m;(c)块状粉砂岩,含泥砾,广斜73井,3405.55 m;(d)块状泥质粉砂岩,含泥砾,广斜73井,3405.55 m;(e)浪成交错层理粉砂岩,广斜73井,3409.62 m;(f)波状层理粉砂岩,广斜73井,3410.78 m;(g)平行层理泥质粉砂岩,广86斜井,2852.76 m;(h)块状泥岩,广86斜井,2858.35 m;(i)正粒序粉砂岩,广86斜井,2852.88 m
Fig.4 Sandy debris flow and turbidity flow deposition
图5 粒度概率曲线图和C-M图解 (a)滑塌沉积粒度概率曲线,广斜73井,3409.85 m;(b)碎屑流粒度概率曲线,广斜73井,3406.65 m;(c)浊流沉积C-M图解,广斜73井;(d)浊流沉积C-M图解,广斜73井;C. 粒度累积曲线上颗粒含量为 1%对应的粒径;M.粒度累积曲线上 50%处对应的粒径;QR.递变悬浮沉积;RS.均匀悬浮沉积;PQ. 悬浮沉积,含油少数滚动搬用组分;OP.滚动搬运;NO.滚动搬运
Fig.5 Particle size probability plots and C-M diagrams
图7 广斜73井岩心和岩相组合特征 Sm.块状粉砂岩;Fm.块状细砂岩;Sp.平行层理粉砂岩;Shc.丘状交错层理粉砂岩;Mm.块状泥岩;Swrc.浪成沙纹交错层理粉砂岩;Sng.正粒序粉砂岩;Sd.变形构造粉砂岩;Sw.波状层理粉砂岩;Fd.变形构造细砂岩;LA1—LA6重力流岩相组合特征详见第4.1节的文字描述
Fig.7 Core and lithofacies associations of Well Guangxie 73
图8 广86斜井岩心和岩相组合特征 Sm.块状粉砂岩;Fm.块状细砂岩;Sp.平行层理粉砂岩;Shc.丘状交错层理粉砂岩;Mm.块状泥岩;Swrc.浪成沙纹交错层理粉砂岩;Sng.正粒序粉砂岩;Sd.变形构造粉砂岩;Sw.波状层理粉砂岩;Fd.变形构造细砂岩;LA1—LA6重力流岩相组合特征详见第4.1节的文字描述
Fig.8 Core and lithofacies associations of Well Guang 86-Xie
岩相 | 孔隙度(%) | 渗透率(10-3μm2) | 可动流体(%) | 含油饱和度(%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Avg | Min | Max | Avg | Min | Max | Avg | Min | Max | Avg | ||||
纯净块状细砂岩 | 8.29 | 12.13 | 10.69 | 1.81 | 16.85 | 11.01 | 66.18 | 76.33 | 72.56 | 18.61 | 20.82 | 19.48 | |||
洼状层理粉砂岩 | 9.92 | 9.92 | 9.92 | 4.74 | 4.74 | 4.74 | 68.88 | 68.88 | 68.88 | 14.30 | 14.30 | 14.30 | |||
平行层理粉砂岩 | 8.10 | 9.18 | 8.81 | 0.94 | 3.15 | 2.07 | 59.60 | 67.81 | 63.68 | 3.75 | 18.97 | 9.65 | |||
变形构造粉砂岩 | 7.42 | 9.06 | 8.33 | 0.18 | 1.07 | 0.72 | 43.28 | 58.87 | 51.99 | 2.22 | 3.47 | 2.71 | |||
浪成交错层理细砂岩 | 5.23 | 10.30 | 7.12 | 0.02 | 9.68 | 3.25 | 31.70 | 74.58 | 49.45 | 4.17 | 18.95 | 9.73 | |||
块状粉砂岩(含泥砾) | 3.39 | 8.91 | 6.09 | 0 | 1.07 | 0.33 | 1.50 | 60.93 | 34.15 | 1.18 | 22.01 | 13.96 |
表1 潜江凹陷北部不同岩相储层物性参数
Table 1 Reservoir property parameters of different lithofacies in the Northern Qianjiang Depression
岩相 | 孔隙度(%) | 渗透率(10-3μm2) | 可动流体(%) | 含油饱和度(%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Avg | Min | Max | Avg | Min | Max | Avg | Min | Max | Avg | ||||
纯净块状细砂岩 | 8.29 | 12.13 | 10.69 | 1.81 | 16.85 | 11.01 | 66.18 | 76.33 | 72.56 | 18.61 | 20.82 | 19.48 | |||
洼状层理粉砂岩 | 9.92 | 9.92 | 9.92 | 4.74 | 4.74 | 4.74 | 68.88 | 68.88 | 68.88 | 14.30 | 14.30 | 14.30 | |||
平行层理粉砂岩 | 8.10 | 9.18 | 8.81 | 0.94 | 3.15 | 2.07 | 59.60 | 67.81 | 63.68 | 3.75 | 18.97 | 9.65 | |||
变形构造粉砂岩 | 7.42 | 9.06 | 8.33 | 0.18 | 1.07 | 0.72 | 43.28 | 58.87 | 51.99 | 2.22 | 3.47 | 2.71 | |||
浪成交错层理细砂岩 | 5.23 | 10.30 | 7.12 | 0.02 | 9.68 | 3.25 | 31.70 | 74.58 | 49.45 | 4.17 | 18.95 | 9.73 | |||
