Geoscience ›› 2017, Vol. 31 ›› Issue (03): 595-605.
• Energy Geology • Previous Articles Next Articles
LI Zhen1(), SHAO Longyi1(), HOU Haihai1, GUO Shuangqing2, ZHAO Sheng1, YAO Minglei1, YAN Chunzhong2
Received:
2016-10-31
Revised:
2017-03-26
Online:
2017-06-10
Published:
2017-06-27
CLC Number:
LI Zhen, SHAO Longyi, HOU Haihai, GUO Shuangqing, ZHAO Sheng, YAO Minglei, YAN Chunzhong. Pore Structures and Fractal Characteristics of High Rank Coals[J]. Geoscience, 2017, 31(03): 595-605.
样品编号 | 煤田 | 采样点 | 煤层 | Ro,max/% | 工业分析 | 孔隙度/% | 渗透率/mD | ||
---|---|---|---|---|---|---|---|---|---|
Mad/% | Aad/% | Vad/% | |||||||
S1 | 安鹤 | 大众矿 | 二1 | 2.26 | 1.41 | 15.13 | 8.11 | 1.365 | 0.001 |
S2 | 安鹤 | 安林矿 | 二1 | 2.32 | 2.29 | 11.88 | 8.45 | 3.785 | 0.084 |
S3 | 安鹤 | 龙山矿 | 二1 | 2.13 | 2.88 | 10.28 | 6.45 | 1.835 | 0.045 |
S4 | 安鹤 | 鹤壁六矿 | 二1 | 1.90 | 1.22 | 11.52 | 17.24 | 2.625 | 0.075 |
S5 | 淮北 | 刘桥二矿 | 6 | 2.12 | 0.99 | 9.89 | 8.18 | 1.532 | 0.002 |
S6 | 焦作 | 赵固一矿 | 二1 | 2.86 | 3.69 | 7.77 | 8.02 | 1.906 | 0.001 |
S7 | 焦作 | 赵固二矿 | 二1 | 2.63 | 3.67 | 12.66 | 7.98 | 1.422 | 0.001 |
S8 | 焦作 | 7601钻孔 | 二1 | 2.95 | 3.53 | 9.84 | 6.82 | 2.425 | 0.002 |
S9 | 焦作 | 7601钻孔 | 二1 | 2.95 | 1.33 | 9.48 | 6.02 | 1.762 | 0.023 |
Table 1 Experimental results of fundamental tests
样品编号 | 煤田 | 采样点 | 煤层 | Ro,max/% | 工业分析 | 孔隙度/% | 渗透率/mD | ||
---|---|---|---|---|---|---|---|---|---|
Mad/% | Aad/% | Vad/% | |||||||
S1 | 安鹤 | 大众矿 | 二1 | 2.26 | 1.41 | 15.13 | 8.11 | 1.365 | 0.001 |
S2 | 安鹤 | 安林矿 | 二1 | 2.32 | 2.29 | 11.88 | 8.45 | 3.785 | 0.084 |
S3 | 安鹤 | 龙山矿 | 二1 | 2.13 | 2.88 | 10.28 | 6.45 | 1.835 | 0.045 |
S4 | 安鹤 | 鹤壁六矿 | 二1 | 1.90 | 1.22 | 11.52 | 17.24 | 2.625 | 0.075 |
S5 | 淮北 | 刘桥二矿 | 6 | 2.12 | 0.99 | 9.89 | 8.18 | 1.532 | 0.002 |
S6 | 焦作 | 赵固一矿 | 二1 | 2.86 | 3.69 | 7.77 | 8.02 | 1.906 | 0.001 |
S7 | 焦作 | 赵固二矿 | 二1 | 2.63 | 3.67 | 12.66 | 7.98 | 1.422 | 0.001 |
S8 | 焦作 | 7601钻孔 | 二1 | 2.95 | 3.53 | 9.84 | 6.82 | 2.425 | 0.002 |
S9 | 焦作 | 7601钻孔 | 二1 | 2.95 | 1.33 | 9.48 | 6.02 | 1.762 | 0.023 |
