现代地质 ›› 2025, Vol. 39 ›› Issue (02): 239-247.DOI: 10.19657/j.geoscience.1000-8527.2025.026
李欣懿1(), 董栩含1, 黄慧1(
), 邓阳凡2, 王水炯1(
)
出版日期:
2025-04-10
发布日期:
2025-05-08
通信作者:
王水炯,男,教授,1986年出生,地球化学专业,主要从事金属同位素地球化学研究工作。Email: wsj@cugb.edu.cn。作者简介:
李欣懿,女,硕士研究生,1999年出生,资源与环境专业,主要从事中国东部大地幔楔氧化研究工作。Email: 1395669423@qq.com。
基金资助:
LI Xinyi1(), DONG Xuhan1, HUANG Hui1(
), DENG Yangfan2, WANG Shuijiong1(
)
Published:
2025-04-10
Online:
2025-05-08
摘要:
中国东部是大地幔楔概念的提出和命名地,也是研究最为深入的区域。大地幔楔构造背景下的挥发份循环对深部地幔的氧化还原状态具有重要影响。本文回顾了前人对中国东部新生代玄武岩以及携带的地幔包体的地球化学研究,通过金属同位素、橄榄石V的氧逸度计、全岩Fe3+/∑Fe表明新生代玄武岩高度氧化,其氧逸度显著高于以橄榄岩包体为代表的大地幔楔岩石圈地幔。据此,提出中国东部大地幔楔经历过一次或多次氧化事件,其氧化机制和深部碳循环密切相关。西太平洋板块俯冲携带的大量再循环碳酸盐在深部地幔发生铁-碳氧化还原反应,形成的金刚石堆积在地幔过渡带使得相应的熔体具有高的Fe3+/∑Fe,形成高度氧化地幔端元(HOME),这一端元可能是深部贵金属与硫化物运移的重要介质。
中图分类号:
李欣懿, 董栩含, 黄慧, 邓阳凡, 王水炯. 中国东部大地幔楔氧化的证据和机理[J]. 现代地质, 2025, 39(02): 239-247.
LI Xinyi, DONG Xuhan, HUANG Hui, DENG Yangfan, WANG Shuijiong. The Oxidation of the Big Mantle Wedge Beneath Eastern China[J]. Geoscience, 2025, 39(02): 239-247.
图1 全球大地幔楔分布以及垂直波速剖面(据文献[53]修改)
Fig.1 Global distribution of the big mantle wedges and vertical seismic velocity profiles (modified after reference [53])
图2 中国东部大地幔楔结构卡通图(a)和大地幔楔岩石圈地幔与晚白垩世—新生代玄武岩的 f O 2值直方对比图(b)(图(b)数据引自文献[37,40-41,43-44,48,56])
Fig.2 Carton showing the formation of the big mantle wedge beneath eastern China (a) and comparison histogram of the f O 2 values of the big mantle wedge lithospheric mantle and Late Cretaceous-Cenozoic basalts from eastern China(figure (b) data from [37,40-41,43-44,48,56])
图3 中国东部新生代板内玄武岩校正的Fe3+/∑Fe比值与U/Pb(a),Th/Ba(b),Zr/Nd(c)和δ26Mg(d)相关图解(金刚石包裹数据引自文献[74],图片据文献[51]修改)
Fig.3 Corrected Fe3+/∑Fe values versus U/Pb (a), Th/Ba (b), Zr/Nd (c) and δ26Mg (d) diagrams of Cenozoic intraplate basalts from eastern China (diamond inclusion data from reference[74], figure modified from reference [51])
[1] | 杨晓志, 刘汉永, 张凯. 地球内部的氧化还原地球动力学[J]. 中国科学: 地球科学, 2022, 52(5): 842-859. |
[2] | RIGHTER K, SUTTON S R, DANIELSON L, et al. Redox variations in the inner solar system with new constraints from vanadium XANES in spinels[J]. American Mineralogist, 2016, 101(9): 1928-1942. |
