现代地质 ›› 2018, Vol. 32 ›› Issue (01): 56-65.DOI: 10.19657/j.geoscience.1000-8527.2018.01.05
李壮1,2(), 王立强1, 李海峰2, 旦真王修2, 施硕3
收稿日期:
2017-05-08
修回日期:
2017-09-22
出版日期:
2018-02-10
发布日期:
2018-02-05
作者简介:
李 壮,男,博士研究生,1989年出生,矿产普查与勘探专业,主要从事固体矿产勘查与评价方面的研究。Email:lizhuangcags@126.com。
基金资助:
LI Zhuang1,2(), WANG Liqiang1, LI Haifeng2, DANZHEN Wangxiu2, SHI Shuo3
Received:
2017-05-08
Revised:
2017-09-22
Online:
2018-02-10
Published:
2018-02-05
摘要:
西藏浦桑果铜铅锌多金属矿床位于南冈底斯成矿带火山岩浆弧内,矿区矽卡岩型铜铅锌矿体主要呈透镜状和似层状近东西向赋存于白垩系塔克那组第四岩性段矽卡岩化大理岩中。基于野外地质调查和成矿地质条件,对矿床主要金属硫化物闪锌矿、方铅矿、黄铜矿等的S、Pb同位素特征进行研究,并结合前人数据,综合探讨矿床的成矿物质来源。结果表明,浦桑果矿床矿石金属硫化物的δ34S值介于-2.4‰~1.0‰之间,平均值为-0.40‰,硫同位素频率直方图具明显的塔式分布特征,指示硫可能与岩浆作用有关,硫同位素具岩浆硫特征,主要与闪长玢岩有关。矿石硫化物中206Pb/204Pb变化于18.344~18.625之间,平均值为18.555; 207Pb/204Pb变化于15.549~15.794之间,平均值为15.716; 208Pb/204Pb变化于38.12~39.34之间,平均值为39.044;矿石铅同位素组成稳定,为正常普通铅。结合铅同位素μ值特征(9.37~9.82)及铅同位素构造环境演化图投图结果,综合表明浦桑果矿床的矿石铅主要来源于上地壳物质且伴有地幔物质的混染,铅同位素具壳幔混源的特征。
中图分类号:
李壮, 王立强, 李海峰, 旦真王修, 施硕. 西藏浦桑果铜铅锌多金属矿床S、Pb同位素组成及对成矿物质来源的示踪[J]. 现代地质, 2018, 32(01): 56-65.
LI Zhuang, WANG Liqiang, LI Haifeng, DANZHEN Wangxiu, SHI Shuo. Sulfur and Lead Isotopic Compositions of the Pusangguo Cu-Pb-Zn Polymetallic Deposit in Tibet: Implications for the Source of Ore-forming Material[J]. Geoscience, 2018, 32(01): 56-65.
图1 西藏大地构造简图(a)和冈底斯构造单元划分及矿产分布图(b)(据参考文献[44]和[45]修编)
Fig.1 The tectonic sketch map (a) of Tibet and geological unit division and mineral distribution of Gangdese region(b) (modified after reference[44] and [45])
图3 浦桑果铜铅锌多金属矿床典型金属硫化物矿石样品特征 块状黄铜矿及少量细脉状闪锌矿(ZK504-102.72); 稠密浸染状黄铁矿(PH027); 块状黄铁矿(PH003); 矽卡岩中的浸染状方铅矿(ZK005-202.8); 矽卡岩中细脉状闪锌矿(ZK504-171); 块状方铅矿及浸染状黄铜矿(PH034);Ccp.黄铜矿;Py.黄铁矿;Sp.闪锌矿;Gn.方铅矿;Q.石英
Fig.3 The characteristics of typical sulfide ores in the Pusangguo Cu-Pb-Zn polymetallic deposit
样品编号 | 测试对象 | δ34SV-CDT/‰ | 数据来源 | 样品编号 | 测试对象 | δ34SV-CDT/‰ | 数据来源 |
---|---|---|---|---|---|---|---|
ZK504-102.72 | 黄铜矿 | 0.3 | 本文 | PH027 | 黄铁矿 | 1 | 文献[ |
ZK504-127 | 黄铜矿 | 0 | 黄铜矿 | 0.1 | |||
ZK504-171 | 闪锌矿 | 0.8 | PH029 | 黄铜矿 | 0.1 | ||
ZK005-202.8 | 方铅矿 | -2.4 | 方铅矿 | -1.8 | |||
ZK004-18.8 | 方铅矿 | -1.5 | PH032 | 黄铜矿 | -0.2 | ||
PH003 | 黄铁矿 | 0.6 | 文献[ | 方铅矿 | -1.3 | ||
PH025 | 闪锌矿 | 0.1 | 闪锌矿 | -0.9 | |||
PH026 | 黄铁矿 | 0.1 | PH034 | 黄铜矿 | 0.7 | ||
黄铜矿 | -0.2 | 方铅矿 | -0.9 | ||||
方铅矿 | -2.1 | PH040 | 闪锌矿 | 0.3 | |||
闪锌矿 | -0.9 | PH042 | 黄铜矿 | -0.6 |