样品编号 | 孔隙半径r/μm | 斜率(k) | 分形维数(D) | R2 | 孔隙体积百分比/% | 综合分形维数(Dc) |
---|---|---|---|---|---|---|
S1 | r>5 | -0.002 0 | 2.998 0 | 0.925 5 | 0.84 | 2.53 |
0.5<r<5 | -0.004 4 | 2.995 6 | 0.787 9 | 1.27 | ||
0.05<r<0.5 | -0.047 5 | 2.952 5 | 0.977 6 | 14.27 | ||
r<0.05 | -0.559 1 | 2.440 9 | 0.885 0 | 83.62 | ||
S2 | r>5 | -0.015 0 | 2.985 0 | 0.923 6 | 8.81 | 2.89 |
0.5<r<5 | -0.065 2 | 2.934 8 | 0.977 8 | 24.23 | ||
0.05<r<0.5 | -0.065 5 | 2.934 5 | 0.995 4 | 24.85 | ||
r<0.05 | -0.180 6 | 2.819 4 | 0.939 7 | 42.11 | ||
S3 | r>5 | -0.001 6 | 2.998 4 | 0.925 6 | 1.07 | 2.82 |
0.5<r<5 | -0.015 4 | 2.984 6 | 0.967 5 | 7.55 | ||
0.05<r<0.5 | -0.046 3 | 2.953 7 | 0.975 7 | 20.51 | ||
r<0.05 | -0.242 4 | 2.757 6 | 0.941 4 | 70.86 | ||
S4 | r>5 | -0.001 2 | 2.998 8 | 0.925 7 | 0.44 | 2.72 |
0.5<r<5 | -0.112 0 | 2.888 0 | 0.943 8 | 25.15 | ||
0.05<r<0.5 | -0.145 5 | 2.854 5 | 0.996 0 | 30.41 | ||
r<0.05 | -0.476 7 | 2.523 3 | 0.911 4 | 44.01 | ||
S5 | r>5 | -0.037 1 | 2.962 9 | 0.920 1 | 14.78 | 2.74 |
0.5<r<5 | -0.045 2 | 2.954 8 | 0.955 0 | 16.90 | ||
0.05<r<0.5 | -0.062 1 | 2.937 9 | 0.985 8 | 14.14 | ||
r<0.05 | -0.432 2 | 2.567 8 | 0.911 6 | 54.17 | ||
S6 | r>5 | -0.001 5 | 2.998 5 | 0.925 6 | 0.76 | 2.65 |
0.5<r<5 | -0.000 1 | 2.999 9 | 0.944 7 | 0.07 | ||
0.05<r<0.5 | -0.039 6 | 2.960 4 | 0.937 7 | 14.06 | ||
r<0.05 | -0.407 5 | 2.592 5 | 0.870 2 | 85.11 | ||
S7 | r>5 | -0.001 9 | 2.998 1 | 0.925 6 | 0.75 | 2.49 |
0.5<r<5 | -0.005 1 | 2.994 9 | 0.747 9 | 1.73 | ||
0.05<r<0.5 | -0.054 0 | 2.946 0 | 0.926 0 | 14.77 | ||
r<0.05 | -0.603 9 | 2.396 1 | 0.835 4 | 82.75 | ||
S8 | r>5 | -0.001 5 | 2.998 5 | 0.925 6 | 1.48 | 2.88 |
0.5<r<5 | -0.008 9 | 2.991 1 | 0.993 7 | 7.55 | ||
0.05<r<0.5 | -0.027 4 | 2.972 6 | 0.988 0 | 16.91 | ||
r<0.05 | -0.155 9 | 2.844 1 | 0.934 4 | 74.06 | ||
S9 | r>5 | -0.002 2 | 2.997 8 | 0.750 1 | 1.26 | 2.76 |
0.5<r<5 | -0.028 1 | 2.971 9 | 0.973 4 | 10.49 | ||
0.05<r<0.5 | -0.062 0 | 2.938 0 | 0.979 6 | 21.45 | ||
r<0.05 | -0.341 3 | 2.658 7 | 0.911 4 | 66.79 |
