现代地质 ›› 2023, Vol. 37 ›› Issue (06): 1495-1508.DOI: 10.19657/j.geoscience.1000-8527.2023.070
收稿日期:
2023-02-08
修回日期:
2023-06-07
出版日期:
2023-12-10
发布日期:
2024-01-24
通讯作者:
刘学飞,男,教授,1983年出生,矿产普查与勘探专业,主要从事矿床学研究。Email:lxf@cugb.edu.cn。
作者简介:
冉笑宇,男,硕士研究生,1999年出生,矿产普查与勘探专业,主要从事矿床学研究。Email:1378286176@qq.com。
基金资助:
RAN Xiaoyu1(), MA Yao1, LIANG Yayun2, LIU Xuefei1(
)
Received:
2023-02-08
Revised:
2023-06-07
Online:
2023-12-10
Published:
2024-01-24
摘要:
华北克拉通胶东金矿区是中国最大的黄金产区之一,探明黄金资源储量超过5000 t。蚀变岩型金矿床作为该区域重要的矿床成因类型,长期备受关注,然而在成矿流体属性和成矿物质来源等方面仍然存在争议。本文通过对胶东地区西北部典型蚀变岩型金矿床(以仓上金矿床为例)黄铁矿进行LA-ICP-MS分析,探讨该矿床成矿流体属性和物质来源,为深化认识成矿过程提供新的制约。结果显示,仓上金矿床黄铁矿Se元素含量相对较低(平均值1.601×10-6),指示其可能主要由沉积变质作用形成的。Au/As比值指示第Ⅱ和第Ⅲ成矿阶段黄铁矿内的Au以晶格金的形式(Au+)赋存。结合前人对于胶东金矿区流体性质的研究成果,仓上金矿床黄铁矿相对均一的Co/Ni比值与Ag含量的大幅度增加,综合指示矿床成矿流体主要是岩浆水,同时也有一定的地层水与大气降水参与。Te元素含量较低反映成矿物质主要来源于地幔的可能性比较小。然而较低的Co、Ni含量显著不同于岩浆成因黄铁矿特征,指示成矿物质中可能混入了少量的地幔组分。结合胶东成矿期(约120 Ma)的构造事件与岩浆作用,认为成矿物质Au可能源于中生代活化再造的前寒武纪变质基底,并混入了少量地幔组分。
中图分类号:
冉笑宇, 马遥, 梁亚运, 刘学飞. 胶东仓上金矿黄铁矿微量元素组成:对成矿流体和物质来源的揭示[J]. 现代地质, 2023, 37(06): 1495-1508.
RAN Xiaoyu, MA Yao, LIANG Yayun, LIU Xuefei. Trace Elements Composition of Pyrites in the Cangshang Gold Deposit,Jiaodong: Implications for Source of Ore-forming Fluid and Material[J]. Geoscience, 2023, 37(06): 1495-1508.
图2 仓上金矿区地质简图(a)和475号勘探线-82 m高程剖面图(b)(据文献 [12]修编)
Fig.2 Geologic map of the Cangshang gold district (a)and profile of the -82 m bench along the No.475 exploration line(b)(modified after reference [12])
图3 仓上金矿床矿石手标本和显微照片 (a)产在黄铁矿中的包体金(反射光);(b)产在黄铁矿裂隙内的裂隙金(反射光);(c)—(e)仓上金矿床矿石手标本;(f)黄铁矿-石英阶段(第I阶段)粗粒黄铁矿(反射光);(g)石英-黄铁矿阶段(第Ⅱ阶段)半自形黄铁矿,裂隙中可见少量黄铜矿(反射光);(h)石英-多金属硫化物阶段(第Ⅲ阶段)黄铜矿、方铅矿和闪锌矿发育于黄铁矿裂隙内(反射光);(i)石英-碳酸盐阶段(第Ⅳ阶段)方解石(正交偏光);Au.金或银金矿;Cal.方解石;Ccp.黄铜矿;Gn.方铅矿;Py.黄铁矿;Q.石英;Sp.闪锌矿
Fig.3 Photographs and photomicrographs of gold ore in the Cangshang gold deposit
成矿 阶段 | 样号 | Co | Ni | Sb | Pb | Bi | Se | Sn | Au | Ag | Cu | Zn | As | Te | Mn | Fe | Mo | Cd | Gd | Hf | Tl |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ⅱ阶段 | CS-9-5-1 | 0.338 | 3.220 | 2.961 | 11.041 | 0.079 | 1.890 | 0.129 | - | 0.450 | 32.534 | 6.446 | 5.657 | 0.152 | - | 465000 | - | - | - | - | - |
CS-9-5-2 | 0.036 | - | 0.037 | 0.244 | 0.010 | 1.485 | 0.125 | - | - | - | - | 18.376 | - | - | 465000 | - | - | - | - | - | |
CS-9-5-3 | 0.101 | 3.037 | 0.481 | 4.416 | 0.046 | 2.078 | 0.145 | 0.098 | 0.079 | 0.812 | 0.183 | 2948.560 | - | - | 465000 | - | - | 0.017 | - | - | |
CS-9-4-1 | - | - | 0.147 | 1.159 | 0.025 | 1.294 | 0.123 | 0.092 | 0.014 | - | - | 4786.972 | - | 0.138 | 465000 | - | - | - | - | - | |
CS-9-4-2 | 0.028 | - | - | 0.194 | - | 1.473 | 0.119 | 0.109 | - | - | 0.183 | 4544.973 | - | - | 465000 | - | - | - | - | - | |
CS-9-3-1 | 0.037 | 0.073 | 0.392 | 1.810 | 0.020 | 1.328 | 0.135 | 0.023 | 0.249 | 0.219 | 0.176 | 1894.910 | - | - | 465000 | - | - | - | - | - | |