表1 浦桑果铜铅锌多金属矿床矿石硫化物S同位素组成
Table 1 Sulfur isotopic compositions of ore sulfides from the Pusangguo copper-lead-zinc polymetallic deposit
样品编号 | 测试对象 | δ34SV-CDT/‰ | 数据来源 | 样品编号 | 测试对象 | δ34SV-CDT/‰ | 数据来源 |
---|---|---|---|---|---|---|---|
ZK504-102.72 | 黄铜矿 | 0.3 | 本文 | PH027 | 黄铁矿 | 1 | 文献[ |
ZK504-127 | 黄铜矿 | 0 | 黄铜矿 | 0.1 | |||
ZK504-171 | 闪锌矿 | 0.8 | PH029 | 黄铜矿 | 0.1 | ||
ZK005-202.8 | 方铅矿 | -2.4 | 方铅矿 | -1.8 | |||
ZK004-18.8 | 方铅矿 | -1.5 | PH032 | 黄铜矿 | -0.2 | ||
PH003 | 黄铁矿 | 0.6 | 文献[ | 方铅矿 | -1.3 | ||
PH025 | 闪锌矿 | 0.1 | 闪锌矿 | -0.9 | |||
PH026 | 黄铁矿 | 0.1 | PH034 | 黄铜矿 | 0.7 | ||
黄铜矿 | -0.2 | 方铅矿 | -0.9 | ||||
方铅矿 | -2.1 | PH040 | 闪锌矿 | 0.3 | |||
闪锌矿 | -0.9 | PH042 | 黄铜矿 | -0.6 |
样品编号 | 测试对象 | 206Pb/204Pb(2σ) | 207Pb/204Pb(2σ) | 208Pb/204Pb(2σ) | μ | ω | Δβ | Δγ | 数据来源 |
---|---|---|---|---|---|---|---|---|---|
ZK504-102.72 | 黄铜矿 | 18.407±0.002 | 15.612±0.002 | 38.334±0.004 | 9.49 | 36.22 | 18.9 | 30.97 | 本文 |
ZK504-127.00 | 黄铜矿 | 18.344±0.002 | 15.549±0.002 | 38.120±0.005 | 9.37 | 35.11 | 14.64 | 23.79 | |
ZK504-171.00 | 闪锌矿 | 18.593±0.002 | 15.755±0.002 | 39.211±0.005 | 9.75 | 40.15 | 28.42 | 56.44 | |
ZK005-202.80 | 方铅矿 | 18.612±0.002 | 15.776±0.002 | 39.276±0.006 | 9.79 | 40.52 | 29.85 | 58.73 | |
ZK004-18.80 | 方铅矿 | 18.625±0.002 | 15.794±0.002 | 39.340±0.005 | 9.82 | 40.88 | 31.08 | 60.99 | |
PH003 | 黄铁矿 | 18.555±0.003 | 15.702±0.003 | 39.036±0.007 | 9.65 | 39.13 | 24.79 | 50.07 | 文献[14] |
PH025 | 闪锌矿 | 18.545±0.002 | 15.694±0.002 | 39.011±0.005 | 9.63 | 39.00 | 24.26 | 49.27 | |
PH026 | 黄铁矿 | 18.557±0.002 | 15.705±0.002 | 39.045±0.005 | 9.65 | 39.18 | 25.00 | 50.4 | |
黄铜矿 | 18.567±0.002 | 15.717±0.001 | 39.085±0.004 | 9.68 | 39.41 | 25.81 | 51.79 | ||
方铅矿 | 18.546±0.003 | 15.692±0.003 | 39.005±0.007 | 9.63 | 38.95 | 24.11 | 48.97 | ||
闪锌矿 | 18.558±0.002 | 15.705±0.002 | 39.042±0.005 | 9.65 | 39.16 | 24.99 | 50.28 | ||
PH027 | 黄铁矿 | 18.547±0.001 | 15.697±0.001 | 39.020±0.003 | 9.64 | 39.06 | 24.46 | 49.60 | |
黄铜矿 | 18.582±0.002 | 15.742±0.001 | 39.170±0.004 | 9.72 | 39.92 | 27.54 | 54.97 | ||
PH029 | 黄铜矿 | 18.586±0.003 | 15.746±0.003 | 39.182±0.008 | 9.73 | 39.98 | 27.81 | 55.38 | |
方铅矿 | 18.542±0.002 | 15.692±0.001 | 39.004±0.004 | 9.63 | 38.97 | 24.13 | 49.08 | ||
PH032 | 黄铜矿 | 18.585±0.002 | 15.742±0.002 | 39.167±0.006 | 9.72 | 39.89 | 27.53 | 54.80 | |