[3] | STAGNO V, AULBACH S. Redox Processes Before, During, and After Earth's Accretion Affecting the Deep Carbon Cycle[M]. Magma Redox Geochemistry. 2021: 19-32. |
[4] | MCCAMMON C. The paradox of mantle redox[J]. Science, 2005, 308(5723): 807-808. |
[5] | WOOD B J, WALTER M J, WADE J. Accretion of the Earth and segregation of its core[J]. Nature, 2006, 441(7095): 825-833. |
[6] | LYONS T W, REINHARD C T, PLANAVSKY N J. The rise of oxygen in Earth’s early ocean and atmosphere[J]. Nature, 2014, 506(7488): 307-315. |
[7] | COTTRELL E, KELLEY K A. The oxidation state of Fe in MORB glasses and the oxygen fugacity of the upper mantle[J]. Earth and Planetary Science Letters, 2011, 305(3/4): 270-282. |
[8] | MOUSSALLAM Y, LONGPRÉ M A, MCCAMMON C, et al. Mantle plumes are oxidised[J]. Earth and Planetary Science Letters, 2019, 527: 115798. |
[9] | COTTRELL E, BIRNER S K, BROUNCE M, et al. Oxygen fugacity across tectonic settings[M]. Magma Redox Geochemistry, 2021: 33-61. |
[10] | NICKLAS R W, HAHN R K M, WILLHITE L N, et al. Oxidized mantle sources of HIMU-and EM-type ocean island basalts[J]. Chemical Geology, 2022, 602: 120901. |
[11] | NICKLAS R W, BAXTER E F, BRANDON A D, et al. Mantle plumes sample heterogeneous mixtures of oxidized and reduced lithologies[J]. Chemical Geology, 2024, 645:121897. |
[12] | WILLHITE L N, AREVALO R Jr, PICCOLI P, et al. Oxygen fugacity of global ocean island basalts[J]. Geochemistry, Geophysics, Geosystems, 2024, 25(1): e2023GC011249. |
[13] | GAILLARD F, SCAILLET B, PICHAVANT M, et al. The redox geodynamics linking basalts and their mantle sources through space and time[J]. Chemical Geology, 2015, 418: 217-233. |
[14] | 李挺杰, 张熊, 赵如意, 等. 粤北大宝山矿区中南部斑岩型铜矿成矿热液特征[J]. 东华理工大学学报(自然科学版), 2023, 46(4): 351-367. |
[15] | EZAD I S, SAUNDERS M, SHCHEKA S S, et al. Incipient carbonate melting drives metal and sulfur mobilization in the mantle[J]. Science Advances, 2024, 10(12): eadk5979. |
[16] | LIN Y H, ISHII T, VAN WESTRENEN W, et al. Melting at the base of a terrestrial magma ocean controlled by oxygen fugacity[J]. Nature Geoscience, 2024, 17: 803-808. |
[17] |
李曙光, 汪洋, 刘盛遨. 大地幔楔的两个深部碳循环圈: 差异及宜居效应[J]. 地学前缘, 2024, 31(1): 15-27.