CS-9-3-2 | - | - | - | 0.185 | - | 1.380 | 0.127 | 0.078 | 0.029 | 0.128 | - | 3842.034 | - | - | 465000 | - | - | - | - | - | |
CS-9-2-1 | 122.782 | 14.966 | 0.110 | 206.152 | 36.639 | 1.340 | 0.134 | 0.010 | 5.148 | 75.949 | 2.327 | 37.846 | 0.793 | - | 465000 | 0.104 | - | 0.016 | - | - | |
CS-9-2-2 | 0.027 | 1.163 | 0.311 | 3.102 | 0.035 | 1.732 | 0.132 | 0.092 | 0.179 | 0.379 | 0.174 | 2311.753 | 0.132 | - | 465000 | - | - | - | - | - | |
CS-9-2-3 | 76.635 | 41.084 | 0.453 | 163.950 | 176.089 | 2.012 | 0.174 | 0.044 | 27.400 | 287.387 | 10.466 | 141.067 | 1.269 | - | 465000 | - | 0.259 | 0.005 | 0.004 | - | |
Ⅲ阶段 | CS-10-1-1 | 0.049 | 0.602 | 0.420 | 3.715 | 0.806 | 2.324 | 0.136 | 0.042 | 1.055 | 1.037 | 0.196 | 3183.784 | - | - | 465000 | - | - | 0.006 | 0.439 | 0.009 |
CS-10-1-2 | 0.016 | - | 0.388 | 58.461 | 5.025 | 2.336 | 0.147 | 0.012 | 1.576 | 1.509 | 0.155 | 72.877 | 2.092 | - | 465000 | 0.127 | - | - | - | - | |
CS-10-1-3 | - | 0.161 | 3.145 | 7.585 | 2.300 | 1.682 | 0.112 | 0.678 | 6.497 | 5.671 | 0.284 | 3600.889 | 0.509 | - | 465000 | - | 0.044 | - | - | 0.112 | |
CS-10-2-1 | 0.084 | 0.674 | 0.054 | 0.695 | 0.282 | - | 0.144 | 0.082 | 0.027 | 0.206 | - | 4584.149 | - | - | 465000 | - | - | - | - | - | |
CS-10-2-2 | 1.958 | 0.847 | - | 0.094 | 0.054 | 2.050 | 0.149 | - | - | - | - | 436.279 | - | - | 465000 | - | - | - | - | - | |
CS-10-2-3 | 0.105 | 1.620 | 0.037 | 0.427 | 0.085 | 1.520 | 0.126 | 0.050 | 0.028 | 0.205 | 0.230 | 2878.536 | - | - | 465000 | 0.053 | - | - | 0.047 | - | |
CS-10-3-1 | 0.091 | 0.819 | 0.046 | 0.556 | 0.033 | 1.281 | 0.122 | 0.089 | 0.019 | - | 0.294 | 3221.840 | 0.195 | - | 465000 | - | - | - | 0.179 | - | |
CS-10-3-2 | - | - | 0.698 | 223.663 | 11.491 | 1.549 | 0.151 | - | 17.125 | 2677.792 | 8.644 | 3.036 | - | - | 465000 | 0.109 | - | - | - | - | |
CS-10-3-3 | 0.967 | 4.950 | 0.732 | 1835.110 | 375.915 | 2.066 | 0.119 | 0.084 | 147.872 | 36.578 | 2.525 | 1067.693 | 6.273 | - | 465000 | - | 0.263 | - | - | 0.011 | |
CS-10-4-1 | 0.206 | - | 0.067 | 57.144 | 14.947 | 1.578 | 0.123 | 0.013 | 6.482 | 43.548 | 1.066 | 308.918 | 0.607 | - | 465000 | 0.044 | - | - | - | - | |
CS-10-4-2 | 4.404 | 9.665 | 0.037 | 0.715 | 1.457 | 1.513 | 0.112 | 0.037 | 0.093 | 0.207 | - | 2336.140 | 0.226 | - | 465000 | - | - | - | 0.026 | - | |
CS-10-5-1 | 0.436 | - | 0.380 | 1553.841 | 337.566 | 2.529 | 0.175 | 0.111 | 152.034 | 172.713 | 2.922 | 384.058 | 9.808 | - | 465000 | - | 0.214 | - | - | 0.015 | |
CS-10-5-2 | 0.374 | - | - | 0.123 | 0.060 | 1.907 | 0.160 | - | - | - | - | 23.141 | - | - | 465000 | - | - | 0.006 | - | - | |
CS-10-5-3 | 0.173 | 0.454 | 1.369 | 8.557 | 2.605 | 1.991 | 0.186 | 0.202 | 0.483 | 1.148 | 0.338 | 3978.333 | - | - | 465000 | - | - | - | 0.056 | - |
表1 仓上金矿床黄铁矿微量元素(10-6)分析结果