块状粉砂岩(含泥砾) | 3.39 | 8.91 | 6.09 | 0 | 1.07 | 0.33 | 1.50 | 60.93 | 34.15 | 1.18 | 22.01 | 13.96 |
[1] | 方志雄. 江汉盆地盐湖沉积充填模式[M]. 北京: 石油工业出版社, 2006:17-30. |
[2] | 姜在兴. 沉积学[M]. 北京: 石油工业出版社, 2010:219-236. |
[3] |
操应长, 杨田, 王艳忠, 等. 深水碎屑流与浊流混合事件层类型及成因机制[J]. 地学前缘, 2017, 24(3):234-248.
DOI |
[4] | 杨田, 操应长, 田景春. 浅谈陆相湖盆深水重力流沉积研究中的几点认识[J]. 沉积学报, 2021, 39(1):88-111. |
[5] | MIDDLETON G V, BOUMA A H. Turbidites and deep-water sedimentation[M]//MIDDLETON G V,BOUMA A H. Turbidites and Deep-Water Sedimentation. California: SEPM Pacific Section, 1973:1-38. |
[6] | LOWE D R. Sediment gravity flows:II. Depositional models with special reference to the deposits of high-density turbidity currents[J]. Journal of Sedimentary Research, 1982, 52(1):279-297. |
[7] | SHANMUGAM G. Deep-water Processes and Facies Models:Implications for Sandstone Petroleum Reservoirs[M]. Amsterdam: Elsevier, 2006:1-496. |
[8] | TALLING P J, AMY L A, WYNN R B. New insight into the evolution of large-volume turbidity currents:comparison of turbidite shape and previous modelling results[J]. Sedimentology, 2007, 54(4):737-769. |
[9] | TALLING P J, MASSON D G, SUMNER E J, et al. Subaqueous sediment density flows:Depositional processes and deposit types[J]. Sedimentology, 2012, 59(7),1937-2003. |
[10] | YANG T, CAO Y C, LIU K Y, et al. Gravity flow deposits caused by different initiation processes in a deep-lake system[J]. AAPG bulletin, 2020, 104(7):1463-1499. |
[11] | YANG T, CAO Y C, LIU K Y, et al. Genesis and depositional model of subaqueous sediment gravity-flow deposits in a lacustrine rift basin as exemplified by the Eocene Shahejie Formation in the Jiyang Depression,eastern China[J]. Marine and Petroleum Geology, 2019,102:231-257. |
[12] | MULDER T, ALEXANDER J. The physical character of subaqueous sedimentary density flows and their deposits[J]. Sedimentology, 2001, 48(2):269-299. |
[13] | ZOU C N, WANG L, LI Y, et al. Deep-lacustrine transformation of sandy debrites into turbidites,Upper Triassic,Central China[J]. Sedimentary Geology, 2012,265/266:143-155. |
[14] | WU Q R, BEN Z X, GAO X Z, et al. Differences of sedimentary triggers and depositional architecture of lacustrine turbidites from normal regression to forced regression: Eocene Dongying depression, Bohai Bay Basin, East China[J]. Sedimentary Geology, 2022,439:106222. |
[15] | MULDER T, SYVITSKI J P M, MIGEON S, et al. Marine hyperpycnal flows: Initiation, behavior and related deposits: A Review[J]. Marine and Petroleum Geology, 2021, 20(6):861-882. |
