Geoscience ›› 2020, Vol. 34 ›› Issue (02): 273-280.DOI: 10.19657/j.geoscience.1000-8527.2019.016
• Coal Geology • Previous Articles Next Articles
FAN Qizhang1,2(), CAI Yidong1,2(
), BEI Jinhan1,2, WANG Weihao1,2, ZHANG Xueying3
Received:
2018-04-03
Revised:
2019-10-20
Online:
2020-05-25
Published:
2020-05-25
Contact:
CAI Yidong
CLC Number:
FAN Qizhang, CAI Yidong, BEI Jinhan, WANG Weihao, ZHANG Xueying. Pore and Fracture Structure of Coal Reservoir Constrained by Coal Metamorphism[J]. Geoscience, 2020, 34(02): 273-280.
样品 | 产地 | Ro,m /% | 中孔 占比 /% | 小孔 占比 /% | 微孔 占比 /% | BET比 表面积/ (m2/g) | BJH总 孔体积/ (ml/g) |
---|---|---|---|---|---|---|---|
MRC1 | 大同 | 0.60 | 9.6 | 35.5 | 54.9 | 1.847 | 0.005 9 |
MRC2 | 谢桥 | 0.73 | 14.3 | 44.8 | 40.9 | 1.062 | 0.004 8 |
MRC3 | 大同 | 0.79 | 18.2 | 46.4 | 35.4 | 0.564 | 0.002 7 |
MRC4 | 大同 | 0.80 | 06.3 | 15.1 | 78.6 | 1.888 | 0.003 8 |
MRC5 | 淮南 | 0.81 | 20.1 | 66.2 | 13.7 | 0.601 | 0.003 8 |
MRC6 | 淮南 | 0.87 | 0 | 87.1 | 12.9 | 0.249 | 0.001 0 |
MRC7 | 平顶山 | 0.90 | 12.8 | 27.8 | 59.4 | 1.431 | 0.002 9 |
MRC8 | 淮南 | 0.94 | 37.5 | 58.1 | 4.4 | 0.223 | 0.001 4 |
MRC9 | 淮南 | 0.99 | 48.7 | 44.1 | 7.2 | 0.297 | 0.001 5 |
MRA1 | 沁水 | 1.70 | 32.0 | 61.0 | 7.0 | 0.241 | 0.001 0 |
MRA2 | 安鹤 | 1.70 | 47.3 | 52.7 | 0 | 0.115 | 0.001 1 |
MRA3 | 安鹤 | 1.90 | 24.4 | 67.2 | 8.4 | 0.394 | 0.002 9 |
HRC1 | 淮北 | 2.05 | 25.9 | 65.9 | 8.2 | 0.563 | 0.002 9 |
HRC2 | 沁水 | 2.20 | 0 | 93.8 | 6.3 | 0.189 | 0.000 5 |
HRC3 | 沁水 | 2.60 | 0 | 50.0 | 50.0 | 0.307 | 0.001 2 |
HRC4 | 焦作 | 2.90 | 63.1 | 28.1 | 8.8 | 0.339 | 0.001 6 |
HRB1 | 永夏 | 3.00 | 56.3 | 29.6 | 14.1 | 0.196 | 0.000 7 |
HRB2 | 沁水 | 3.20 | 0 | 100.0 | 0 | 2.145 | 0.000 3 |
HRB3 | 永夏 | 3.20 | 50.0 | 50.0 | 0 | 0.042 | 0.000 4 |
HRB4 | 焦作 | 3.70 | 6.7 | 35.3 | 58.0 | 4.697 | 0.007 4 |
HRA1 | 焦作 | 4.00 | 10.8 | 65.4 | 23.8 | 0.977 | 0.003 7 |
HRA2 | 焦作 | 4.10 | 24.4 | 75.6 | 0 | 0.271 | 0.000 8 |
HRA3 | 焦作 | 4.20 | 19.6 | 70.9 | 9.5 | 0.331 | 0.003 2 |
HRA4 | 荥巩 | 4.20 | 15.0 | 69.5 | 15.5 | 3.701 | 0.011 4 |
HRA5 | 荥巩 | 4.30 | 42.1 | 44.2 | 13.7 | 0.187 | 0.000 9 |
Table 1 Experimental data of low temperature-nitrogen adsorption for different ranks of coal samples
样品 | 产地 | Ro,m /% | 中孔 占比 /% | 小孔 占比 /% | 微孔 占比 /% | BET比 表面积/ (m2/g) | BJH总 孔体积/ (ml/g) |
---|---|---|---|---|---|---|---|
MRC1 | 大同 | 0.60 | 9.6 | 35.5 | 54.9 | 1.847 | 0.005 9 |
MRC2 | 谢桥 | 0.73 | 14.3 | 44.8 | 40.9 | 1.062 | 0.004 8 |
MRC3 | 大同 | 0.79 | 18.2 | 46.4 | 35.4 | 0.564 | 0.002 7 |
MRC4 | 大同 | 0.80 | 06.3 | 15.1 | 78.6 | 1.888 | 0.003 8 |