Table 1 Trace element compositions(10-6)of pyrite in the Cangshang gold deposit
成矿 阶段 | 样号 | Co | Ni | Sb | Pb | Bi | Se | Sn | Au | Ag | Cu | Zn | As | Te | Mn | Fe | Mo | Cd | Gd | Hf | Tl |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ⅱ阶段 | CS-9-5-1 | 0.338 | 3.220 | 2.961 | 11.041 | 0.079 | 1.890 | 0.129 | - | 0.450 | 32.534 | 6.446 | 5.657 | 0.152 | - | 465000 | - | - | - | - | - |
CS-9-5-2 | 0.036 | - | 0.037 | 0.244 | 0.010 | 1.485 | 0.125 | - | - | - | - | 18.376 | - | - | 465000 | - | - | - | - | - | |
CS-9-5-3 | 0.101 | 3.037 | 0.481 | 4.416 | 0.046 | 2.078 | 0.145 | 0.098 | 0.079 | 0.812 | 0.183 | 2948.560 | - | - | 465000 | - | - | 0.017 | - | - | |
CS-9-4-1 | - | - | 0.147 | 1.159 | 0.025 | 1.294 | 0.123 | 0.092 | 0.014 | - | - | 4786.972 | - | 0.138 | 465000 | - | - | - | - | - | |
CS-9-4-2 | 0.028 | - | - | 0.194 | - | 1.473 | 0.119 | 0.109 | - | - | 0.183 | 4544.973 | - | - | 465000 | - | - | - | - | - | |
CS-9-3-1 | 0.037 | 0.073 | 0.392 | 1.810 | 0.020 | 1.328 | 0.135 | 0.023 | 0.249 | 0.219 | 0.176 | 1894.910 | - | - | 465000 | - | - | - | - | - | |
CS-9-3-2 | - | - | - | 0.185 | - | 1.380 | 0.127 | 0.078 | 0.029 | 0.128 | - | 3842.034 | - | - | 465000 | - | - | - | - | - | |
CS-9-2-1 | 122.782 | 14.966 | 0.110 | 206.152 | 36.639 | 1.340 | 0.134 | 0.010 | 5.148 | 75.949 | 2.327 | 37.846 | 0.793 | - | 465000 | 0.104 | - | 0.016 | - | - | |
CS-9-2-2 | 0.027 | 1.163 | 0.311 | 3.102 | 0.035 | 1.732 | 0.132 | 0.092 | 0.179 | 0.379 | 0.174 | 2311.753 | 0.132 | - | 465000 | - | - | - | - | - | |
CS-9-2-3 | 76.635 | 41.084 | 0.453 | 163.950 | 176.089 | 2.012 | 0.174 | 0.044 | 27.400 | 287.387 | 10.466 | 141.067 | 1.269 | - | 465000 | - | 0.259 | 0.005 | 0.004 | - | |
Ⅲ阶段 | CS-10-1-1 | 0.049 | 0.602 | 0.420 | 3.715 | 0.806 | 2.324 | 0.136 | 0.042 | 1.055 | 1.037 | 0.196 | 3183.784 | - | - | 465000 | - | - | 0.006 | 0.439 | 0.009 |
CS-10-1-2 | 0.016 | - | 0.388 | 58.461 | 5.025 | 2.336 | 0.147 | 0.012 | 1.576 | 1.509 | 0.155 | 72.877 | 2.092 | - | 465000 | 0.127 | - | - | - | - | |
CS-10-1-3 | - | 0.161 | 3.145 | 7.585 | 2.300 | 1.682 | 0.112 | 0.678 | 6.497 | 5.671 | 0.284 | 3600.889 | 0.509 | - | 465000 | - | 0.044 | - | - | 0.112 | |
CS-10-2-1 | 0.084 | 0.674 | 0.054 | 0.695 | 0.282 | - | 0.144 | 0.082 | 0.027 | 0.206 | - | 4584.149 | - | - | 465000 | - | - | - | - | - | |
CS-10-2-2 | 1.958 | 0.847 | - | 0.094 | 0.054 | 2.050 | 0.149 | - | - | - | - | 436.279 | - | - | 465000 | - | - | - | - | - | |
CS-10-2-3 | 0.105 | 1.620 | 0.037 | 0.427 | 0.085 | 1.520 | 0.126 | 0.050 | 0.028 | 0.205 | 0.230 | 2878.536 | - | - | 465000 | 0.053 | - | - | 0.047 | - | |
CS-10-3-1 | 0.091 | 0.819 | 0.046 | 0.556 | 0.033 | 1.281 | 0.122 | 0.089 | 0.019 | - | 0.294 | 3221.840 | 0.195 | - | 465000 | - | - | - | 0.179 | - | |