Table 2 Calculations of pore fractal dimensions based on experimental data from the mercury intrusion method
样品编号 | 孔隙半径r/μm | 斜率(k) | 分形维数(D) | R2 | 孔隙体积百分比/% | 综合分形维数(Dc) |
---|---|---|---|---|---|---|
S1 | r>5 | -0.002 0 | 2.998 0 | 0.925 5 | 0.84 | 2.53 |
0.5<r<5 | -0.004 4 | 2.995 6 | 0.787 9 | 1.27 | ||
0.05<r<0.5 | -0.047 5 | 2.952 5 | 0.977 6 | 14.27 | ||
r<0.05 | -0.559 1 | 2.440 9 | 0.885 0 | 83.62 | ||
S2 | r>5 | -0.015 0 | 2.985 0 | 0.923 6 | 8.81 | 2.89 |
0.5<r<5 | -0.065 2 | 2.934 8 | 0.977 8 | 24.23 | ||
0.05<r<0.5 | -0.065 5 | 2.934 5 | 0.995 4 | 24.85 | ||
r<0.05 | -0.180 6 | 2.819 4 | 0.939 7 | 42.11 | ||
S3 | r>5 | -0.001 6 | 2.998 4 | 0.925 6 | 1.07 | 2.82 |
0.5<r<5 | -0.015 4 | 2.984 6 | 0.967 5 | 7.55 | ||
0.05<r<0.5 | -0.046 3 | 2.953 7 | 0.975 7 | 20.51 | ||
r<0.05 | -0.242 4 | 2.757 6 | 0.941 4 | 70.86 | ||
S4 | r>5 | -0.001 2 | 2.998 8 | 0.925 7 | 0.44 | 2.72 |
0.5<r<5 | -0.112 0 | 2.888 0 | 0.943 8 | 25.15 | ||
0.05<r<0.5 | -0.145 5 | 2.854 5 | 0.996 0 | 30.41 | ||
r<0.05 | -0.476 7 | 2.523 3 | 0.911 4 | 44.01 | ||
S5 | r>5 | -0.037 1 | 2.962 9 | 0.920 1 | 14.78 | 2.74 |
0.5<r<5 | -0.045 2 | 2.954 8 | 0.955 0 | 16.90 | ||
0.05<r<0.5 | -0.062 1 | 2.937 9 | 0.985 8 | 14.14 | ||
r<0.05 | -0.432 2 | 2.567 8 | 0.911 6 | 54.17 | ||
S6 | r>5 | -0.001 5 | 2.998 5 | 0.925 6 | 0.76 | 2.65 |
0.5<r<5 | -0.000 1 | 2.999 9 | 0.944 7 | 0.07 | ||
0.05<r<0.5 | -0.039 6 | 2.960 4 | 0.937 7 | 14.06 | ||
r<0.05 | -0.407 5 | 2.592 5 | 0.870 2 | 85.11 | ||
S7 | r>5 | -0.001 9 | 2.998 1 | 0.925 6 | 0.75 | 2.49 |
0.5<r<5 | -0.005 1 | 2.994 9 | 0.747 9 | 1.73 | ||
0.05<r<0.5 | -0.054 0 | 2.946 0 | 0.926 0 | 14.77 | ||
r<0.05 | -0.603 9 | 2.396 1 | 0.835 4 | 82.75 | ||
S8 | r>5 | -0.001 5 | 2.998 5 | 0.925 6 | 1.48 | 2.88 |
0.5<r<5 | -0.008 9 | 2.991 1 | 0.993 7 | 7.55 | ||
0.05<r<0.5 | -0.027 4 | 2.972 6 | 0.988 0 | 16.91 | ||
r<0.05 | -0.155 9 | 2.844 1 | 0.934 4 | 74.06 | ||
S9 | r>5 | -0.002 2 | 2.997 8 | 0.750 1 | 1.26 | 2.76 |
0.5<r<5 | -0.028 1 | 2.971 9 | 0.973 4 | 10.49 | ||
0.05<r<0.5 | -0.062 0 | 2.938 0 | 0.979 6 | 21.45 | ||
