Geoscience ›› 2022, Vol. 36 ›› Issue (05): 1324-1332.DOI: 10.19657/j.geoscience.1000-8527.2022.021
• Coalbed Methane Geology and Development • Previous Articles Next Articles
WEI Yongheng1(), GE Yanyan1(
), WANG Gang2, WANG Wenfeng1, TIAN Jijun1, LI Xin1, WU Bin3, ZHANG Xiao1
Received:
2021-08-27
Revised:
2022-04-18
Online:
2022-10-10
Published:
2022-11-03
Contact:
GE Yanyan
CLC Number:
WEI Yongheng, GE Yanyan, WANG Gang, WANG Wenfeng, TIAN Jijun, LI Xin, WU Bin, ZHANG Xiao. In-situ Stress Distribution and Its Influence on Coalbed Methane Development in Tielieke Mining Area, Kubai Coalfield, Xinjiang[J]. Geoscience, 2022, 36(05): 1324-1332.
参数 | 范围(均值) |
---|---|
埋深h/m | 563.38~1 157.61(813.18) |
破裂压力Pf/MPa | 8.44~24.65(15.32) |
破裂压力梯度Gf/(MPa·hm-1) | 0.46~2.54(1.85) |
闭合压力Pc/MPa | 8.14~22.30(14.15) |
闭合压力梯度Gc/(MPa·hm-1) | 0.98~2.47(1.76) |
储层压力Po/MPa | 4.62~11.39(7.57) |
储层压力梯度Go/(MPa·hm-1) | 0.78~1.07(0.93) |
渗透率k/mD | 0.008~3.930(0.630) |
温度T/℃ | 17.90~33.56(27.01) |
最大水平主应力σH/MPa | 9.33~33.52(20.22) |
最大水平主应力梯度 GH/(MPa·hm-1) | 1.37~3.91(2.53) |
最小水平主应力σh/MPa | 8.05~22.30(14.48) |
最小水平主应力梯度 Gh/(MPa·hm-1) | 1.19~2.43(1.80) |
垂向主应力σv/MPa | 15.21~31.26(21.99) |
Table 1 Parameters of injection/fall-off well test and in-situ stress measurement test in the Tielieke mining area
参数 | 范围(均值) |
---|---|
埋深h/m | 563.38~1 157.61(813.18) |
破裂压力Pf/MPa | 8.44~24.65(15.32) |
破裂压力梯度Gf/(MPa·hm-1) | 0.46~2.54(1.85) |
闭合压力Pc/MPa | 8.14~22.30(14.15) |
闭合压力梯度Gc/(MPa·hm-1) | 0.98~2.47(1.76) |
储层压力Po/MPa | 4.62~11.39(7.57) |
储层压力梯度Go/(MPa·hm-1) | 0.78~1.07(0.93) |
渗透率k/mD | 0.008~3.930(0.630) |
温度T/℃ | 17.90~33.56(27.01) |
最大水平主应力σH/MPa | 9.33~33.52(20.22) |
最大水平主应力梯度 GH/(MPa·hm-1) | 1.37~3.91(2.53) |
最小水平主应力σh/MPa | 8.05~22.30(14.48) |
最小水平主应力梯度 Gh/(MPa·hm-1) | 1.19~2.43(1.80) |
垂向主应力σv/MPa | 15.21~31.26(21.99) |
Fig.2 Relationship between maximum horizontal principal stress gradient (GH), minimum horizontal principal stress gradient (Gh), reservoir pressure gradient(Go)and burial depth in the Tielieke mining area
Fig.3 Relationship between the maximum horizontal principal stress (σH), minimum horizontal principal stress (σh), reservoir pressure (Po), vertical principal stress (σv) and hydrostatic pressure (Ph) and the burial depth of the reservoirs in the study area
Fig.5 Relationship between maximum horizontal principal stress and permeability (a), minimum horizontal principal stress and permeability (b), and vertical principal stress and permeability (c) in the Tielieke mining area
Fig.6 Relationship between maximum horizontal principal stress-reservoir pressure and permeability (a), minimum horizontal principal stress-reservoir pressure and permeability (b), and vertical principal stress-reservoir pressure and permeability (c) in the Tielieke mining area
[1] | JU W, YANG Z B, QIN Y, et al. Characteristics of in-situ stress state and prediction of the permeability in the Upper Permian coalbed methane reservoir,western Guizhou region,SW China[J]. Journal of Petroleum Science & Engineering, 2018, 165: 199-211. |
[2] | 周三栋, 刘大锰, 孙邵华, 等. 准噶尔盆地南缘硫磺沟煤层气富集主控地质因素及有利区优选[J]. 现代地质, 2015, 29(1): 179-189. |
[3] |
JU W, JIANG B, QIN Y, et al. The present-day in-situ stress field within coalbed methane reservoirs, Yuwang Block,Laochang Basin, south China[J]. Marine and Petroleum Geology, 2019, 102: 61-73.