DOI |
[18] | CHEN C F, FÖRSTER M W, SHCHEKA S S, et al. Sulfide-rich continental roots at cratonic margins formed by carbonated melts[J]. Nature, 2025, 637: 615-621. |
[19] | HUANG J L, ZHAO D P. High-resolution mantle tomography of China and surrounding regions[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B9): B09305. |
[20] | OHTANI E, ZHAO D. The role of water in the deep upper mantle and transition zone: Dehydration of stagnant slabs and its effects on the big mantle wedge[J]. Russian Geology and Geophysics, 2009, 50(12): 1073-1078. |
[21] | 徐义刚, 李洪颜, 洪路兵, 等. 东亚大地幔楔与中国东部新生代板内玄武岩成因[J]. 中国科学: 地球科学, 2018, 48(7): 825-843. |
[22] | ZHAO D P, LEI J S, TANG R Y. Origin of the Changbai intraplate volcanism in Northeast China: Evidence from seismic tomography[J]. Chinese Science Bulletin, 2004, 49(13): 1401-1408. |
[23] | LI S G, YANG W, KE S, et al. Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in Eastern China[J]. National Science Review, 2017, 4(1): 111-120. |
[24] | 李曙光, 汪洋. 中国东部大地幔楔形成时代和华北克拉通岩石圈减薄新机制: 深部再循环碳的地球动力学效应[J]. 中国科学: 地球科学, 2018, 48(7): 809-824. |
[25] | MA Q, XU Y G. Magmatic perspective on subduction of Paleo-Pacific plate and initiation of big mantle wedge in East Asia[J]. Earth-Science Reviews, 2021, 213: 103473. |
[26] | 朱日祥, 徐义刚, 朱光, 等. 华北克拉通破坏[J]. 中国科学: 地球科学, 2012, 42(8): 1135-1159. |
[27] | LIU Y S, GAO S, KELEMEN P B, et al. Recycled crust controls contrasting source compositions of Mesozoic and Cenozoic basalts in the North China Craton[J]. Geochimica et Cosmochimica Acta, 2008, 72(9): 2349-2376. |
[28] | ZHANG J J, ZHENG Y F, ZHAO Z F. Geochemical evidence for interaction between oceanic crust and lithospheric mantle in the origin of Cenozoic continental basalts in east-central China[J]. Lithos, 2009, 110(1/2/3/4): 305-326. |
[29] | XU Y G, ZHANG H H, QIU H N, et al. Oceanic crust components in continental basalts from Shuangliao, Northeast China: Derived from the mantle transition zone?[J]. Chemical Geology, 2012, 328: 168-184. |
[30] | LI H Y, XU Y G, RYAN J G, et al. Olivine and melt inclusion chemical constraints on the source of intracontinental basalts from the eastern North China Craton: Discrimination of contributions from the subducted Pacific slab[J]. Geochimica et Cosmochimica Acta, 2016, 178: 1-19. |
[31] | LI H Y, XU Y G, RYAN J G, et al. Evolution of the mantle beneath the eastern North China Craton during the Cenozoic: Linking geochemical and geophysical observations[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(1): 224-246. |
[32] | WEI Z, LI H Y, MA L, et al. Geochemistry of olivine melt inclusion reveals interactions between deeply derived carbonated melts from the big mantle wedge and pyroxenite in the lithospheric mantle beneath eastern Asia[J]. Geophysical Research Letters, 2024, 51(15): e2024GL108234. |
[33] | TANG Y C, OBAYASHI M, NIU F L, et al. Changbaishan volcanism in Northeast China linked to subduction-induced mantle upwelling[J]. Nature Geoscience, 2014, 7: 470-475. |
[34] | ZHOU Z B, CHEN L H, HUANG Z C, et al. The return of stagnant slab recorded by intraplate volcanism[J]. Proceedings of the National Academy of Sciences of the United States of America, 2025, 122(1): e2414632122. |
[35] | HOFMANN A W. Mantle geochemistry: The message from oceanic volcanism[J]. Nature, 1997, 385: 219-229. |
[36] | LIU S A, WANG Z Z, LI S G, et al. Zinc isotope evidence for a large-scale carbonated mantle beneath Eastern China[J]. Earth and Planetary Science Letters, 2016, 444: 169-178. |