方铅矿 | 18.580±0.002 | 15.744±0.002 | 39.171±0.004 | 9.73 | 39.95 | 27.69 | 55.18 | ||
闪锌矿 | 18.549±0.002 | 15.702±0.002 | 39.040±0.004 | 9.65 | 39.18 | 24.81 | 50.36 | ||
PH034 | 黄铜矿 | 18.590±0.002 | 15.758±0.002 | 39.221±0.005 | 9.76 | 40.24 | 28.65 | 56.97 | |
方铅矿 | 18.594±0.002 | 15.758±0.003 | 39.215±0.007 | 9.75 | 40.19 | 28.63 | 56.68 | ||
PH040 | 闪锌矿 | 18.568±0.002 | 15.721±0.002 | 39.098±0.004 | 9.68 | 39.49 | 26.09 | 52.32 | |
PH042 | 黄铜矿 | 18.585±0.003 | 15.741±0.003 | 39.168±0.007 | 9.72 | 39.88 | 27.46 | 54.78 |
表2 浦桑果铜铅锌多金属矿床矿石硫化物Pb同位素组成
Table 2 Lead isotopic compositions of ore sulfides from the Pusangguo Cu-Pb-Zn polymetallic deposit
样品编号 | 测试对象 | 206Pb/204Pb(2σ) | 207Pb/204Pb(2σ) | 208Pb/204Pb(2σ) | μ | ω | Δβ | Δγ | 数据来源 |
---|---|---|---|---|---|---|---|---|---|
ZK504-102.72 | 黄铜矿 | 18.407±0.002 | 15.612±0.002 | 38.334±0.004 | 9.49 | 36.22 | 18.9 | 30.97 | 本文 |
ZK504-127.00 | 黄铜矿 | 18.344±0.002 | 15.549±0.002 | 38.120±0.005 | 9.37 | 35.11 | 14.64 | 23.79 | |
ZK504-171.00 | 闪锌矿 | 18.593±0.002 | 15.755±0.002 | 39.211±0.005 | 9.75 | 40.15 | 28.42 | 56.44 | |
ZK005-202.80 | 方铅矿 | 18.612±0.002 | 15.776±0.002 | 39.276±0.006 | 9.79 | 40.52 | 29.85 | 58.73 | |
ZK004-18.80 | 方铅矿 | 18.625±0.002 | 15.794±0.002 | 39.340±0.005 | 9.82 | 40.88 | 31.08 | 60.99 | |
PH003 | 黄铁矿 | 18.555±0.003 | 15.702±0.003 | 39.036±0.007 | 9.65 | 39.13 | 24.79 | 50.07 | 文献[14] |
PH025 | 闪锌矿 | 18.545±0.002 | 15.694±0.002 | 39.011±0.005 | 9.63 | 39.00 | 24.26 | 49.27 | |
PH026 | 黄铁矿 | 18.557±0.002 | 15.705±0.002 | 39.045±0.005 | 9.65 | 39.18 | 25.00 | 50.4 | |
黄铜矿 | 18.567±0.002 | 15.717±0.001 | 39.085±0.004 | 9.68 | 39.41 | 25.81 | 51.79 | ||
方铅矿 | 18.546±0.003 | 15.692±0.003 | 39.005±0.007 | 9.63 | 38.95 | 24.11 | 48.97 | ||
闪锌矿 | 18.558±0.002 | 15.705±0.002 | 39.042±0.005 | 9.65 | 39.16 | 24.99 | 50.28 | ||
PH027 | 黄铁矿 | 18.547±0.001 | 15.697±0.001 | 39.020±0.003 | 9.64 | 39.06 | 24.46 | 49.60 | |
黄铜矿 | 18.582±0.002 | 15.742±0.001 | 39.170±0.004 | 9.72 | 39.92 | 27.54 | 54.97 | ||
PH029 | 黄铜矿 | 18.586±0.003 | 15.746±0.003 | 39.182±0.008 | 9.73 | 39.98 | 27.81 | 55.38 | |
方铅矿 | 18.542±0.002 | 15.692±0.001 | 39.004±0.004 | 9.63 | 38.97 | 24.13 | 49.08 | ||
PH032 | 黄铜矿 | 18.585±0.002 | 15.742±0.002 | 39.167±0.006 | 9.72 | 39.89 | 27.53 | 54.80 | |
方铅矿 | 18.580±0.002 | 15.744±0.002 | 39.171±0.004 | 9.73 | 39.95 | 27.69 | 55.18 | ||