MRC5 | 淮南 | 0.81 | 20.1 | 66.2 | 13.7 | 0.601 | 0.003 8 |
MRC6 | 淮南 | 0.87 | 0 | 87.1 | 12.9 | 0.249 | 0.001 0 |
MRC7 | 平顶山 | 0.90 | 12.8 | 27.8 | 59.4 | 1.431 | 0.002 9 |
MRC8 | 淮南 | 0.94 | 37.5 | 58.1 | 4.4 | 0.223 | 0.001 4 |
MRC9 | 淮南 | 0.99 | 48.7 | 44.1 | 7.2 | 0.297 | 0.001 5 |
MRA1 | 沁水 | 1.70 | 32.0 | 61.0 | 7.0 | 0.241 | 0.001 0 |
MRA2 | 安鹤 | 1.70 | 47.3 | 52.7 | 0 | 0.115 | 0.001 1 |
MRA3 | 安鹤 | 1.90 | 24.4 | 67.2 | 8.4 | 0.394 | 0.002 9 |
HRC1 | 淮北 | 2.05 | 25.9 | 65.9 | 8.2 | 0.563 | 0.002 9 |
HRC2 | 沁水 | 2.20 | 0 | 93.8 | 6.3 | 0.189 | 0.000 5 |
HRC3 | 沁水 | 2.60 | 0 | 50.0 | 50.0 | 0.307 | 0.001 2 |
HRC4 | 焦作 | 2.90 | 63.1 | 28.1 | 8.8 | 0.339 | 0.001 6 |
HRB1 | 永夏 | 3.00 | 56.3 | 29.6 | 14.1 | 0.196 | 0.000 7 |
HRB2 | 沁水 | 3.20 | 0 | 100.0 | 0 | 2.145 | 0.000 3 |
HRB3 | 永夏 | 3.20 | 50.0 | 50.0 | 0 | 0.042 | 0.000 4 |
HRB4 | 焦作 | 3.70 | 6.7 | 35.3 | 58.0 | 4.697 | 0.007 4 |
HRA1 | 焦作 | 4.00 | 10.8 | 65.4 | 23.8 | 0.977 | 0.003 7 |
HRA2 | 焦作 | 4.10 | 24.4 | 75.6 | 0 | 0.271 | 0.000 8 |
HRA3 | 焦作 | 4.20 | 19.6 | 70.9 | 9.5 | 0.331 | 0.003 2 |
HRA4 | 荥巩 | 4.20 | 15.0 | 69.5 | 15.5 | 3.701 | 0.011 4 |
HRA5 | 荥巩 | 4.30 | 42.1 | 44.2 | 13.7 | 0.187 | 0.000 9 |
裂隙 类型 | 宽度 /μm | 长度 /mm | 形态 |
---|---|---|---|
A型 | ≥5 | ≥10 | 较大的微裂隙,连续性好,延伸远 |
B型 | ≥5 | <10 | 树枝状裂隙的树干部分 |
C型 | <5 | ≥0.3 | 树枝状裂隙的树枝或树杈部分 |
D型 | <5 | <0.3 | 呈树枝状,方向性和连通性差 |
Table 2 Classification and morphology of microscopic fractures of coal samples
裂隙 类型 | 宽度 /μm | 长度 /mm | 形态 |
---|---|---|---|
A型 | ≥5 | ≥10 | 较大的微裂隙,连续性好,延伸远 |
B型 | ≥5 | <10 | 树枝状裂隙的树干部分 |
C型 | <5 | ≥0.3 | 树枝状裂隙的树枝或树杈部分 |
D型 | <5 | <0.3 | 呈树枝状,方向性和连通性差 |
[1] | 刘大锰, 李俊乾. 我国煤层气分布赋存主控地质因素与富集模式[J]. 煤炭科学技术, 2014,42(6):19-34. |
[2] | 姚艳斌, 刘大锰, 汤达祯, 等. 华北地区煤层气储集与产出性能[J]. 石油勘探与开发, 2007,34(6):664-668. |
[3] | 刘大锰, 姚艳斌, 蔡益栋, 等. 煤层气储层地质与动态评价研究进展[J]. 煤炭科学技术, 2010,38(11):10-16. |
[4] | 许浩, 汤达祯, 唐书恒, 等. 鄂尔多斯盆地西部侏罗系煤储层特征及有利区预测[J]. 煤田地质与勘探, 2010,38(1):26-28. |
[5] | YAO Yanbin, LIU Dameng, TANG Dazhen, et al. Fractal characterization of seepage-pores of coals from China: an investigation on permeability of coals[J]. Computers & Geosciences, 2009,35(6):1159-1166. |
[6] | 张小东, 刘炎昊, 桑树勋, 等. 高煤级煤储层条件下的气体扩散机制[J]. 中国矿业大学学报, 2011,40(1):43-48. |
[7] | CAI Yidong, LIU Dameng, PAN Zhejun, et al. Pore structure and its impact on CH4 adsorption capacity and flow capability of bituminous and subbituminous coals from northeast China[J]. Fuel, 2013,103:258-268. |