[37] | ERDMANN S, Chen L H, Liu J Q, et al. Hot, volatile-poor, and oxidized magmatism above the stagnant Pacific plate in Eastern China in the Cenozoic[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(11): 4849-4868. |
[38] | GENG X L, FOLEY S F, LIU Y S, et al. Thermal-chemical conditions of the North China Mesozoic lithospheric mantle and implication for the lithospheric thinning of cratons[J]. Earth and Planetary Science Letters, 2019, 516: 1-11. |
[39] | HE Y S, MENG X N, KE S, et al. A nephelinitic component with unusual δ56Fe in Cenozoic basalts from Eastern China and its implications for deep oxygen cycle[J]. Earth and Planetary Science Letters, 2019, 512: 175-183. |
[40] | HONG L B, XU Y G, ZHANG L, et al. Oxidized Late Mesozoic subcontinental lithospheric mantle beneath the Eastern North China Craton: A clue to understanding cratonic destruction[J]. Gondwana Research, 2020, 81: 230-239. |
[41] | HONG L B, XU Y G, ZHANG L, et al. Recycled carbonate-induced oxidization of the convective mantle beneath Jiaodong, Eastern China[J]. Lithos, 2020, 366: 105544. |
[42] | CAI R H, LIU J G, PEARSON D G, et al. Oxidation of the deep big mantle wedge by recycled carbonates: Constraints from highly siderophile elements and osmium isotopes[J]. Geochimica et Cosmochimica Acta, 2021, 295: 207-223. |
[43] | HONG L B, ZHANG Y H, ZHANG L, et al. Olivine chemistry of the quaternary Datong basalts of the Trans-North China Orogen: Insights into mantle source lithology and redox-hydration state[J]. Geological Society, London, Special Publications, 2021, 510(1): 115-131. |
[44] | LIU J Q, CHEN L H, WANG X J, et al. Olivine and melt inclusion chemical constraints on the nature and origin of the common mantle component beneath eastern Asia[J]. Contributions to Mineralogy and Petrology, 2022, 177(12): 116. |
[45] | SHENG S Z, WANG S J, YANG X M, et al. Sulfide dissolution on the nickel isotopic composition of basaltic rocks[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(8):e2022JB024555. |
[46] | CHEN Z W, DING X, KISEEVA E S, et al. Vanadium isotope fractionation of alkali basalts during mantle melting[J]. Lithos, 2023, 442: 107082. |
[47] | SHEN J, ZUO Z W, HE Y S, et al. Chromium isotope system of intraplate basaltic lavas: Implication for recycling materials into mantle[J]. Lithos, 2023, 454: 107264. |
[48] | SUN J H, LI N, ZHAO Y W, et al. The role of high oxygen fugacity on genesis of the late Cenozoic Abaga basalts in Xilin Gol League, Inner Mongolia, China[J]. International Geology Review, 2024, 66(14): 2542-2559. |
[49] | WU T H, LIU SA. Mantle oxidation induced by recycled carbonate: Insights from Mg-Zn-Fe-Cu isotopic systematics of intraplate basalts[J]. Journal of Geophysical Research: Solid Earth, 2023, 128(11): e2023JB027210. |
[50] | DONG X H, WANG S J, PANG K N, et al. The behavior of nickel isotopes during mantle melting[J]. Geochimica et Cosmochimica Acta, 2024, 385: 34-44. |
[51] | DONG X H, WANG S J, WANG W Z, et al. Highly oxidized intraplate basalts and deep carbon storage[J]. Science Advances, 2024, 10(32): eadm8138. |
[52] | WU T H, LIU SA. Heavy iron isotopes reveal mantle oxidation in addition to pyroxenite sources for intraplate basalts[J]. Chemical Geology, 2024, 670: 122432. |
[53] | FUKAO Y, OBAYASHI M. Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(11): 5920-5938. |