闪锌矿 | 18.549±0.002 | 15.702±0.002 | 39.040±0.004 | 9.65 | 39.18 | 24.81 | 50.36 | ||
PH034 | 黄铜矿 | 18.590±0.002 | 15.758±0.002 | 39.221±0.005 | 9.76 | 40.24 | 28.65 | 56.97 | |
方铅矿 | 18.594±0.002 | 15.758±0.003 | 39.215±0.007 | 9.75 | 40.19 | 28.63 | 56.68 | ||
PH040 | 闪锌矿 | 18.568±0.002 | 15.721±0.002 | 39.098±0.004 | 9.68 | 39.49 | 26.09 | 52.32 | |
PH042 | 黄铜矿 | 18.585±0.003 | 15.741±0.003 | 39.168±0.007 | 9.72 | 39.88 | 27.46 | 54.78 |
图7 浦桑果矿床207Pb/204Pb-206Pb/204Pb ()和208Pb/204Pb-206Pb/204Pb ()的构造环境演化图(底图据文献[66])
Fig.7 Diagram showing evolutionary tectonic setting for 207Pb/204Pb-206Pb/204Pb ()和208Pb/204Pb-206Pb/204Pb () of ore lead isotope from the Pusangguo deposit (after reference [66])
[1] |
ZHU D C, PAN G T, CHUNG S L, et al. SHRIMP zircon age and geochemical constraints on the origin of Lower Jurassic volcanic rocks from the Yeba Formation, southern Gangdese, south Tibet[J]. International Geology Review, 2008, 50(5): 442-471.
DOI URL |
[2] |
PAN G T, WANG L Q, LI R S, et al. Tectonic evolution of the Qinghai-Tibet Plateau[J]. Journal of Asian Earth Sciences, 2012, 53: 3-14.
DOI URL |
[3] |
ZHENG Y Y, SUN Y, GAO S B, et al. Metallogenesis and the minerogenetic series in the Gangdese polymetallic copper belt[J]. Journal of Asian Earth Sciences, 2015, 103: 23-39.
DOI URL |
[4] |
YANG Z M, HOU Z Q, WHITE N C, et al. Geology of the post-collisional porphyry copper-molybdenum deposit at Qulong, Tibet[J]. Ore Geology Reviews, 2009, 36: 133-159.
DOI URL |
[5] |
YING L J, WANG C H, TANG J X, et al. Re-Os systematics of sulfides (chalcopyrite, bornite, pyrite and pyrrhotite) from the Jiama Cu-Mo deposit of Tibet, China[J]. Journal of Asian Earth Sciences, 2014, 79: 497-506.
DOI URL |
[6] |
TANG J X, LANG X H, XIE F W, et al. Geological characteristics and genesis of the Jurassic No.I porphyry Cu-Au deposit in the Xiongcun district, Gangdese porphyry copper belt, Tibet[J]. Ore Geology Reviews, 2015, 70: 438-456.
DOI URL |
[7] |
WANG Z H, LIU Y L, LIU H F, et al. Geochronology and geochemistry of the Bangpu Mo-Cu porphyry ore deposit, Tibet[J]. Ore Geology Reviews, 2012, 46: 95-105.
DOI URL |
[8] |
XU J, ZHENG Y Y, SUN X, et al. Geochronology and petroge-nesis of Miocene granitic intrusions related to the Zhibula Cu skarn deposit in the Gangdese belt, southern Tibet[J]. Journal of Asian Earth Sciences, 2016, 120: 100-116.