[8] | OKOLO G N, EVERSON R C, NEOMAGUS H W, et al. Comparing the porosity and surface areas of coal as measured by gas adsorption,mercury intrusion and SAXS techniques[J]. Fuel, 2015,141:293-304. |
[9] | 姚艳斌, 刘大锰. 煤储层孔隙系统发育特征与煤层气可采性研究[J]. 煤炭科学技术, 2006,34(3):64-68. |
[10] | 姚艳斌, 刘大锰, 汤达祯, 等. 沁水盆地煤储层微裂隙发育的煤岩学控制机理[J]. 中国矿业大学学报, 2010,39(1):6-12. |
[11] | 马火林, 汪剑, 王文娟, 等. 构造煤煤层气及裂隙的测井响应和敏感参数分析:以沁水盆地郑庄地区为例[J]. 现代地质, 2015,29(1):171-178. |
[12] | 黄兆辉, 邹长春, 杨玉卿, 等. 沁水盆地南部TS地区煤层气储层测井评价方法[J]. 现代地质, 2012,26(6):1275-1282. |
[13] | 李松, 汤达祯, 许浩, 等. 应力条件制约下不同埋深煤储层物性差异演化[J]. 石油学报, 2015,36(1):68-75. |
[14] | 张建勋, 王有志. 构造作用对煤岩孔隙结构及煤层气扩散方式的影响[J]. 非常规油气, 2017,4(2):40-48. |
[15] | CHENG Yue, TANG Dazhen, XU Hao, et al. Pore and fracture characteristics of different rank coals in the eastern margin of the Ordos Basin, China[J]. Journal of Natural Gas Science & Engineering, 2015,26:1264-1277. |
[16] | 刘大锰, 姚艳斌, 蔡益栋, 等. 华北石炭—二叠系煤的孔渗特征及主控因素[J]. 现代地质, 2010,24(6):1198-1203. |
[17] | 唐书恒, 蔡超, 朱宝存, 等. 煤变质程度对煤储层物性的控制作用[J]. 天然气工业, 2008,28(12):30-33. |
[18] | ХOДOT B B. 煤与瓦斯地质[M] .宋士钊,王佑安,译. 北京: 中国工业出版社, 1966: 19-28. |
[19] | 赵兴龙, 汤达祯, 徐浩, 等. 煤变质作用对煤储层孔隙系统发育的影响[J]. 煤炭学报, 2010,35(9):1506-1511. |
[20] | 张凯, 汤达祯, 陶树, 等. 不同变质程度煤吸附能力影响因素研究[J]. 煤炭科学技术, 2017,45(5):192-197. |
[21] | 陈跃, 汤达祯, 田霖, 等. 煤变质程度对中低阶煤储层孔隙发育的控制作用[J]. 天然气地球科学, 2017,28(4):611-621. |
[22] | 刘大锰, 李振涛, 蔡益栋. 煤储层孔-裂隙非均质性及其地质影响因素研究进展[J]. 煤炭科学技术, 2015,43(2):10-15. |
[1] | LI Dongsheng, GAO Ping, GAI Haifeng, LIU Ruobing, CAI Yidong, LI Gang, ZHOU Qin, XIAO Xianming. Organic Nano-pore Textural Characteristics of the Longmaxi Formation Shale in the Southeastern Sichuan Basin [J]. Geoscience, 2023, 37(05): 1293-1305. |
[2] | ZHANG Jinqing, LI Xianqing, ZHANG Boxiang, ZHANG Xueqing, YANG Jingwei, YU Zhenfeng. Pore Characteristics and Pore Structure of the Upper Paleozoic Coal-bearing Shale Gas Reservoir in the Wuxiang Block, Qinshui Basin [J]. Geoscience, 2022, 36(06): 1551-1562. |
[3] | LI Qing, LI Jiangshan, LU Hao, QI Fengqiang, HE Yu, AN Keqin, LI Longyu, ZHANG Houmin, WU Yue. Characteristics and Control Factors of the Chang 73 Shale Reservoirs in the Southern Ordos Basin [J]. Geoscience, 2022, 36(05): 1254-1270. |
[4] | QI Yang, LÜ Chunyan, WANG Yuhui, TANG Shuheng, XI Zhaodong. Pore Structural Characteristics of Wufeng-Longmaxi Formations Under Biostratigraphic Framework in Northwestern Hunan [J]. Geoscience, 2022, 36(05): 1292-1303. |
[5] | WANG Zhihao, ZHAO Jianhua, PU Xiugang, LIU Keyu, LI Junqian, CHENG Bin. Comparison of Washing Oil Experiment of Core Samples from Shale Oil Reservoir [J]. Geoscience, 2022, 36(05): 1304-1312. |