r<0.05 | -0.341 3 | 2.658 7 | 0.911 4 | 66.79 |
采样 地点 | Ro,max/ % | 分形维数及统计量 | 孔隙度预测结果/% | 渗透率预测结果 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
各分形区间分形维数 | 偏度 | 峰度 | 预测值 | 实测值 | 相对误差 | 预测值/mD | 实测值/mD | 相对误差/% | |||
袁庄矿 | 0.59 | D1 | 2.999 1 | -1.854 | 3.444 | 1.909 | 2.664 | 28.3 | 0.026 | 0.034 | 23.0 |
D2 | 2.991 8 | ||||||||||
D3 | 2.896 7 | ||||||||||
D4 | 2.386 8 | ||||||||||
五沟矿 | 1.08 | D1 | 2.999 5 | -0.632 | -2.449 | 5.334 | 4.812 | 10.9 | 0.374 | 0.386 | 3.0 |
D2 | 2.996 7 | ||||||||||
D3 | 2.932 7 | ||||||||||
D4 | 2.883 2 |
Table 3 Predictions of porosity and permeability of medium-low rank coals from the Huaibei coalfield
采样 地点 | Ro,max/ % | 分形维数及统计量 | 孔隙度预测结果/% | 渗透率预测结果 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
各分形区间分形维数 | 偏度 | 峰度 | 预测值 | 实测值 | 相对误差 | 预测值/mD | 实测值/mD | 相对误差/% | |||
袁庄矿 | 0.59 | D1 | 2.999 1 | -1.854 | 3.444 | 1.909 | 2.664 | 28.3 | 0.026 | 0.034 | 23.0 |
D2 | 2.991 8 | ||||||||||
D3 | 2.896 7 | ||||||||||
D4 | 2.386 8 | ||||||||||
五沟矿 | 1.08 | D1 | 2.999 5 | -0.632 | -2.449 | 5.334 | 4.812 | 10.9 | 0.374 | 0.386 | 3.0 |
D2 | 2.996 7 | ||||||||||
D3 | 2.932 7 | ||||||||||
D4 | 2.883 2 |
样品编号 | 偏度 | 峰度 |
---|---|---|
S1 | -1.965 | 3.876 |
S2 | -1.289 | 2.455 |
S3 | -1.839 | 3.420 |
S4 | -1.444 | 2.618 |
S5 | -1.983 | 3.940 |
S6 | -1.950 | 3.819 |
S7 | -1.961 | 3.861 |
S8 | -1.869 | 3.526 |
S9 | -1.857 | 3.513 |
Table 4 Data of skewness and kurtosis of fractal dimension distribution of samples
样品编号 | 偏度 | 峰度 |
---|---|---|
S1 | -1.965 | 3.876 |
S2 | -1.289 | 2.455 |
S3 | -1.839 | 3.420 |
S4 | -1.444 | 2.618 |
S5 | -1.983 | 3.940 |
S6 | -1.950 | 3.819 |
S7 | -1.961 | 3.861 |
S8 | -1.869 | 3.526 |
S9 | -1.857 | 3.513 |
[1] |
CLARKSON C R, BUSTIN R M. The effect of pore structure and gas pressure upon the transport properties of coal: a laboratory and modeling study: 2. Adsorption rate modeling[J]. Fuel, 1999, 78(11): 1345-1362.
DOI URL |
[2] |
MOORE Tim A. Coalbed methane: A review[J]. International Journal of Coal Geology, 2012, 101: 36-81.