DOI URL |
[4] | 孟召平, 侯泉林. 高煤级煤储层渗透性与应力耦合模型及控制机理[J]. 地球物理学报, 2013, 56(2): 667-675. |
[5] | 杨延辉, 孟召平, 陈彦君, 等. 沁南-夏店区块煤储层地应力条件及其对渗透性的影响[J]. 石油学报, 2015, 36(增): 91-96. |
[6] |
姜波, 汪吉林, 屈争辉, 等. 大宁-吉县地区地应力特征及其对煤储层渗透性的影响[J]. 地学前缘, 2016, 23(3): 17-23.
DOI |
[7] | 刘大锰, 周三栋, 蔡益栋, 等. 地应力对煤储层渗透性影响及其控制机理研究[J]. 煤炭科学技术, 2017, 45(6): 1-8. |
[8] | 李勇, 汤达祯, 许浩, 等. 鄂尔多斯盆地柳林地区煤储层地应力场特征及其对裂隙的控制作用[J]. 煤炭学报, 2014, 39(增): 164-168. |
[9] | 文卓, 康永尚, 邓泽, 等. 中国含煤盆地浅-中深部现今地应力特点和分布规律[J]. 地质论评, 2019, 65(3): 729-742. |
[10] | 黄涛, 杨曙光, 吴斌. 库拜煤田顺发井田煤岩煤质及煤相特征分析[J]. 煤炭技术, 2020, 39(8): 74-76. |
[11] | 安庆, 张洲, 吴斌, 等. 新疆库拜煤田煤储层特征及开采技术建议[J]. 新疆地质, 2016, 34(2): 286-290. |
[12] | 陈新蔚, 李绍虎, 方庆新, 等. 库拜煤田露头层序地层学分析[J]. 新疆地质, 2013, 31(1): 77-82. |
[13] | 张洲. 围岩与煤储层裂隙对应关系研究及应用[D]. 武汉: 中国地质大学(武汉), 2016. |
[14] |
CHEN S D, TANG D Z, TAO S, et al. Characteristics of in-situ stress distribution and its significance on the coalbed methane (CBM) development in Fanzhuang-Zhengzhuang Block,Southern Qinshui Basin,China[J]. Journal of Petroleum Science and Engineering, 2018, 161: 108-120.
DOI URL |
[15] | 徐宏杰, 桑树勋, 易同生, 等. 黔西地区煤层埋深与地应力对其渗透性控制机制[J]. 地球科学--中国地质大学学报, 2014, 39(11): 1607-1616. |
[16] | 孟召平, 蓝强, 刘翠丽, 等. 鄂尔多斯盆地东南缘地应力、储层压力及其耦合关系[J]. 煤炭学报, 2013, 38(1): 122-128. |
[17] | 孟召平, 田永东, 李国富. 沁水盆地南部地应力场特征及其研究意义[J]. 煤炭学报, 2010, 35(6): 975-981. |
[18] |
ZHAO J L, TANG D Z, XU H, et al. Characteristic of in situ stress and its control on the coalbed methane reservoir permeability in the eastern margin of the Ordos Basin, China[J]. Rock Mechanics and Rock Engineering, 2016, 49(8): 3307-3322.