DOI URL |
[9] |
ZHAO J X, QIN K Z, LI G M, et al. The exhumation history of collision-related mineralizing systems in Tibet: Insights from thermal studies of the Sharang and Yuguila deposits, central Lhasa[J]. Ore Geology Reviews, 2015, 65:1043-1061.
DOI URL |
[10] |
ZHAO J X, LI G M, EVANS N J, et al. Petrogenesis of Paleocene-Eocene porphyry deposit-related granitic rocks in the Yaguila-Sharang ore district, central Lhasa terrane, Tibet[J]. Journal of Asian Earth Sciences, 2016, 129: 38-53.
DOI URL |
[11] |
FU Q, ZHENG Y C, XU B, et al. Two episodes of mineralization in the Mengya’a deposit and implications for the evolution and intensity of Pb-Zn-(Ag) mineralization in the Lhasa terrane[J]. Ore Geology Reviews, 2017, doi: http://dx.doi.org/10.1016/j.oregeorev.2017.01.008.
DOI |
[12] |
WANG L Q, TANG J X, BAGAS L, et al. Early Eocene Longmala skarn Pb-Zn-Cu deposit, China: geochemistry, fluid inclusions, and H-O-S-Pb isotopic compositions[J]. Ore Geology Reviews, 2017, 88: 99-115.
DOI URL |
[13] | 李小亮, 李泽琴, 张成江, 等. 西藏浦桑果铅锌矿矿床成因探讨[J]. 云南地质, 2011, 30(1): 122-126. |
[14] | 崔晓亮. 西藏南木林县浦桑果铜多金属矿床成矿作用研究[D]. 成都: 成都理工大学, 2013: 1-107. |
[15] | 康浩然. 西藏浦桑果铜多金属矿床矽卡岩与成矿岩体关系研究[D]. 北京: 中国地质科学院, 2016: 1-84. |
[16] | 崔晓亮, 多吉, 刘鸿飞, 等. 西藏浦桑果铜多金属矿床侵入岩的地球化学特征及对构造环境的约束[J]. 地球学报, 2012, 33(4):537-545. |
[17] | 杨海锐. 西藏浦桑果铜多金属矿金属硫化物矿物学特征及成因意义[D]. 成都: 成都理工大学, 2013: 1-66. |
[18] | 郑永飞, 陈江峰. 稳定同位素地球化学[M]. 北京: 科学出版社, 2000:1-316. |
[19] | 肖晔, 丰成友, 刘建楠, 等. 青海肯德可克铁多金属矿区年代学及硫同位素特征[J]. 矿床地质, 2013, 32(1): 177-186. |
[20] | 燕旎, 张静, 袁万明, 等. 川西甘孜—理塘结合带嘎拉金矿床同位素特征及成矿作用研究[J]. 岩石学报, 2013, 29(4): 1347-1357. |
[21] | 周清, 姜姚辉, 廖世勇, 等. Pb同位素对德兴铜矿成矿物源的制约[J]. 地质学报, 2013, 87(8): 1124-1135. |
[22] | 杨波, 水新芳, 赵元艺, 等. 江西德兴朱砂红斑岩铜矿床H-O-S-Pb同位素特征及意义[J]. 地质学报, 2016, 90(1): 126-138. |
[23] | 王浩, 徐兆文, 刘苏明, 等. 山东邹平碑楼斑岩铜矿床流体包裹体及H、O、S、Pb同位素研究[J]. 矿物学报, 2013, 33(1): 83-91. |
[24] | 刘忠法, 邵拥军, 周鑫, 等. 安徽铜陵冬瓜山铜(金)矿床H-O-S-Pb同位素组成及其示踪成矿物质来源[J]. 岩石学报, 2014, 30(1): 199-208. |
[25] | CZUPPON G, RAMSAY R R, OZGENC I, et al. Stable (H, O, C) and noble-gas (He and Ar) isotopic compositions from calcite and fluorite in the Speewah Dome, Kimberley region, western Australia: implications for the conditions of crystallization and evidence for the influence of crustal-mantle fluid mixing[J]. Mine-ralogy and Petrology, 2014, 108(6): 759-775. |
[26] | 郑有业, 樊子珲, 高顺宝, 等. 西藏雅鲁藏布江成矿区东段铜多金属矿勘查报告[R]. 拉萨: 西藏自治区地质调查院二分院, 2006: 1-185. |
[27] | 张宏飞, 徐旺春, 郭建秋, 等. 冈底斯印支期造山事件:花岗岩类锆石U-Pb年代学和岩石成因证据[J]. 地球科学——中国地质大学学报, 2007, 32(2): 155-166. |
[28] |
LANG X H, TANG J X, LI Z J, et al. U-Pb and Re-Os geochronological evidence for the Jurassic porphyry metallogenic event of the Xiongcun district in the Gangdese porphyry copper belt, southern Tibet, PRC[J]. Journal of Asian Earth Sciences, 2014, 79:608-622.