DOI URL |
[3] | 侯海海. 柴达木盆地北缘侏罗系煤储层物性特征与综合评价[D]. 北京: 中国矿业大学(北京), 2015. |
[4] |
GILMAN A, BECKIE R. Flow of coal-bed methane to a gallery[J]. Transport in Porous Media, 2000, 41: 1-16.
DOI URL |
[5] |
LI Song, TANG Dazhen, XU Hao, et al. The pore-fracture system properties of coalbed methane reservoirs in the Panguan Syncline, Guizhou, China[J]. Geoscience Frontiers, 2012, 3(6): 853-862.
DOI URL |
[6] | 唐相路, 姜振学, 李卓, 等. 渝东南地区龙马溪组高演化页岩微纳米孔隙非均质性及主控因素[J]. 现代地质, 2016, 30(1):163-171. |
[7] |
ZHANG Songhang, TANG Shuheng, TANG Dazhen, et al. Determining fractal dimensions of coal pores by FHH model: Problems and effects[J]. Journal of Natural Gas Science and Engineering, 2014, 21: 929-939.
DOI URL |
[8] |
ZHOU Sandong, LIU Dameng, CAI Yidong, et al. Fractal characterization of pore-fracture in low-rank coals using a low-field NMR relaxation method[J]. Fuel, 2016, 181: 218-226.
DOI URL |
[9] | 于艳梅, 胡耀青, 梁卫国, 等. 应用CT技术研究瘦煤在不同温度下孔隙变化特征[J]. 地球物理学报, 2012, 55(2):637-644. |
[10] |
PAN Jienan, NIU Qinghe, WANG Kai, et al. The closed pores of tectonically deformed coal studied by small-angle X-ray scattering and liquid nitrogen adsorption[J]. Microporous and Mesoporous Materials, 2016, 224: 245-252.
DOI URL |
[11] |
PRINZ D, PYCKHOUT-HINTZEN W, LITTKE R. Development of the meso-and macroporous structure of coals with rank as analysed with small angle neutron scattering and adsorption experiments[J]. Fuel, 2004, 83(4/5): 547-556.
DOI URL |
[12] |
LI Wei, LIU Hongfu, SONG Xiaoxia. Multifractal analysis of Hg pore size distributions of tectonically deformed coals[J]. International Journal of Coal Geology, 2015, 144/145: 138-152.
DOI URL |
[13] | 贺承祖, 华明琪. 储层孔隙结构的分形几何描述[J]. 石油与天然气地质, 1998, 19(1):15-23. |
[14] | 贺伟, 钟孚勋, 贺承祖, 等. 储层岩石孔隙的分形结构研究和应用[J]. 天然气工业, 2000, 20(2):67-70. |
[15] | 马新仿, 张士诚, 郎兆新. 用分段回归方法计算孔隙结构的分形维数[J]. 石油大学学报(自然科学版), 2004, 28(6):54-56. |
[16] | 傅雪海, 秦勇, 张万红, 等. 基于煤层气运移的煤孔隙分形分类及自然分类研究[J]. 科学通报, 2005, 50(增刊):51-55. |
[17] |
MAHAMUD Manuel María, NOVO Marta F. The use of fractal analysis in the textural characterization of coals[J]. Fuel, 2008, 87(2): 222-231.
DOI URL |
[18] |
LIU Pengcheng, YUAN Zhe, LI Kewen. An improved capillary pressure model using fractal geometry for coal rock[J]. Journal of Petroleum Science and Engineering, 2016, 145: 473-481.
