[1] |
SCHMIDT M W I, NOACK A G. Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges[J]. Global Biogeochemical Cycles, 2000, 14(3): 777-793.
DOI
URL
|
[2] |
LEHMANN J, RILLIG M C, THIES J, et al. Biochar effects on soil biota-A review[J]. Soil Biology and Biochemistry, 2011, 43(9):1812-1836.
DOI
URL
|
[3] |
SOHI S P. Carbon storage with benefits[J]. Science, 2012, 338:1034-1035.
DOI
URL
|
[4] |
ZHAO N, ZHAO C, LÜ Y, et al. Adsorption and coadsorption mechanisms of Cr (VI) and organic contaminants on H3PO4 treated biochar[J]. Chemosphere, 2017, 186: 422-429.
DOI
URL
|
[5] |
DENG H, YU H, CHEN M, et al. Sorption of atrazine in tropical soil by biochar prepared from cassava waste[J]. Bioresources, 2014, 9(4): 6627-6643.
|
[6] |
LAMICHHANE S, BAL KRISHNA K C, SARUKKALIGE R. Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: A review[J]. Chemosphere, 2016, 148:336-353.
DOI
PMID
|
[7] |
ROGOVSKA N, LAIRD D A, RATHKE S J, et al. Biochar impact on Midwestern Mollisols and maize nutrient availability[J]. Geoderma, 2014, 230/231(7): 340-347.
DOI
URL
|
[8] |
NOWACK B, BUCHELI T D. Occurrence, behavior and effects of nanoparticles in the environment[J]. Environmental Pollution, 2007, 150(1):5-22.
DOI
PMID
|
[9] |
CORNELISSEN G, GUSTAFSSON O, BUCHELI T D, et al. Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: Mechanisms and consequences for distribution, bioaccumulation, and biodegradation[J]. Environmental Science and Technology, 2005, 39(18): 6881-6895.
PMID
|
[10] |
DAI X, BOUTTON T W, GLASER B, et al. Black carbon in a temperate mixed-grass savanna[J]. Soil Biology and Biochemistry, 2005, 37(10): 1879-1881.
DOI
URL
|
[11] |
HOCKADAY W C, GRANNAS A M, KIM S, et al. The transformation and mobility of charcoal in a fire-impacted watershed[J]. Geochimica et Cosmochimica Acta, 2007, 71(14):3432-3445.
DOI
URL
|
[12] |
杨雯, 郝丹丹, 徐东昊, 等. 生物炭颗粒在饱和多孔介质中的迁移与滞留[J]. 土壤通报, 2017, 48(2):304-312.
|
[13] |
OLESZCZUK P, ĆWIKŁA-BUNDYRA W, BOGUSZ A, et al. Characterization of nanoparticles of biochars from different biomass[J]. Journal of Analytical and Applied Pyrolysis, 2016, 121:165-172.
DOI
URL
|
[14] |
WANG D J, ZHANG W, HAO X Z, et al. Transport of biochar particles in saturated granular media: effects of pyrolysis temperature and particle size[J]. Environmental Science and Technology, 2013, 47(2):821-828.
DOI
PMID
|
[15] |
WANG D J, ZHANG W, ZHOU D M. Antagonistic effects of humic acid and iron oxyhydroxide grain-coating on biochar nanoparticle transport in saturated sand[J]. Environmental Science and Technology, 2013, 47(10):5154-5161.
DOI
PMID
|
[16] |
TIAN X, LI T, YANG K, et al. Effect of humic acids on physicochemical property and Cd(II) sorption of multiwalled carbon nanotubes[J]. Chemosphere, 2012, 89:1316-1322.
DOI
PMID
|
[17] |
胡波, 张会兰, 王彬, 等. 重庆缙云山地区森林土壤酸化特征[J]. 长江流域资源与环境, 2015, 24(2):300-309.
|
[18] |
焦庆先, 周连仁. 不同厚度黑土覆盖对苏打草甸碱土修复效果的影响[J]. 东北农业大学学报, 2011, 42(11):121-125.
|
[19] |
景明, 李烨, 陈盈余, 等. 土壤中添加生物炭对Cr(VI)的迁移锁定作用研究[J]. 现代地质, 2014, 28(6):1194-1201.
|
[20] |
ZHOU D M, WANG D J, LONG C, et al. Transport and re-entrainment of soil colloids in saturated packed column: effects of pH and ionic strength[J]. Journal of Soils and Sediments, 2011, 11(3):491-503.
DOI
URL
|
[21] |
TUFENKJI N, ELIMELECH M. Deviation from the classical colloid filtration theory in the presence of repulsive DLVO interactions[J]. Langmuir, 2004, 20 (25):10818-10828.
PMID
|
[22] |
HAN Y, HWANG G, PARK S, et al. Stability behavior of carboxyl-functionalized carbon black nanoparticles: role of solution chemistry and humic acid[J]. Environmental Science: Nano, 2017, 4 (4):800-810.
DOI
URL
|
[23] |
HAN B, LIU W, ZHAO X, et al. Transport of multi-walled carbon nanotubes stabilized by carboxymethyl cellulose and starch in saturated porous media: Influences of electrolyte, clay and humic acid[J]. Science of the Total Environment, 2017, 599/600:188-197.
DOI
URL
|
[24] |
CHEN M, WANG D J, YANG F, et al. Transport and retention of biochar nanoparticles in a paddy soil under environmentally-relevant solution chemistry conditions[J]. Environmental Pollution, 2017, 230:540-549.
DOI
PMID
|
[25] |
CALERO A J, ONTIVEROS-ORTEGA A, ARANDA V, et al. Humic acid adsorption and its role in colloidal-scale aggregation determined with the zeta potential, surface free energy and the extended-DLVO theory[J]. European Journal of Soil Science, 2017, 68:491-503.
DOI
URL
|
[26] |
SHARMA P, BAO D, FAGERLUND F. Deposition and mobilization of functionalized multiwall carbon nanotubes in saturated porous media: effect of grain size, flow velocity and solution chemistry[J]. Environmental Earth Sciences, 2014, 72(8):3025-3035.
DOI
URL
|
[27] |
YANG J, BITTER J L, SMITH B A, et al. Transport of oxidized multi-walled carbon nanotubes through silica based porous media: influences of aquatic chemistry, surface chemistry, and natural organic matter[J]. Environmental Science and Technology, 2013, 47(24):14034-14043.
DOI
PMID
|