DOI URL |
[29] | 莫宣学, 赵志丹, 邓晋福. 印度—亚洲大陆主碰撞过程的火山作用响应[J]. 地学前缘, 2003, 10(3): 135-148. |
[30] |
ZHU D C, MO X X, ZHAO Z D, et al. Presence of Permian extension- and arc-type magmatism in southern Tibet: Paleogeographic implications[J]. Geological Society of America Bulletin, 2010, 122(7/8): 979-993.
DOI URL |
[31] |
ZHOU X, ZHENG J P, XIONG Q, et al. Early Mesozoic deep-crust reworking beneath the central Lhasa terrane (South Tibet): Evidence from intermediate gneiss xenoliths in granites[J]. Lithos, 2017, 274/275: 225-239.
DOI URL |
[32] | 唐菊兴, 陈毓川, 多吉, 等. 西藏冈底斯成矿带东段主要矿床类型、成矿规律和找矿评价[J]. 矿物学报, 2009, 32(S1): 476-478. |
[33] | 郎兴海, 唐菊兴, 李志军, 等. 西藏谢通门县雄村铜(金)矿区及其外围的找矿前景地球化学评价[J]. 地质与勘探, 2012, 48(1): 12-23. |
[34] | 孟祥金, 侯增谦, 高永丰, 等. 西藏冈底斯东段斑岩铜钼铅锌成矿系统的发育时限: 邦铺铜多金属矿床辉钼矿Re-Os年龄证据[J]. 矿床地质, 2003, 22(3): 246-252. |
[35] |
QU X M, HOU Z Q, LI Y G, et al. Melt components derived from a subducted slab in late orogenic ore-bearing porphyries in the Gangdese copper belt, southern Tibetan Plateau[J]. Lithos, 2004, 74: 131-148.
DOI URL |
[36] | 侯增谦, 莫宣学, 杨志明, 等. 青藏高原碰撞造山带成矿作用: 构造背景、时空分布和主要类型[J]. 中国地质, 2006, 33(2): 348-359. |
[37] | 高一鸣, 陈毓川, 唐菊兴, 等. 西藏工布江达县亚贵拉铅锌钼多金属矿床石英斑岩锆石SHRIMP定年及其地质意义[J]. 地质学报, 2009, 83(10):1436-1444. |
[38] |
HOU Z Q, COOK N J. Metallogenesis of the Tibetan collisional orogen: A review and introduction to the special issue[J]. Ore Geology Reviews, 2009, 36: 2-24.
DOI URL |
[39] | 王立强, 顾雪祥, 程文斌, 等. 西藏蒙亚啊铅锌矿床S、Pb同位素组成及对成矿物质来源的示踪[J]. 现代地质, 2010, 24(1): 52-58. |
[40] | 费光春, 温春齐, 周雄, 等. 西藏洞中拉铅锌矿床成矿流体研究[J]. 地质与勘探, 2010, 46(4): 576-582. |
[41] | 唐菊兴, 丁帅, 孟展, 等. 西藏林子宗群火山岩中首次发现低硫化型浅成低温热液型矿床[J]. 地球学报, 2016, 37(4): 461-470. |
[42] |
LI G M, QIN K Z, DING K S, et al. Geology, Ar-Ar age and mineral assemblage of Eocene skarn Cu-Au±Mo deposits in the southeastern Gangdese arc, Southern Tibet: implications for deep exploration[J]. Resource Geology, 2006, 56(3): 315-336.
DOI URL |
[43] | 侯增谦, 曲晓明, 王淑贤, 等. 西藏高原冈底斯斑岩铜矿带辉钼矿Re-Os年龄:成矿作用时限与动力学背景应用[J]. 中国科学: 地球科学, 2003, 33(7): 609-618. |
[44] | 唐菊兴, 多吉, 刘鸿飞, 等. 冈底斯成矿带东段矿床成矿系列及找矿突破的关键问题研究[J]. 地球学报, 2012, 33(4): 393-410. |
[45] | 王立强, 唐菊兴, 郑文宝, 等. 西藏冈底斯成矿带东段主要钼多金属矿床成矿规律研究[J]. 地质论评, 2014, 34(2):363-379. |
[46] | 王立强, 罗茂澄, 袁志洁, 等. 西藏邦铺铅锌矿床S、Pb、C、O同位素组成及成矿物质来源研究[J]. 地球学报, 2012, 33(4): 435-443. |
[47] |
HOLMES A. An estimate of the age of the earth[J]. Nature, 1946, 157: 680-684.
