[1] |
邹宇锋, 蔡焕杰, 张体彬, 等. 河套灌区不同灌溉方式春玉米耗水特性与经济效益分析[J]. 农业机械学报, 2020, 51(9): 237-248.
|
[2] |
章超然. 地表水补给地下水化学特征和砷分布的影响[D]. 北京: 中国地质大学(北京), 2020.
|
[3] |
王璐瑶. 河套灌区地下水开发利用的渠井结合比研究[D]. 武汉: 武汉大学, 2018.
|
[4] |
沈来银, 胡铁松, 周姗, 等. 基于SHAW模型的河套灌区秋浇渠系优化配水模型研究[J]. 水利学报, 2020, 51(4): 458-467.
|
[5] |
马贵仁, 屈忠义, 王丽萍, 等. 基于ArcGIS空间插值的河套灌区土壤水盐运移规律与地下水动态研究[J]. 水土保持学报, 2021, 35(4):209-216.
|
[6] |
史海滨, 杨树青, 李瑞平, 等. 内蒙古河套灌区水盐运动与盐渍化防治研究展望[J]. 灌溉排水学报, 2020, 39(8):1-17.
|
[7] |
GUO H M, ZHANG Y. XING L N, et al. Spatial variation in arsenic and fluoride concentrations of shallow groundwater from the town of Shahai in the Hetao basin, Inner Mongolia[J]. Applied Geochemistry, 2012, 27(11): 2187-2196.
|
[8] |
CAO W G, GUO H M. ZHANG Y L, et al. Controls of paleochannels on groundwater arsenic distribution in shallow aquifers of alluvial plain in the Hetao Basin, China[J]. Science of Total Environment, 2018, 613/614: 958-968.
|
[9] |
CAO W G. Genesis of high arsenic groundwater in typical alluvial plain of Yellow River Basin[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2018.
|
[10] |
GUO H M, ZHANG Y, JIA Y F, et al. Dynamic behaviors of water levels and arsenic concentration in shallow groundwater from the Hetao Basin, Inner Mongolia[J]. Journal of Geochemical Exploration, 2013, 135: 130-140.
|
[11] |
GUO H M, YANG S Z, TANG X H, et al. Groundwater geochemistry and its implications for arsenic mobilization in shallow aquifers of the Hetao Basin, Inner Mongolia[J]. Science of Total Environment, 2008, 393(1): 131-44.
|
[12] |
WEN D G, ZHANG F C, ZHANG E Y, et al. Arsenic, fluoride and iodine in groundwater of China[J]. Journal of Geochemical Exploration, 2013, 135: 1-21.
|
[13] |
陈国梁, 冯涛, 陈章, 等. 砷在农作物中的累积及其耐受机制研究综述[J]. 生态环境学报, 2017, 26(11): 1997-2002.
|
[14] |
段明宇, 吴攀, 张翅鹏, 等. 高砷煤矿污染土壤的小麦砷累积研究[J]. 麦类作物学报, 2017, 37(7): 985-991.
|
[15] |
崔佳琪, 李仙岳, 史海滨, 等. 河套灌区地下水化学演变特征及形成机制[J]. 环境科学, 2020, 41(9): 4011-4020.
|
[16] |
BIAN J M, NIE S Y, WANG R, et al. Hydrochemical charac-teristics and quality assessment of groundwater for irrigation use in central and eastern Songnen Plain, Northeast China[J]. Environmental Monitoring and Assessment, 2018, 190(7):382-398.
|
[17] |
袁宏颖, 杨树青, 张万锋, 等. 河套灌区浅层地下水NO3--N时空变化及驱动因素[J/OL]. 环境科学, 2021.https://doi.org/10.13227/j.hjkx.202107.
|
[18] |
曹文庚. 黄河流域典型冲积平原高砷地下水成因机制[D]. 郑州: 华北水利水电大学, 2018.
|
[19] |
付宇, 曹文庚, 张娟娟. 基于随机森林建模预测河套盆地高砷地下水风险分布[J]. 岩矿测试, 2021, 40(6):860-870.
|
[20] |
袁成福, 冯绍元, 庄旭东. 内蒙古河套灌区典型耕、荒地水盐动态分析[J]. 干旱地区农业研究, 2022, 40(1):77-85.