DOI URL |
[19] | 姚艳斌, 刘大锰. 煤储层精细定量表征与综合评价模型[M]. 北京: 地质出版社, 2013:45-59. |
[20] | 张松航, 唐书恒, 汤达祯, 等. 鄂尔多斯盆地东缘煤储层渗流孔隙分形特征[J]. 中国矿业大学学报, 2009, 38(5):713-718. |
[21] | 安士凯, 桑树勋, 李仰民, 等. 沁水盆地南部高煤级煤储层孔隙分形特征[J]. 中国煤炭地质, 2011, 23(2):17-21. |
[22] | 尹志军, 盛国君, 王春光. 基于压汞法的煤岩各段孔隙的分形特征[J]. 金属矿山, 2011, 40(9):54-57. |
[23] | 贾慧敏. 高煤阶煤岩孔隙结构分形特征研究[J]. 石油化工高等学校学报, 2016, 29(1):53-56. |
[24] | 李留仁, 赵艳艳, 李忠兴, 等. 多孔介质微观孔隙结构分形特征及分形系数的意义[J]. 石油大学学报(自然科学版), 2004, 28(3):105-107. |
[25] | 邵震杰, 陈家良, 秦勇. 能源地质学[M]. 徐州: 中国矿业大学出版社, 2004:148-149. |
[26] | 李五忠, 田文广, 陈刚, 等. 不同煤阶煤层气选区评价参数的研究与应用[J]. 天然气工业, 2010, 30(6):45-47. |
[27] | 文慧俭, 闫林, 姜福聪, 等. 低孔低渗储层孔隙结构分形特征[J]. 大庆石油学院学报, 2007, 31(1):15-18. |
[28] | 霍多特. 煤与瓦斯突出[M].宋世钊,王友安,译. 北京: 中国工业出版社, 1966:27-30. |
[29] | 许启鲁, 黄文辉, 唐书恒, 等. 深部中-高煤级煤储层孔隙结构与吸附性[J]. 现代地质, 2016, 30(2):413-419. |
[30] | 赵爱红, 廖毅, 唐修义. 煤的孔隙结构分形定量研究[J]. 煤炭学报, 1998, 23(4):439-442. |
[31] | 苏现波, 林晓英. 煤层气地质学[M]. 北京: 煤炭工业出版社, 2008:106-108. |
[32] | 傅雪海, 秦勇, 韦重韬. 煤层气地质学[M]. 徐州: 中国矿业大学出版社, 2007:46-47,135-139. |
[33] | 申卫兵, 张保平. 不同煤阶煤岩力学参数测试[J]. 岩石力学与工程学报, 2000, 19(增刊):860-862. |
[34] |
SUUBERG E M, DEEVI S C, YUN Y. Elastic behaviour of coals studied by mercury porosimetry[J]. Fuel, 1995, 74(10): 1522-1530.
DOI URL |
[35] | 刘大锰, 姚艳斌, 蔡益栋, 等. 华北石炭—二叠系煤的孔渗特征及主控因素[J]. 现代地质, 2010, 24(6):1198-1203. |
[36] | 李俊乾, 刘大锰, 姚艳斌, 等. 基于主地质参数的煤层气有利开发区优选及应用[J]. 现代地质, 2014, 28(3):653-658. |
[1] | LI Dongsheng, GAO Ping, GAI Haifeng, LIU Ruobing, CAI Yidong, LI Gang, ZHOU Qin, XIAO Xianming. Organic Nano-pore Textural Characteristics of the Longmaxi Formation Shale in the Southeastern Sichuan Basin [J]. Geoscience, 2023, 37(05): 1293-1305. |
[2] | ZHANG Jinqing, LI Xianqing, ZHANG Boxiang, ZHANG Xueqing, YANG Jingwei, YU Zhenfeng. Pore Characteristics and Pore Structure of the Upper Paleozoic Coal-bearing Shale Gas Reservoir in the Wuxiang Block, Qinshui Basin [J]. Geoscience, 2022, 36(06): 1551-1562. |
[3] | LI Qing, LI Jiangshan, LU Hao, QI Fengqiang, HE Yu, AN Keqin, LI Longyu, ZHANG Houmin, WU Yue. Characteristics and Control Factors of the Chang 73 Shale Reservoirs in the Southern Ordos Basin [J]. Geoscience, 2022, 36(05): 1254-1270. |
[4] | QI Yang, LÜ Chunyan, WANG Yuhui, TANG Shuheng, XI Zhaodong. Pore Structural Characteristics of Wufeng-Longmaxi Formations Under Biostratigraphic Framework in Northwestern Hunan [J]. Geoscience, 2022, 36(05): 1292-1303. |
[5] | JIANG Bingren, DENG Ende, HAN Minghui, MA Zijie. Microscopic Pore Structure and Fractal Characteristics From the Carboniferous Xiangbai Formation Shale in Northwestern Guizhou [J]. Geoscience, 2022, 36(04): 1065-1073. |