CS-10-3-2 | - | - | 0.698 | 223.663 | 11.491 | 1.549 | 0.151 | - | 17.125 | 2677.792 | 8.644 | 3.036 | - | - | 465000 | 0.109 | - | - | - | - | |
CS-10-3-3 | 0.967 | 4.950 | 0.732 | 1835.110 | 375.915 | 2.066 | 0.119 | 0.084 | 147.872 | 36.578 | 2.525 | 1067.693 | 6.273 | - | 465000 | - | 0.263 | - | - | 0.011 | |
CS-10-4-1 | 0.206 | - | 0.067 | 57.144 | 14.947 | 1.578 | 0.123 | 0.013 | 6.482 | 43.548 | 1.066 | 308.918 | 0.607 | - | 465000 | 0.044 | - | - | - | - | |
CS-10-4-2 | 4.404 | 9.665 | 0.037 | 0.715 | 1.457 | 1.513 | 0.112 | 0.037 | 0.093 | 0.207 | - | 2336.140 | 0.226 | - | 465000 | - | - | - | 0.026 | - | |
CS-10-5-1 | 0.436 | - | 0.380 | 1553.841 | 337.566 | 2.529 | 0.175 | 0.111 | 152.034 | 172.713 | 2.922 | 384.058 | 9.808 | - | 465000 | - | 0.214 | - | - | 0.015 | |
CS-10-5-2 | 0.374 | - | - | 0.123 | 0.060 | 1.907 | 0.160 | - | - | - | - | 23.141 | - | - | 465000 | - | - | 0.006 | - | - | |
CS-10-5-3 | 0.173 | 0.454 | 1.369 | 8.557 | 2.605 | 1.991 | 0.186 | 0.202 | 0.483 | 1.148 | 0.338 | 3978.333 | - | - | 465000 | - | - | - | 0.056 | - |
图4 仓上金矿床黄铁矿微量元素含量图(造山型金矿黄铁矿的微量元素平均含量参考值据文献[38])
Fig.4 Trace element plot of pyrite in the Cangshang gold deposit(values of average trace element content of pyrite of orogenic gold deposits from reference [38])
图5 仓上金矿床黄铁矿Au-Ag关系图(R2和R3分别表示第Ⅱ阶段与第Ⅲ阶段中Au、Ag元素含量之间的线性相关系数)
Fig.5 Pyrite Au-Ag plot for the Cangshang gold deposit(R2 and R3 are the linearly dependent coefficients between the Au and Ag content in stage Ⅱ and Ⅲ,respectively)
[1] |
GOLDFARB R J, SANTOSH M. The dilemma of the Jiaodong gold deposits: Are they unique[J]. Geoscience Frontiers, 2014, 5(2): 139-153.
DOI URL |
[2] |
DENG J, YANG L Q, GROVES D I, et al. An integrated mineral system model for the gold deposits of the giant Jiaodong province,eastern China[J]. Earth-Science Reviews, 2020, 208: 103274.
DOI URL |
[3] |
SILLITOE R H, THOMPSON J F. Intrusion-related vein gold deposits: Types,tectono-magmatic settings and difficulties of distinction from orogenic gold deposits[J]. Resource Geology, 1998, 48(4): 237-250.
DOI URL |
[4] |
LANG J R, BAKER T. Intrusion-related gold systems: the pre-sent level of understanding[J]. Mineralium Deposita, 2001, 36(6): 477-489.
DOI URL |
[5] |
FAN H R, ZHAI M G, XIE Y H, et al. Ore-forming fluids associated with granite-hosted gold mineralization at the Sanshandao deposit,Jiaodong gold province,China[J]. Mineralium Deposita, 2003, 38(6): 739-750.
DOI URL |
[6] | FAN H R, HU F F, YANG J H, et al. Fluid evolution and large-scale gold metallogeny during Mesozoic tectonic transition in the eastern Shandong province[J]. Acta Petrologica Sinica, 2005, 21(5): 1317-1328. |
[7] |
HU F F, FAN H R, JIANG X H, et al. Fluid inclusions at different depths in the Sanshandao gold deposit,Jiaodong Peninsula,China[J]. Geofluids, 2013, 13(4): 528-541.