[54] | OBAYASHI M, YOSHIMITSU J, NOLET G, et al. Finite frequency whole mantle P wave tomography: Improvement of subducted slab images[J]. Geophysical Research Letters, 2013, 40(21): 5652-5657. |
[55] | HAYES G P, MOORE G L, PORTNER D E, et al. Slab2, a comprehensive subduction zone geometry model[J]. Science, 2018, 362(6410): 58-61. |
[56] | YE C Y, YING J F, TANG Y J, et al. Oxygen fugacity evolution of the mantle lithosphere beneath the North China Craton[J]. International Geology Review, 2022, 64(22): 3133-3148. |
[57] | TANG Y J, ZHANG H F, YING J F, et al. Refertilization of ancient lithospheric mantle beneath the central North China Craton: Evidence from petrology and geochemistry of peridotite xenoliths[J]. Lithos, 2008, 101(3/4): 435-452. |
[58] | ZHU R X, XU Y G, ZHU G, et al. Destruction of the North China Craton[J]. Science China Earth Sciences, 2012, 55(10): 1565-1587. |
[59] | ZHANG H F, ZHU R X, SANTOSH M, et al. Episodic widespread magma underplating beneath the North China Craton in the Phanerozoic: Implications for craton destruction[J]. Gondwana Research, 2013, 23(1): 95-107. |
[60] | WANG Z Z, LIU S A, CHEN L H, et al. Compositional transition in natural alkaline lavas through silica-undersaturated melt-lithosphere interaction[J]. Geology, 2018, 46(9): 771-774. |
[61] | ZENG G, CHEN L H, HOFMANN A W, et al. Nephelinites in Eastern China originating from the mantle transition zone[J]. Chemical Geology, 2021, 576: 120276. |
[62] | 刘丛强, 解广轰, 增田彰正. 中国东部新生代玄武岩的地球化学(Ⅱ)Sr、Nd、Ce同位素组成[J]. 地球化学, 1995, 24(3): 203-214. |
[63] | TENG F Z, DAUPHAS N, HUANG S C, et al. Iron isotopic systematics of oceanic basalts[J]. Geochimica et Cosmochimica Acta, 2013, 107: 12-26. |
[64] | WEYER S, IONOV D A. Partial melting and melt percolation in the mantle: The message from Fe isotopes[J]. Earth and Planetary Science Letters, 2007, 259(1/2): 119-133. |
[65] | XU R, LAMBART S, NEBEL O, et al. Iron isotope evidence in continental intraplate basalts for mantle lithosphere imprint on heterogenous asthenospheric melts[J]. Earth and Planetary Science Letters, 2024, 625: 118499. |
[66] | ZOU Z Q, WANG Z C, XU Y G, et al. Deep mantle cycle of chalcophile metals and sulfur in subducted oceanic crust[J]. Geochimica et Cosmochimica Acta, 2024, 370: 15-28. |
[67] | DASGUPTA R, HIRSCHMANN M M. Melting in the Earth’s deep upper mantle caused by carbon dioxide[J]. Nature, 2006, 440: 659-662. |
[68] | WANG J T, XIONG X L, TAKAHASHI E, et al. Oxidation state of arc mantle revealed by partitioning of V, Sc, and Ti between mantle minerals and basaltic melts[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(5): 4617-4638. |
[69] | LEE C A, LEEMAN W P, CANIL D, et al. Similar V/Sc systematics in MORB and arc basalts: Implications for the oxygen fugacities of their mantle source regions[J]. Journal of Petrology, 2005, 46(11): 2313-2336. |
[70] | ROEDER P L, EMSLIE R F. Olivine-liquid equilibrium[J]. Contributions to Mineralogy and Petrology, 1970, 29(4): 275-289. |
[71] | FROST D J, MCCAMMON C A. The redox state of earth’s mantle[J]. Annual Review of Earth and Planetary Sciences, 2008, 36: 389-420. |
[72] | TAO R B, FEI Y W. Recycled calcium carbonate is an efficient oxidation agent under deep upper mantle conditions[J]. Communications Earth & Environment, 2021, 2: 45. |
[73] |
KISEEVA E S, VASIUKOV D M, WOOD B J, et al. Oxidized iron in garnets from the mantle transition zone[J]. Nature Geoscience, 2018, 11: 144-147.