DOI URL |
[19] | HOEK E, BROWN E T. Underground excavations in rock[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1980, 18(2): 27. |
[20] | 徐正宣, 孟文, 郭长宝, 等. 川西折多山某深埋隧道地应力测量及其应用研究[J]. 现代地质, 2021, 35(1): 114-125. |
[21] | KANG H, ZHANG X, SI L. Study on in situ stress distribution law in deep underground coal mining areas[M]//Proceedings of the 2009 International Symposium on Rock Mechanics:“Rock Characterization, Modelling and Engineering Design Methods”.Beijing:Beijing Coal Mining and Design Branch, China Coal Research Institute Beijing,China, 2009: 1. |
[22] | ANDERSON E M. The Dynamics of Faulting and Dyke Formation with Application to Britain[M]. Edinburgh: Oliver & Boyd, 1951. |
[23] | BROWN E T, HOEK E. Trends in relationships between measured in-situ stresses and depth[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1978, 15(4): 211-215. |
[24] | 孙良忠, 康永尚, 王金, 等. 地应力类型垂向转换及其对煤储层渗透率控制作用[J]. 高校地质学报, 2017, 23(1): 148-156. |
[25] | 李振, 邵龙义, 侯海海, 等. 高煤阶煤孔隙结构及分形特征[J]. 现代地质, 2017, 31(3): 595-605. |
[26] | 孟召平, 侯泉林. 煤储层应力敏感性及影响因素的试验分析[J]. 煤炭学报, 2012, 37(3): 430-437. |
[27] | 李叶朋, 申建, 杨春莉, 等. 沁水盆地郑庄区块地应力发育特征及其地质意义[J]. 煤炭科学技术, 2017, 45(10): 176-181. |
[28] | 戴朝霞, 孙蓓蕾, 曾凡桂. 沁水盆地南部长治区块煤层气田的地应力特征[J]. 现代地质, 2020, 34(2): 266-272. |
[29] |
MCKEE C R, BUMB A C, KOENIG R A. Stress-dependent permeability and porosity of coal and other geologic formations[J]. SPE Formation Evaluation, 1988, 3(1): 81-91.
DOI URL |
[30] | 马如英, 王猛, 阿斯亚·巴克, 等. 准东南低阶煤覆压孔渗试验研究[J]. 中国矿业大学学报, 2020, 49(6): 1182-1192. |
[31] | 姚帅, 吴财芳, 杨长青, 等. 黔西比德-三塘盆地煤储层压力特征及差异成因研究[J]. 煤炭科学技术, 2019, 47(4): 162-168. |
[32] | 蔺亚兵, 申小龙, 刘军, 等. 黄陇侏罗纪煤田地应力特征及其地质意义[J]. 采矿与安全工程学报, 2020, 37(4): 819-827. |
[33] | 秦勇, 申建, 王宝文, 等. 深部煤层气成藏效应及其耦合关系[J]. 石油学报, 2012, 33(1): 48-54. |
[34] | 郭广山, 邢力仁, 廖夏, 等. 基于储层“三品质”的煤层气产能主控地质因素分析[J]. 天然气地球科学, 2018, 29(8): 1198-1204. |
[35] | 李俊乾, 刘大锰, 姚艳斌, 等. 基于主地质参数的煤层气有利开发区优选及应用[J]. 现代地质, 2014, 28(3): 653-658. |
[1] | FENG Peng, LI Song, TANG Dazhen, CHEN Bo, ZHONG Guanghao. Application of Support Vector Machine in Prediction of Coal Seam Stress [J]. Geoscience, 2022, 36(05): 1333-1340. |
[2] | ZHAI Jiayu, ZHANG Songhang, TANG Shuheng, GUO Huiqiu, LIU Bing, JI Chaoqi. Origin and Productivity Response of Gas and Water in Coalbed Methane Field of Yuwang Block at Laochang, Yunnan Province [J]. Geoscience, 2022, 36(05): 1341-1350. |
[3] | LI Jinlong, LI Qian, CAI Yidong, CHEN Wei, CHEN Zhizhu, WANG Jian, XUE Xiaohui. Geological Conditions and Resource Potential of Coalbed Methane Reservoirs in Laochang Mining Area, Yunnan Province [J]. Geoscience, 2022, 36(05): 1351-1359. |