DOI |
[48] | HOLMES A. A revised estimate of the earth[J]. Nature, 1947, 159: 127-128. |
[49] | RYE R O, OHMOTO H. Sulfur and carbon isotope and ore genesis: a review[J]. Economic Geology, 1974, 69(6): 827-842. |
[50] | OHMOTO H. Stable isotope geochemistry of ore deposits[J]. Reviews in Mineralogy and Geochemistry, 1986, 16(1): 491-559. |
[51] | HOEFS J. Stable Isotope Geochemistry[M]. 4th ed. Berlin: Springer-Verlag, 1997: 119-120. |
[52] | 唐攀, 唐菊兴, 冷秋锋, 等. 西藏轮郎铅锌矿床S、Pb同位素组成及对成矿物质来源的示踪[J]. 岩石矿物学杂志, 2016, 35(6):1045-1054. |
[53] | OHMOTO H, RYE R O. Isotope of sulfur and carbon[M]//BARNES H L. Geochemisry of Hydrothermal Ore Deposits. 2nd ed. New York: John Wiley & Sons, 1979: 509-567. |
[54] | 杜泽忠, 顾雪祥, 李关清, 等. 藏南拉木由塔锑(金)矿床S、Pb同位素组成及指示意义[J]. 现代地质, 2011, 25(5):853-860. |
[55] | 田世洪, 杨竹森, 侯增谦, 等. 青海玉树东莫扎抓铅锌矿床S、Pb、Sr-Nd同位素组成: 对成矿物质来源的指示[J]. 岩石学报, 2011, 27(7): 2173-2183. |
[56] | 王艳娟, 胡援越, 申俊峰, 等. 太行山南段北洺河铁矿S、Pb同位素组成及其对成矿物质来源的示踪[J]. 现代地质, 2011, 25(5): 846-852. |
[57] |
OHMOTO H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits[J]. Economic Geology, 1972, 67(5): 551-578.
DOI URL |
[58] | 陈好寿, 周肃, 魏琳, 等. 成矿作用年代学及同位素地球化学[M]. 北京: 地质出版社, 1994: 1-225. |
[59] |
DING Q F, WU C Z, SANTOSH M, et al. H-O, S and Pb isotope geochemistry of the Awanda gold deposit in southern Tian-shan, central Asian orogenic belt:Implications for fluid regime and metallogeny[J]. Ore Geology Reviews, 2014, 62: 40-53.
DOI URL |
[60] |
WANG Z G, WANG K Y, WAN D, et al. Genesis of the Tianbaoshan Pb-Zn-Cu-Mo polymetallic deposit in eastern Jilin, NE China:Constraints from fluid inclusions and C-H-O-S-Pb isotope systematics[J]. Ore Geology Reviews, 2017, 80: 1111-1134.
DOI URL |
[61] | 姜军胜, 郑有业, 高顺宝, 等. 西藏查藏错铜铅锌矿床成因:C-H-O-S-Pb同位素制约[J]. 地球科学——中国地质大学学报, 2015, 40(6): 1006-1016. |
[62] |
GOLDFAR B R J, MILLER M L, EBER T S W, et al. The Late Cretaceous Donlin Creek gold deposit, southwestern Alaska: Controls on epizonal ore Formation[J]. Economic Geology, 2004, 99(1/2): 643-671.
DOI URL |
[63] |
ZHAO K D, JIANG S Y, NI P, et al. Sulfur, lead and helium isotopic compositions of sulfide minerals from the Dachang Sn-polymetallic ore district in South China:Implications for ore gene-sis[J]. Mineralogy and Petrology, 2006, 89(5): 251-273.
DOI URL |
[64] |
MORTENSEN J K, HALL B V, BISSIG T, et al. Age and paleotectonic setting of volcanogenic massive sulfide deposits in the Guerrero Terrane of central Mexico:Constraints from U-Pb age and Pb isotope studies[J]. Economic Geology, 2008, 103(3): 117-140.
DOI URL |
[65] |
BOZKAYA G. Sulfur- and lead-isotope geochemistry of the Arapucandere lead-zinc-copper deposit, Biga Peninsula, northwest Turkey[J]. International Geology Review, 2011, 53(1): 116-129.