DOI URL |
[8] |
DENG J, LIU X F, WANG Q F, et al. Origin of the Jiaodong-type Xinli gold deposit,Jiaodong Peninsula,China: Constraints from fluid inclusion and C-D-O-S-Sr isotope compositions[J]. Ore Geology Reviews, 2015, 65: 674-686.
DOI URL |
[9] |
GUO L N, GOLDFARB R J, WANG Z L, et al. A comparison of Jiaojia- and Linglong-type gold deposit ore-forming fluids: do they differ[J]. Ore Geology Reviews, 2017, 88: 511-533.
DOI URL |
[10] | 陈光远. 胶东金矿成因矿物学与找矿[M]. 重庆: 重庆出版社, 1989: 1-452. |
[11] | 宋召法. 莱州市仓上金矿床地质特征及深部成矿预测[J]. 黄金, 1998, 19(6): 13-16. |
[12] |
ZHANG X O, CAWOOD P A, WILDE S A, et al. Geology and timing of mineralization at the Cangshang gold deposit,north-western Jiaodong Peninsula,China[J]. Mineralium Deposita, 2003, 38(2): 141-153.
DOI URL |
[13] | 郭春影. 胶东三山岛—仓上金矿带构造-岩浆-流体金成矿系统[D]. 北京: 中国地质大学(北京), 2009. |
[14] | 牛树银, 孙爱群, 张建珍, 等. 胶东西北部金矿集中区深部控矿构造探讨[J]. 地质学报, 2011, 85(7): 1094-1107. |
[15] | 王立功, 祝德成, 郭瑞朋, 等. 胶西北仓上、三山岛岩体二长花岗岩地球化学、锆石U-Pb年龄及Lu-Hf同位素研究[J]. 地质学报, 2018, 92(10): 2081-2095. |
[16] | 许杨, 蓝廷广, 舒磊, 等. 胶东三山岛金矿床黄铁矿As富集机制及其对金成矿作用的指示[J]. 矿床地质, 2021, 40(3): 419-431. |
[17] |
WEN B J, FAN H R, HU F F, et al. Fluid evolution and ore genesis of the giant Sanshandao gold deposit,Jiaodong gold province,China: Constrains from geology,fluid inclusions and H-O-S-He-Ar isotopic compositions[J]. Journal of Geochemical Exploration, 2016, 171: 96-112.
DOI URL |
[18] | 周涛发, 张乐骏, 袁峰, 等. 安徽铜陵新桥Cu-Au-S矿床黄铁矿微量元素LA-ICP-MS原位测定及其对矿床成因的制约[J]. 地学前缘, 2010, 17(2): 306-319. |
[19] | 龚庆杰, 周连壮, 胡杨, 等. 胶东玲珑金矿田煌斑岩蚀变过程元素迁移行为及其意义[J]. 现代地质, 2012, 26(5): 1065-1077. |
[20] | 申俊峰, 李胜荣, 马广钢, 等. 玲珑金矿黄铁矿标型特征及其大纵深变化规律与找矿意义[J]. 地学前缘, 2013, 20(3): 55-75. |
[21] | 倪培, 范宏瑞, 丁俊英. 流体包裹体研究进展[J]. 矿物岩石地球化学通报, 2014, 33(1): 1-5. |
[22] |
YANG L Q, DENG J, WANG Z L, et al. Thermochronologic constraints on evolution of the Linglong Metamorphic Core Complex and implications for gold mineralization: A case study from the Xiadian gold deposit,Jiaodong Peninsula,eastern China[J]. Ore Geology Reviews, 2016, 72: 165-178.
DOI URL |
[23] | 陈鑫, 郑有业, 许荣科, 等. 柴北缘鱼卡榴辉岩型金红石矿床金红石矿物学、元素地球化学及成因[J]. 岩石学报, 2018, 34(6): 1685-1703. |
[24] | 陈原林, 李欢, 郑朝阳, 等. 吉林海沟金矿床成因及找矿勘查模式: 黄铁矿LA-ICP-MS微量元素及硫同位素证据[J]. 中南大学学报(自然科学版), 2021, 52(9): 2990-3002. |
[25] | 张红雨, 赵青青, 赵刚, 等. 黄铁矿微量元素LA-ICP-MS原位微区分析方法及其在金矿床研究中的应用[J]. 矿床地质, 2022, 41(6): 1182-1199. |
[26] | 李洪奎, 耿科, 禚传源. 胶东金矿构造环境与成矿作用[M]. 北京: 地质出版社, 2016: 1-472. |
[27] |
DENG J, QIU K F, WANG Q F, et al. In Situ dating of hydrothermal monazite and implications for the geodynamic controls on ore formation in the Jiaodong gold province,eastern China[J]. Economic Geology, 2020, 115(3): 671-685.