[6] | LI Erting, MA Wanyun, LI Ji, MA Xinxing, PAN Changchun, ZENG Lifei, WANG Ming. Thermal Simulation Experiment for Hydrocarbon Generation: A Case Study of Jurassic Coal from the Southern Margin of Junggar Basin [J]. Geoscience, 2022, 36(05): 1313-1323. |
[7] | WEI Yongheng, GE Yanyan, WANG Gang, WANG Wenfeng, TIAN Jijun, LI Xin, WU Bin, ZHANG Xiao. In-situ Stress Distribution and Its Influence on Coalbed Methane Development in Tielieke Mining Area, Kubai Coalfield, Xinjiang [J]. Geoscience, 2022, 36(05): 1324-1332. |
[8] | ZHAI Jiayu, ZHANG Songhang, TANG Shuheng, GUO Huiqiu, LIU Bing, JI Chaoqi. Origin and Productivity Response of Gas and Water in Coalbed Methane Field of Yuwang Block at Laochang, Yunnan Province [J]. Geoscience, 2022, 36(05): 1341-1350. |
[9] | LI Jinlong, LI Qian, CAI Yidong, CHEN Wei, CHEN Zhizhu, WANG Jian, XUE Xiaohui. Geological Conditions and Resource Potential of Coalbed Methane Reservoirs in Laochang Mining Area, Yunnan Province [J]. Geoscience, 2022, 36(05): 1351-1359. |
[10] | YAN Taotao, GUO Yilin, MENG Yanjun, CHANG Suoliang, JIN Shangwen, KANG Lifang, FU Xinyu, WANG Qingqing, ZHAO Yuan, ZHANG Yu. Coal Reservoir Gas Content Correction Based on Coalbed Methane Well Production Data [J]. Geoscience, 2022, 36(05): 1360-1370. |
[11] | ZHAO Yongqiang, SU Siyu, PU Renhai, YAO Wei, JI Tianyu. Identification and Distribution of Carboniferous Coal Measure Source Rocks in the Bamai Area, Southwestern Tarim Basin [J]. Geoscience, 2022, 36(05): 1371-1381. |
[12] | JIANG Bingren, DENG Ende, HAN Minghui, MA Zijie. Microscopic Pore Structure and Fractal Characteristics From the Carboniferous Xiangbai Formation Shale in Northwestern Guizhou [J]. Geoscience, 2022, 36(04): 1065-1073. |
[13] | HAN Hongwei, LIU Zhen, MA Xinruo, LI Hongmei, HE Yangyang, XU Zeyang. Distribution Prediction of High Overpressure in Jurassic Moxizhuang-Yongjin Area, Central Junggar Basin [J]. Geoscience, 2022, 36(04): 1074-1086. |
[14] | CUI Weiping, YANG Yuqing, LIU Jianxin. Logging Identification Method of Low Porosity and Low Permeability Reservoir Effectiveness Based on Lithofacies Units and Pore Structures: An Example from NB1 Structure in Xihu Depression [J]. Geoscience, 2022, 36(01): 140-148. |
[15] | YANG Yi, ZHANG Hengrong, YUAN Wei, YANG Dong, HU Desheng. Fractal Characteristics Comparison and Genesis of Conventional Sandstone and Glutenite [J]. Geoscience, 2022, 36(01): 149-158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||