[4] | YAN Taotao, GUO Yilin, MENG Yanjun, CHANG Suoliang, JIN Shangwen, KANG Lifang, FU Xinyu, WANG Qingqing, ZHAO Yuan, ZHANG Yu. Coal Reservoir Gas Content Correction Based on Coalbed Methane Well Production Data [J]. Geoscience, 2022, 36(05): 1360-1370. |
[5] | LIU Yilin, LI Canping, GOU Limin, WANG Hongtao, ZENG Xianjun, CHEN Fengying, GUO Zihao, TIAN Xinyu. Study on the Relationship Between Spectral Characteristics of Seismic Wave Field and Gas Content of Plume in Cold Seepage [J]. Geoscience, 2022, 36(01): 172-181. |
[6] | XU Zhengxuan, MENG Wen, GUO Changbao, ZHANG Peng, ZHANG Guangze, SUN Mingqian, CHEN Qunce, CHEN Yu. In-situ Stress Measurement and Its Application of a Deep-buried Tunnel in Zheduo Mountain, West Sichuan [J]. Geoscience, 2021, 35(01): 114-125. |
[7] | SUN Weifeng, GUO Changbao, ZHANG Guangze, ZHANG Yongshuang, XU Zhengxuan, TAN Chengxuan, LI Dan, WANG Xianli. In-situ Stress Measurement of Guodashan Tunnel Horizontal Borehole in West Sichuan and the Engineering Significance [J]. Geoscience, 2021, 35(01): 126-136. |
[8] | GAO Beidou, WANG Haichao, TIAN Jijun, HAN Xu, FENG Shuo, WANG Di, ZHANG Zhendong. Syncline-confined-water Model of Coalbed Methane Enrichment Area in Liuhuanggou Mining Area, Southern Junggar Coalfield [J]. Geoscience, 2020, 34(02): 281-288. |
[9] | ZHANG Peng, QU Yaming, GUO Changbao, FENG Chengjun, MENG Wen, FAN Yulu, TAN Chengxuan, WANG Lei. Analysis of In-situ Stress Measurement and Real-time Monitoring Results in Nyching of Tibetan Plateau and Its Response to Nepal MS8.1 Earthquake [J]. Geoscience, 2017, 31(05): 900-910. |
[10] | LÜ Yumin, LIU Yinghong, WANG Cunwu, GUO Guangshan, ZHU Xueshen, JIANG Rui. Controls on High Water Production of CBM Wells in Shouyang Block, Qinshui Basin [J]. Geoscience, 2017, 31(05): 1088-1094. |
[11] | LIU Zhuoyan, WANG Chenghu, XU Xin, SHEN Naiqi, JIA Jin. Slip Tendency Analysis of the Mid-segment of Tan-Lu Fault Belt Based on Stress Measurements [J]. Geoscience, 2017, 31(04): 869-876. |
[12] | YANG Yinhui,YAO Yanbin, WANG Hui, CHEN Longwei. Analysis of Key Geological Parameters of Zhengzhuang Coalbed Methane Reservoir and Forecast of Sweet Spots: Investigated by Multiple Seismic Attributes [J]. Geoscience, 2016, 30(6): 1390-1398. |
[13] | Lv Yumin, LIU Yinghong, TANG Dazhen, LI Zhiping. Permeability Variation Models and Case Studies for Undersaturated Coalbed Methane Reservoirs [J]. Geoscience, 2016, 30(4): 914-921. |
[14] | . Genesis of Overpressure and Its Effect on Gas Content in the Fifth Member of Xujiahe Formation in Xinchang Area, Western Sichuan Basin [J]. Geoscience, 2016, 30(2): 406-412. |
[15] | . An Improved Method of Calculating Lost Gas Content of Shale Gas [J]. Geoscience, 2015, 29(6): 1475-1482. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||