[16] | 冯有良, 杨智, 张洪, 等. 咸化湖盆细粒重力流沉积特征及其页岩油勘探意义——以准噶尔盆地玛湖凹陷风城组为例[J]. 地质学报, 2023, 97(3):839-863. |
[17] | 袁晓宇. 柴达木盆地英西地区古近系下干柴沟组上段沉积与成岩作用[D]. 兰州: 兰州大学, 2019. |
[18] | 李秉孝, 蔡碧琴, 梁青生. 吐鲁番盆地艾丁湖沉积特征[J]. 科学通报, 1989(8):608-610. |
[19] | TANG W B, ZHANG Y Y, GEORGIA P, et al. Soft-sediment deformation structures in alkaline lake deposits of Lower Permian Fengcheng Formation,Junggar Basin,NW China: Implications for syn-sedimentary tectonic activity[J]. Sedimentary Geology, 2020,406:105719. |
[20] | 李美静, 李建明. 江汉盆地王北区块盐湖沉积和微相特征[J]. 四川地质学报, 2008(3):184-185,189. |
[21] | 胡张明, 陈恭洋, 印森林. 潜江凹陷王场油田北区潜江组沉积微相及砂体展布特征[J]. 内蒙古石油化工, 2008,(15):114-118. |
[22] | 陈启林. 盐湖盆地沉积特征与岩性油气藏勘探[D]. 北京: 中国地质大学(北京), 2007. |
[23] | 戴世昭. 江汉盐湖盆地石油地质[M]. 北京: 石油工业出版社, 1997:57-93. |
[24] | 张永生, 王国力. 江汉盆地潜江凹陷古近系盐湖沉积盐韵律及其古气候意义[J]. 古地理学报, 2005, 7(4):461-470. |
[25] | 孔祥鑫. 湖相含碳酸盐细粒沉积岩特征、成因与油气聚集[D]. 北京: 中国地质大学(北京), 2020. |
[26] |
王越, 陈世悦, 张关龙, 等. 咸化湖盆混积岩分类与混积相带沉积相特征——以准噶尔盆地南缘芦草沟组与吐哈盆地西北缘塔尔朗组为例[J]. 石油学报, 2017, 38(9):1021-1065.
DOI |
[27] | MONTENAT C, BARRIER P, OTT D P, et al. Seismites:An attempt at critical analysis and classification[J]. Sedimentary Geology, 2007, 196(1/2/3/4):5-30. |
[28] | BOUMA A H, KUENEN P H, SHEPARD F P. Sedimentology of Some Flysch Deposits: A Graphic Approach to Facies Interpretation[M]. Amsterdam, New York: Elsevier Publishing Company, 1962:1-168. |
[29] | KONG X X, JIANG Z X, JU B S, et al. Fine-grained carbonate formation and organic matter enrichment in an Eocene saline rift lake (Qianjiang Depression): Constraints from depositional environment and material source[J]. Marine and Petroleum Geology. 2022,138:105534. |
[30] | 孟嘉轶. 博兴地区沙四上亚段层序地层与沉积体系研究[D]. 北京: 中国地质大学(北京), 2020. |
[31] | 汤望新, 姜在兴, 张元福. 鄂尔多斯盆地南部长7段深水沉积特征及沉积模式[J]. 科学技术与工程, 2017, 17(15):33-41. |
[32] | SOUTHARD J B. Experimental determination of bed-form stability[J]. Annual Review of Earth and Planetary Sciences, 1991, 19(1):423-455. |
[33] | MALKOWSKI M A, SHARMAN G R, GRAHAM S A, et al. Characterisation and diachronous initiation of coarse clastic deposition in the Magallanes-Austral foreland basin, Patagonian Andes[J]. Basin Research, 2017,29:298-326. |
[34] | KUENEN P H. Properties of turbidity currents of high density[M]//HOUGH J L.Turbidity Currents and the Transportation of Coarse Sediments to Deep Water:A Symposium. Tulsa: SEPM Special Publication, 1951:14-33. |
[35] | 刘爱武, 唐大卿, 郭丽彬, 等. 江汉盆地潜北断裂带分段差异活动及演化[J]. 石油地球物理勘探, 2022, 57(4):937-949. |