DOI URL |
[28] | 杨立强, 邓军, 王中亮, 等. 胶东中生代金成矿系统[J]. 岩石学报, 2014, 30(9): 2447-2467. |
[29] | 马遥, 刘学飞, 梁亚运, 等. 胶东早白垩世中-酸性脉岩造岩矿物微区地球化学特征研究[J]. 岩石学报, 2019, 35(5): 1566-1582. |
[30] |
DENG J, WANG Q F, LIU X F, et al. The formation of the Jiaodong Gold Province[J]. Acta Geologica Sinica, 2022, 96(6): 1801-1820.
DOI URL |
[31] |
YANG L, ZHAO R, WANG Q F, et al. Fault geometry and fluid-rock reaction: combined controls on mineralization in the Xinli gold deposit,Jiaodong Peninsula,China[J]. Journal of Structural Geology, 2018, 111: 14-26.
DOI URL |
[32] | 王来明, 任天龙, 刘汉栋, 等. 胶东地区中生代花岗岩划分[J]. 山东国土资源, 2021, 37(8): 1-14. |
[33] |
DENG J, LIU X F, WANG Q F, et al. Isotopic characterization and petrogenetic modeling of Early Cretaceous mafic diking-Lithospheric extension in the North China craton,eastern Asia[J]. Geological Society of America Bulletin, 2017, 129: 1379-1407.
DOI URL |
[34] | 杨忠芳, 徐景奎, 赵伦山, 等. 胶东区域地壳演化与金成矿作用地球化学[M]. 北京: 地质出版社, 1998: 1-157. |
[35] | 李威, 原冬成. 仓上金矿边界品位指标的变动及其经济效益评价[J]. 山东冶金, 1999, 21(1): 35-37. |
[36] | 杨竹森, 陈光远, 孙岱生, 等. 胶东西北部仓上金矿床上盘围岩蚀变和黄铁矿标型特征研究[J]. 现代地质, 1999, 13(1): 73-77. |
[37] |
DANYUSHEVSKY L V, ROBINSON P, GILBERT S, et al. Routine quantitative multi-element analysis of sulphide minerals by laser ablation ICP-MS: Standard development and consideration of matrix effects[J]. Geochemistry: Exploration,Environment,Analysis, 2011, 11(1): 51-60.
DOI URL |
[38] |
LARGE R R, DANYUSHEVSKY L, HOLLIT C, et al. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits[J]. Economic Geology, 2009, 104(5): 635-668.
DOI URL |
[39] | 赵睿, 刘学飞, 潘瑞广, 等. 胶东新立构造蚀变岩型金矿床元素地球化学行为[J]. 岩石学报, 2015, 31(11): 3420-3440. |
[40] |
YANG L Q, DENG J, WANG Z L, et al. Relationships between gold and pyrite at the Xincheng Gold Deposit,Jiaodong Peninsula,China: Implications for gold source and deposition in a brittle epizonal environment[J]. Economic Geology, 2016, 111(1): 105-126.
DOI URL |
[41] | 梁亚运, 刘学飞, 刘龙龙, 等. 胶东蚀变岩型金矿金矿物微区地球化学特征[J]. 岩石学报, 2015, 31(11): 3441-3454. |
[42] | 郭林楠. 胶东型金矿床成矿机理[D]. 北京: 中国地质大学(北京), 2016. |
[43] |
KOGLIN N, FRIMMEL H E, LAWRIE MINTER W E, et al. Trace-element characteristics of different pyrite types in Mesoarchaean to Palaeoproterozoic placer deposits[J]. Mineralium Deposita, 2010, 45(3): 259-280.
DOI URL |
[44] | BAJWAH Z U, SECCOMBE P K, OFFLER R. Trace element distribution,Co:Ni ratios and genesis of the Big Cadia iron-copper deposit,New South Wales,Australia[J]. Mineralium Deposita, 1987, 22(4): 292-300. |
[45] | 郭林楠, 黄春梅, 张良, 等. 胶东罗山金矿床成矿流体来源: 蚀变岩型和石英脉型矿石载金黄铁矿稀土与微量元素特征约束[J]. 现代地质, 2019, 33(1): 121-136. |
[46] | 裴玉华, 严海麒. 河南省嵩县前河金矿床黄铁矿的标型特征及其意义[J]. 地质与勘探, 2006, 42(3): 56-60. |
[47] |
DURAN C J, BARNES S J, CORKERY J T. Chalcophile and platinum-group element distribution in pyrites from the sulfide-rich pods of the Lac des Iles Pd deposits,Western Ontario,Canada: Implications for post-cumulus re-equilibration of the ore and the use of pyrite compositions in exploration[J]. Journal of Geochemical Exploration, 2015, 158(1): 223-242.