DOI |
[74] | HUANG S C, TSCHAUNER O, YANG S Y, et al. HIMU geochemical signature originating from the transition zone[J]. Earth and Planetary Science Letters, 2020, 542: 116323. |
[75] | ROHRBACH A, SCHMIDT M W. Redox freezing and melting in the Earth’s deep mantle resulting from carbon-iron redox coupling[J]. Nature, 2011, 472(7342): 209-212. |
[76] | SUN W D, HAWKESWORTH C J, YAO C, et al. Carbonated mantle domains at the base of the Earth’s transition zone[J]. Chemical Geology, 2018, 478: 69-75. |
[77] | 陈霞玉, 陈立辉, 陈晹, 等. 中国中—东部地区新生代玄武岩的分布规律与面积汇总[J]. 高校地质学报, 2014, 20(4): 507-519. |
[78] | HÖNISCH B, ROYER D L, BREECKER D O, et al. Toward a Cenozoic history of atmospheric CO2[J]. Science, 2023, 382(6675): eadi5177. |
[1] | 常华诚, 焦骞骞, 江小均, 范柱国, 芦磊, 阮班朗, 邓梅. 云南个旧芦塘坝—阿西寨地区深部矿化的浅部表征:构造蚀变与原生晕指示[J]. 现代地质, 2023, 37(06): 1538-1552. |
[2] | 王续学, 张祥玉, 李守军, 张家豪, 张振宇. 莱阳凹陷莱阳群黑色页岩氧化还原敏感微量元素特征与有机质富集的控制因素[J]. 现代地质, 2023, 37(03): 733-744. |
[3] | 曹元元, 郭华明, 高志鹏. 氧化还原动态变化对沉积物砷和氟释放的影响:以河北白洋淀平原为例[J]. 现代地质, 2022, 36(02): 533-542. |
[4] | 侯颖, 徐锦明, 李平, 毛君妍, 张原浩, 宿俊杰, 陈男, 胡伟武. Fe/Ag催化臭氧氧化降解苯酚的研究[J]. 现代地质, 2021, 35(03): 711-719. |
[5] | 曾瑞垠, 姜华, 祝新友, 张雄, 肖剑, 吕晓强, 胡川, 杨晓坤, 李金林, 郑泽光. 云南东川铜矿床流体演化与成矿机制研究[J]. 现代地质, 2021, 35(01): 244-257. |
[6] | 胡妍, 胡永兴, 张翔, 杨涛, 欧扬剑. 鄂尔多斯盆地西南缘镇原地区砂岩型铀矿元素地球化学特征及地质意义[J]. 现代地质, 2020, 34(06): 1153-1165. |
[7] | 唐瞻文, 韦恒叶. 安徽巢湖地区二叠系瓜德鲁普统孤峰组古环境演化[J]. 现代地质, 2020, 34(01): 166-176. |
[8] | 李素梅, 徐田武, 史权, 张云献, 吴建勋, 柯昌炜. 东濮凹陷盐湖相原油氮/氧化合物分布特征及其应用[J]. 现代地质, 2019, 33(06): 1137-1150. |
[9] | 盛益之, 张旭, 翟晓波, 李广贺. 化学氧化技术异位处理地下水非水相有机污染物中试研究[J]. 现代地质, 2019, 33(02): 422-430. |
[10] | 李被, 刘池洋, 黄雷, 蒋飞虎, 郭佩, 鹿坤. 东濮凹陷北部沙河街组三段中亚段沉积环境分析[J]. 现代地质, 2018, 32(02): 227-239. |
[11] | 陈敏, 邓兴波, 刘昌岭, 任宏波, 尹希杰, 李佳宣, 戚洪帅, 张爱梅. 水合物生成过程中碳同位素组成变化的实验研究[J]. 现代地质, 2018, 32(01): 205-212. |
[12] | 李西得,易超,高贺伟,陈心路,张康,王明太. 鄂尔多斯盆地东北部直罗组古层间氧化带 形成机制探讨[J]. 现代地质, 2016, 30(4): 739-747. |
[13] | 李社宏,苑鸿庆,裴秋明,严松,刘祥,张令详 ,李庚华. 广西荣华锰矿床地质特征及发现意义[J]. 现代地质, 2015, 29(4): 912-921. |
[14] | 郭华明,倪萍,贾永锋,张波,张扬. 内蒙古河套盆地地表水-浅层地下水化学特征及成因[J]. 现代地质, 2015, 29(2): 229-237. |
[15] | 荆继红,黄冠星,陈宗宇,孙继朝,刘凡,张英,王金翠. 氧化还原条件对土壤砷(Ⅴ)稳定化作用的影响[J]. 现代地质, 2015, 29(2): 370-376. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||