[36] | TÖR B, PRATT B R. Eocene Paleoseismic record of the Green River Formation, Fossil Basin, Wyoming, U.S.A.: Implications of synsedimentary deformation structures in lacustrine carbonate mudstones[J]. Journal of Sedimentary Research, 2015, 85(8):855-884. |
[37] | EZQUERRO L, MORETTI M, LIESA C L. Controls on space-time distribution of soft-sediment deformation structures:Applying palaeomagnetic dating to approach the apparent recurrence period of paleoseisms at the Concud Fault (eastern Spain)[J]. Sedimentary Geology, 2016, 344:91-111. |
[38] | El T H, PRATT B R. Syndepositional tectonic activity in an epicontinental basin revealed by deformation of subaqueous carbonate laminites and evaporites:Seismites in Red River strata (Upper Ordovician) of southern Saskatchewan, Canada[J]. Bulletin of Canadian Petroleum Geology, 2012, 60(1):37-58. |
[39] | GE T Y, JIANG Z X, KONG X X, et al. Salt rhythmite formation and organic matter enrichment in the Qianjiang Formation, Jianghan Basin, China: Constraints from alternating dry and wet climates[J]. Marine and Petroleum Geology, 2023, 148,106067. |
[40] | 邹才能, 冯有良, 杨智, 等. 中国湖盆细粒重力流沉积作用及其对页岩油“甜点段”发育的影响[J]. 石油勘探与开发, 2023, 50(3):1-15. |
[1] | 王爱, 肖开华, 刘忠群, 黄彦庆, 乔大伟. 川东北元坝西部须二段—须三段沉积相及其对储层控制作用[J]. 现代地质, 2024, 38(02): 350-361. |
[2] | 刘旺威, 李一凡, 高志前, 樊太亮, 张坦, 匡明志. 塔里木盆地东北缘下寒武统页岩岩相特征与沉积模式[J]. 现代地质, 2023, 37(05): 1155-1168. |
[3] | 倪敏婕, 祝贺暄, 何文军, 杨森, 邹阳, 张元元. 准噶尔盆地玛湖凹陷风城组沉积环境与沉积模式分析[J]. 现代地质, 2023, 37(05): 1194-1207. |
[4] | 李燕, 邓运华, 李友川. 河流-三角洲体系微相控烃及机理研究:以珠江口盆地恩平组煤系烃源岩为例[J]. 现代地质, 2021, 35(04): 1065-1077. |
[5] | 贾鹏, 黄福喜, 林世国, 宋涛, 高阳, 吕维宁, 汪少勇, 刘策, 范晶晶, 欧阳靖琳. 四川盆地及其邻区中上寒武统洗象池群沉积相与沉积模式特征研究[J]. 现代地质, 2021, 35(03): 807-818. |
[6] | 王进, 于兴河, 仲玉芳, 周明, 杨新涛. 准噶尔盆地红山嘴地区三叠系克下组辫状河沉积特征[J]. 现代地质, 2021, 35(03): 841-849. |
[7] | 王旭影, 姜在兴. 苏北盆地古近系阜三段沉积体系特征与模式[J]. 现代地质, 2020, 34(06): 1132-1143. |
[8] | 袁坤, 金振奎, 彭飚, 朱小二, 田甜, 黎瑞. 青海湖东南岸现代滩坝沉积模式与识别标志[J]. 现代地质, 2020, 34(02): 309-320. |
[9] | 龚建明, 廖晶, 张莉, 何拥军, 翟滨, 孟明, 成海燕. 印度洋北部马克兰增生楔泥火山分布及主控因素探讨[J]. 现代地质, 2018, 32(05): 1025-1030. |
[10] | 付超, 于兴河, 何玉林, 梁金强, 匡增桂, 董亦思, 金丽娜. 南海北部神狐海域峡谷层序结构差异与控制因素[J]. 现代地质, 2018, 32(04): 807-818. |
[11] | 刘圣, 李胜利, 程涛, 周新茂, 曹睿, 章巧, 巩强. 断陷湖盆水下扇沉积特征:以南大港断层下降盘典型断块为例[J]. 现代地质, 2018, 32(04): 819-831. |
[12] | 喻宸,吴胜和,岳大力,郑联勇,杜文博,张善严,陈诚,刘志刚. 细粒冲积扇沉积特征研究—以酒西盆地老君庙构造带古近系白杨河组为例[J]. 现代地质, 2016, 30(3): 643-654. |
[13] | 韩剑发,王清龙,陈军,林畅松,宋玉斌,徐俊博,李浩,薛学亚,王宇盟. 塔里木盆地西北缘中—下奥陶统碳酸盐岩层序结构和沉积微相分布[J]. 现代地质, 2015, 29(3): 599-608. |
[14] | 邓庆杰,胡明毅,胡忠贵,吴玉坤. 松辽盆地北部双城地区扶余油层层序地层格架与沉积体系展布[J]. 现代地质, 2015, 29(3): 609-622. |
[15] | 余宽宏,金振奎,高白水,李燕,李桂仔. 赣江南昌段江心洲沉积特征[J]. 现代地质, 2015, 29(1): 89-97. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||