DOI URL |
[48] | 杨溢. 胶西北新立金矿多阶段黄铁矿原位分析对金成矿流体演化的约束[D]. 北京: 中国地质大学(北京), 2019. |
[49] | 严育通, 李胜荣, 张娜, 等. 不同成因类型金矿床成矿期黄铁矿成分成因标型特征[J]. 黄金, 2012, 33(3): 11-16. |
[50] |
REICH M, KESLER S E, UTSUNOMIYA S, et al. Solubility of gold in arsenian pyrite[J]. Geochimica et Cosmochimica Acta, 2005, 69(11): 2781-2796.
DOI URL |
[51] |
DEDITIUS A P, REICH M, KESLER S E, et al. The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits[J]. Geochimica et Cosmochimica Acta, 2014, 140: 644-670.
DOI URL |
[52] | 刘萌, 王智琳, 许德如, 等. 湖南井冲钴铜多金属矿床绿泥石、黄铁矿和黄铜矿的矿物学特征及其成矿指示意义[J]. 大地构造与成矿学, 2018, 42(5): 862-879. |
[53] |
ZHANG Y, HAN R S, WEI P T. Order of sphalerite and galena precipitation: A case study from lead-zinc deposits in southwest China[J]. Journal of Central South University, 2020, 27(1): 288-310.
DOI |
[54] |
温守钦, 唐铁乔, 谢伟, 等. 氧、硫逸度对岫岩红旗铅锌矿床矿物组合共生分异的制约[J]. 东北大学学报(自然科学版), 2020, 41(7): 999-1007.
DOI |
[55] | 李旭平, 刘云, 郭敬辉, 等. 胶北南山口古元古代高压基性麻粒岩和钙硅酸盐岩的岩石地球化学特征探讨[J]. 岩石学报, 2013, 29(7): 2340-2352. |
[56] | 冯岳川, 邱昆峰, 王大钊, 等. 胶东玲珑金矿区碲化物形成条件及其对金富集过程的约束[J]. 岩石学报, 2022, 38(1): 63-77. |
[57] |
ZHANG Z C, WANG Y W, HE J Y, et al. Geology,pyrite geochemistry and metallogenic mechanism of the Wulong gold deposit in Liaodong Peninsula,North China Craton[J]. Minerals, 2022, 12(12): 1551.
DOI URL |
[58] |
COOK N, CIOBANU C, MERIA D. Arsenopyrite-pyrite association in an orogenic gold ore: Tracing mineralization history from textures and trace[J]. Economic Geology, 2013, 108: 1273-1283.
DOI URL |
[59] | 海东婧. 山东乳山宋家庄金矿成因矿物学与深部远景研究[D]. 北京: 中国地质大学(北京), 2013. |
[60] | 李秀章, 王勇军, 李衣鑫, 等. 胶东蓬莱黑岚沟金矿床黄铁矿微区地球化学特征及对成矿流体的启示[J]. 地质通报, 2022, 41(6): 1023-1038. |
[61] |
AFIFI A M, KELLY W C, ESSENE E J. Phase relations among tellurides,sulfides,and oxides: Pt.II,Applications to telluride-bearing ore deposits[J]. Economic Geology, 1988, 83(2): 395-404.
DOI URL |
[62] |
甄世民, 庞振山, 朱晓强, 等. 山西梨园金矿黄铁矿微量元素及S-Pb-He-Ar同位素地球化学特征及其地质意义[J]. 地学前缘, 2020, 27(2): 373-390.
DOI |
[63] | 宋英昕, 孙伟清, 马晓东, 等. 胶东焦家金矿床基性脉岩地球化学特征及其与金矿化的关系[J]. 山东国土资源, 2017, 33(2): 1-7. |
[64] | 毛景文, 赫英, 丁悌平. 胶东金矿形成期间地幔流体参与成矿过程的碳氧氢同位素证据[J]. 矿床地质, 2002, 21(2): 121-128. |
[65] |
MAO J W, WANG Y T, LI H M, et al. The relationship of mantle-derived fluids to gold metallogenesis in the Jiaodong Peninsula: evidence from D-O-C-S isotope systematics[J]. Ore Geology Reviews, 2008, 33(3/4): 361-381.
DOI URL |
[66] | 宋明春, 李三忠, 伊丕厚, 等. 中国胶东焦家式金矿类型及其成矿理论[J]. 吉林大学学报(地球科学版), 2014, 44(1): 87-104. |
[67] | 宋明春, 张军进, 张丕建, 等. 胶东三山岛北部海域超大型金矿床的发现及其构造-岩浆背景[J]. 吉林大学学报(地球科学版), 2015, 89(2): 365-383. |
[68] |
YANG L Q, DENG J, GOLDFARB R J, et al. 40Ar/39Ar geochronological constraints on the formation of the Dayingezhuang gold deposit: New implications for timing and duration of hydrothermal activity in the Jiaodong gold province,China[J]. Gondwana Research, 2014, 25(4): 1469-1483.
DOI URL |
[69] |
LI S R, SANTOSH M. Metallogeny and craton destruction: Records from the North China Craton[J]. Ore Geology Reviews, 2014, 56: 376-414.