DOI URL |
[66] |
ZARTMAN R E, DOE B R. Plumbotectonics-the model[J]. Tectonophysics, 1981, 75(1/2): 135-162.
DOI URL |
[67] | 朱炳泉. 地球科学中同位素体系理论与应用——兼论中国大陆壳幔演化[M]. 北京: 科学出版社, 1998:220-230. |
[1] | 李昱春, 肖思祺. 西藏日喀则地质遗迹特征及地质公园建设可行性分析[J]. 现代地质, 2024, 38(01): 260-268. |
[2] | 张舒, 张赞赞, 胡召齐, 施立胜, 周涛发, 吴明安, 杜建国. 长江中下游成矿带庐枞矿集区花岗岩型铀矿床成矿作用研究进展[J]. 现代地质, 2023, 37(06): 1435-1448. |
[3] | 张红雨, 杨立明, 苏犁, 宋述光, 王大川. LA-ICP-MS独居石的U(Th)-Pb年龄精确测定方法及地质意义探究[J]. 现代地质, 2023, 37(02): 443-462. |
[4] | 曹林杰, 张运周, 李四龙, 王志红, 张瑶, 张寒. 北大巴山平利县大坪—金岭重晶石矿床地球化学特征与成矿物源分析[J]. 现代地质, 2022, 36(06): 1497-1502. |
[5] | 李文霞, 赵志丹, 王晓丽, 严溶, 路远发. 西藏日喀则蛇绿岩镁铁质岩石Re-Os同位素特征及意义[J]. 现代地质, 2022, 36(06): 1503-1512. |
[6] | 杜保峰, 张荣臻, 杨长青, 李山坡, 谭和勇, 朱红运. 西藏则不吓铅锌矿床硫、铅同位素组成及对成矿物质来源的指示[J]. 现代地质, 2022, 36(04): 1138-1145. |
[7] | 陈耀飞, 侯恩刚, 高金汉, 肖红吉, 王根厚. 西藏荣玛地区上三叠统日干配错组沉积环境及其构造意义[J]. 现代地质, 2022, 36(01): 48-57. |
[8] | 刘天航, 高永宝, 魏立勇, 张振, 唐卫东, 贾彬. 陕西旬阳泗人沟铅锌矿床地质及S、Pb同位素地球化学特征[J]. 现代地质, 2021, 35(06): 1597-1607. |
[9] | 丁坤, 王瑞廷, 刘凯, 王智慧, 申喜茂. 南秦岭柞水—山阳矿集区夏家店金矿床黄铁矿微量元素和氢、氧、硫同位素对矿床成因的制约[J]. 现代地质, 2021, 35(06): 1622-1632. |
[10] | 陈澍民, 缪宇, 廖驾, 贺前平, 成明, 张珍力, 吴绍安, 章志明. 中拉萨地块南缘孔隆晚白垩世火山岩成因及对地壳演化的约束[J]. 现代地质, 2021, 35(06): 1713-1726. |
[11] | 张志平, 钟康惠, 单树成, 郑鑫, 黄浩震, 严钊. 新特提斯洋晚白垩世演化特点:来自泽当共国日二长花岗岩年代学、地球化学及Sr-Nd同位素证据[J]. 现代地质, 2021, 35(05): 1194-1205. |
[12] | 赵保具, 张艳飞, 颜开, 肖荣阁. 大兴安岭中段有色金属矿床成矿物质来源探讨[J]. 现代地质, 2021, 35(05): 1380-1396. |
[13] | 饶世成, 王长明, 贺昕宇, 石康兴, 祝佳萱, 陈奇, 段泓羽, 李朋伟. 豫西熊耳山地区五丈山岩体成因与构造意义:岩石地球化学和Sr-Nd-Pb同位素约束[J]. 现代地质, 2020, 34(06): 1230-1244. |
[14] | 李光耀, 李志丹, 王佳营, 李效广, 李超, 涂家润, 谢瑜, 丁宁. 内蒙古乌拉特后旗查干花钼矿锆石U-Pb和辉钼矿Re-Os同位素年龄及其地质意义[J]. 现代地质, 2020, 34(03): 494-503. |
[15] | 肖晓牛, 费利东, 秦新龙, 肖娥, 刘荣芳. 闽中梅仙铅锌多金属矿区S、Pb同位素组成及对成矿物质的示踪:以丁家山和峰岩铅锌多金属矿为例[J]. 现代地质, 2020, 34(03): 569-578. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||