[6] | CUI Weiping, YANG Yuqing, LIU Jianxin. Logging Identification Method of Low Porosity and Low Permeability Reservoir Effectiveness Based on Lithofacies Units and Pore Structures: An Example from NB1 Structure in Xihu Depression [J]. Geoscience, 2022, 36(01): 140-148. |
[7] | YANG Yi, ZHANG Hengrong, YUAN Wei, YANG Dong, HU Desheng. Fractal Characteristics Comparison and Genesis of Conventional Sandstone and Glutenite [J]. Geoscience, 2022, 36(01): 149-158. |
[8] | LIU Wenfeng, ZHANG Xiaoshuan, LIU Jinming, AILIMAN·Daoerji , YANG Yuanfeng, ZHANG Xiwen, QI Liqi, YU Jingwei. Evaluation and Characteristics of Pore Structures in Sand and Conglomerate Reservoirs of Badaowan Formation in the AH5 Well Block [J]. Geoscience, 2021, 35(06): 1844-1853. |
[9] | LI Yangyang, LI Xianqing, ZHANG Xueqing, YANG Jingwei, ZHANG Boxiang, XIAO Xianming, YU Zhenfeng. Pore Structure Characteristics of Taiyuan Formation Coal Measures Shale in the Yangquan Block of the Qinshui Basin [J]. Geoscience, 2021, 35(04): 1033-1042. |
[10] | YU Jingwei, NIU Zhijie, QI Liqi, SUN Xinming, LIU Ni, ZHANG Jin, CAO Song. Comprehensive Study on Reservoir Heterogeneity of Toutunhe Formation in the Slope Area, North of Fukang Sag, Junggar Basin [J]. Geoscience, 2021, 35(03): 819-831. |
[11] | JIANG Bingren, YANG Tongbao, SHI Fulun, HAN Minghui, FU Wei. Shale Gas Accumulation Conditions and Gas-bearing Properties of the Lower Carboniferous Jiusi Formation in Western Guizhou [J]. Geoscience, 2021, 35(02): 338-348. |
[12] | ZHAO Jianpeng, CUI Likai, CHEN Hui, LI Ning, WANG Ziliang, MA Yao, DU Guichao. Quantitative Characterization of Rock Microstructure of Digital Core Based on CT Scanning [J]. Geoscience, 2020, 34(06): 1205-1213. |
[13] | HUANG Yuqi, ZHANG Peng, ZHANG Jinchuan, YANG Junwei. Pore Structure Characteristics of Longmaxi Formation Shale of Well LD-1 in Laifeng, Hubei [J]. Geoscience, 2020, 34(04): 828-836. |
[14] | HU Xiangyang, LIANG Yunan, WU Feng, LIAO Mingguang, ZHANG Hengrong, YANG Dong, YANG Yi, DAI Jin, ZHONG Huaming, WU Yixiong. Genetic Mechanism of Low-Resistivity Neogene Zhujiang Formation in Wenchang X-2 Oilfield of Pearl River Estuary Basin [J]. Geoscience, 2020, 34(02): 390-398. |
[15] | XIE Shuyun, LEI Lei, JIAO Cunli, HE Zhiliang, BAO Zhengyu, MA Jiayi, ZHANG Dianwei, PENG Shoutao. Internal Dissolution and Pore Structural Evolution of Oolitic Dolomite [J]. Geoscience, 2019, 33(06): 1174-1187. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||