DOI URL |
[70] |
MA L, JIANG S Y, HOFMANN A W, et al. Lithospheric and asthenospheric sources of lamprophyres in the Jiaodong Peninsula: A consequence of rapid lithospheric thinning beneath the North China Craton?[J]. Geochimica et Cosmochimica Acta, 2014, 124: 250-271.
DOI URL |
[71] | 赵鹏沄, 顾雪祥, 邓小华. 山东焦家金矿矿床成因及成矿模式[J]. 地质与勘探, 2007, 43(4): 29-35. |
[72] | 梁亚运, 刘学飞, 李龚健, 等. 胶东地区脉岩成因与金成矿关系的研究: 年代学及Sr-Nd-Pb同位素的约束[J]. 地质科技情报, 2014, 33(3): 10-24. |
[73] | 张炳林. 胶东大尹格庄—夏甸金矿田黄铁绢英岩化蚀变与金成矿机理[D]. 北京: 中国地质大学(北京), 2018. |
[1] | 胡生平, 韩善楚, 张洪求, 张勇, 潘家永, 钟福军, 卢建研, 李惟鑫. 庐枞盆地西湾铅锌矿床黄铁矿微量元素组成特征及成矿启示[J]. 现代地质, 2024, 38(01): 183-197. |
[2] | 张舒, 张赞赞, 胡召齐, 施立胜, 周涛发, 吴明安, 杜建国. 长江中下游成矿带庐枞矿集区花岗岩型铀矿床成矿作用研究进展[J]. 现代地质, 2023, 37(06): 1435-1448. |
[3] | 李玉洁, 李胜荣, 袁茂文. 河北丰宁银多金属矿床黄铁矿热电性特征及其指示意义[J]. 现代地质, 2023, 37(02): 463-474. |
[4] | 曹林杰, 张运周, 李四龙, 王志红, 张瑶, 张寒. 北大巴山平利县大坪—金岭重晶石矿床地球化学特征与成矿物源分析[J]. 现代地质, 2022, 36(06): 1497-1502. |
[5] | 杜保峰, 张荣臻, 杨长青, 李山坡, 谭和勇, 朱红运. 西藏则不吓铅锌矿床硫、铅同位素组成及对成矿物质来源的指示[J]. 现代地质, 2022, 36(04): 1138-1145. |
[6] | 常铭, 刘家军, 杨永春, 翟德高, 周淑敏, 王建平. 甘肃省鹿儿坝金矿流体包裹体研究:对流体演化和成矿机制的探讨[J]. 现代地质, 2021, 35(06): 1576-1586. |
[7] | 赵保具, 张艳飞, 颜开, 肖荣阁. 大兴安岭中段有色金属矿床成矿物质来源探讨[J]. 现代地质, 2021, 35(05): 1380-1396. |
[8] | 薛玉山, 寸小妮, 刘新伟, 胡西顺. 南秦岭龙头沟金成矿带成矿物质来源:元素及硫同位素证据[J]. 现代地质, 2020, 34(05): 1077-1091. |
[9] | 肖晓牛, 费利东, 秦新龙, 肖娥, 刘荣芳. 闽中梅仙铅锌多金属矿区S、Pb同位素组成及对成矿物质的示踪:以丁家山和峰岩铅锌多金属矿为例[J]. 现代地质, 2020, 34(03): 569-578. |
[10] | 费利东, 肖晓牛, 肖娥, 刘军, 白涛. 滇中播卡铜矿床硫、铅同位素组成及其地质意义[J]. 现代地质, 2020, 34(03): 579-587. |
[11] | 方焱, 何谋惷, 丁振举, 徐怡然, 魏连喜. 黑龙江省东宁县五道沟金矿成矿流体特征及矿床成因[J]. 现代地质, 2020, 34(02): 254-265. |
[12] | 刘一浩, 薛春纪, 赵云, 赵晓波, 褚海霞, 刘城先, 余亮, 王璐, 吴得海. 我国热液金矿中黄铁矿的载金性研究[J]. 现代地质, 2020, 34(01): 1-12. |
[13] | 罗坤, 黎敦朋, 王力圆, 肖爱芳, 孔令添, 王治淇. 福建李坊重晶石矿床形成环境及矿床成因[J]. 现代地质, 2019, 33(03): 476-486. |
[14] | 陆三明, 李建设, 阮林森, 赵丽丽, 黄凡, 王波华, 张怀东. 安徽省金寨县沙坪沟钼矿床稳定同位素地球化学特征[J]. 现代地质, 2019, 33(02): 262-270. |
[15] | 郭林楠, 黄春梅, 张良, 陈炳翰, 李瑞红, 刘跃. 胶东罗山金矿床成矿流体来源:蚀变岩型和石英脉型矿石载金黄铁矿稀土与微量元素特征约束[J]. 现代地质, 2019, 33(01): 121-136. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||