|
[21] |
赖黎明, 美丽, 杨旸. 内蒙古河套灌区农业土壤特征与发展分析[J]. 江苏农业科学, 2022, 50(2):213-218.
|
[22] |
SELVAM S, JESURAJA K, ROY P D, et al. Assessment of groundwater from an industrial coastal area of south India for human health risk from consumption and irrigation suitability[J]. Environmental Research, 2021, 200: 111-461.
|
[23] |
朱丹尼, 邹胜章, 李军, 等. 会仙岩溶湿地丰平枯水期地表水污染及灌溉适用性评价[J]. 环境科学, 2021, 42(5):2241-2250.
|
[24] |
唐金平, 张强, 胡漾, 等. 湔江冲洪积扇地下水化学特征及控制因素分析[J]. 环境科学, 2019, 40(7):28-33.
|
[25] |
高延康, 刘祖发, 卓文珊, 等. 基于模糊综合优化模型的湛江市地下水灌溉适宜性评价[J]. 亚热带资源与环境学报, 2019, 14(3):29-37.
|
[26] |
Staff of US Salinity Laboratory. Diagnosis and Improvement of Saline and Alkaline Soils:U.S. Department of Agriculture Hand Book[M]. Washington: Government Printing Office Washington, 1954.
|
[27] |
DONEEN L D. Notes on water quality in agriculture[M]//Water Science and Engineering Paper 4001. Davis: University of California, 1964.
|
[28] |
BISHWAKARMA K, WANG G X, ZHANG F, et al. Hydrochemical characterization and irrigation suitability of the Ganges Brahmaputra River System: review and assessment[J]. Journal of Mountain Science, 2022, 19(2): 388-402.
|
[29] |
EATON F M. Significance of carbonate irrigation water[J]. Soil Science, 1950, 69 (2):123-133.
|
[30] |
ZHI C S, CAO W G, WNAG Z, et al. High-arsenic groundwater in paleochannels of the lower Yellow River, China: distribution and genesis mechanisms[J]. Water, 2021, 13(3): 338-342.
|
[31] |
REDDY A G S, KUMAR K N. Identification of the hydrogeochemical processes in groundwater using major ion chemistry: a case study of Penna-Chitravathi river basins in Southern India[J]. Environmental Monitoring & Assessment, 2010, 170(1/4):365-382.
|
[32] |
CAO W G, DONG Q Y, TAN J, et al. The mechanism of Yellow River diversion in controlling high arsenic groundwater distribution since the Late Pleistocene[J]. South-to-North Water Transfers and Water Science and Technology, 2020, 19(1): 140-150.
|
[33] |
MA L, HUANG T W, QIU H, et al. Hydrogeochemical characteristic evaluation and irrigation suitability assessment of shallow groundwater in Dangshan County, China[J]. Geosciences Journal, 2021, 25(5): 731-748.
|
[34] |
SMEDLEY P L, KINNIBURGH D G. A review of the source, behaviour and distribution of arsenic in natural waters[J]. Applied Geochemistry, 2002, 17: 517-568.
|
[35] |
WANG Y X, XIE X J, JOHNSON T M, et al. Coupled iron, sulfur and carbon isotope evidences for arsenic enrichment in groundwater[J]. Journal of Hydrology, 2014, 519: 414-422.
|
[36] |
LI J X, WANG Y X, GUO W, et al. Iodine mobilization in groundwater system at Datong basin, China: evidence from hydrochemistry and fluorescence characteristics[J]. Science of the Total Environment, 2014, 468/469: 738-45.
|
[37] |
曹文庚, 董秋瑶, 谭俊. 河套盆地晚更新世以来黄河改道对高砷地下水分布的控制机制[J]. 南水北调与水利科技, 2020, 19(1): 140-150.
|
[38] |
KOUZANA L, MAMMOU A B, FELFOUL M S. Seawater intrusion and associated processes: Case of the Korba aquifer (Cap-Bon, Tunisia)[J]. Comptes Rendus Geoscience, 2009, 341(1): 21-35.
|
[39] |
王一舒, 荣楠, 侯静, 等. 乌梁素海水体交换特征及影响因素分析[J]. 水电能源科学, 2021, 39(10): 39-42,88.
|