[1] |
RIBEIRO A R, NUNES O C, PEREIRA M F R, , et al. An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU[J]. Environment International, 2015, 75:33-51.
DOI
URL
|
[2] |
HUANOSTA-GUTIÉRREZ T, DANTAS R F, RAMÍREZ-ZAMORA R M, et al. Evaluation of copper slag to catalyze advanced oxidation processes for the removal of phenol in water[J]. Journal of Hazardous Materials, 2012, 213:325-330.
|
[3] |
杨琦, 尚海涛, 王雪莲, 等. Fenton 氧化膜-生物反应器出水中丙烯腈的实验研究[J]. 现代地质, 2004, 18(4): 586-590.
|
[4] |
盛益之, 张旭, 翟晓波, 等. 化学氧化技术异位处理地下水非水相有机污染物中试研究[J]. 现代地质, 2019, 33(2): 422-430.
|
[5] |
CHAICHANAWONG J, YAMAMOTO T, OHMORI T. Enhancement effect of carbon adsorbent on ozonation of aqueous phenol[J]. Journal of Hazardous Materials, 2010, 175(1/3): 673-679.
DOI
URL
|
[6] |
IKHLAQ A, BROWN D R, KASPRZYK-HORDERN B. Catalytic ozonation for the removal of organic contaminants in water on ZSM-5 zeolites[J]. Applied Catalysis B: Environmental, 2014, 154:110-122.
|
[7] |
WANG J, BAI Z. Fe-based catalysts for heterogeneous catalytic ozonation of emerging contaminants in water and wastewater[J]. Chemical Engineering Journal, 2017, 312:79-98.
DOI
URL
|
[8] |
SCAFETTA M D, MAY S J. Effect of cation off-stoichiometry on optical absorption in epitaxial LaFeO3 films[J]. Physical Chemistry Chemical Physics, 2017, 19(16): 10371-10376.
DOI
URL
|
[9] |
HE H, LIU Y, WU D, et al. Ozonation of dimethyl phthalate catalyzed by highly active CuxO-Fe3O4 nanoparticles prepared with zero-valent iron as the innovative precursor[J]. Environmental Pollution, 2017, 227:73-82.
DOI
URL
|
[10] |
XIAO J, XIE Y, CAO H. Organic pollutants removal in wastewater by heterogeneous photocatalytic ozonation[J]. Chemosphere, 2015, 121:1-17.
DOI
URL
|
[11] |
李来胜, 祝万鹏. 催化臭氧化——一种有前景的水处理高级氧化技术[J]. 给水排水, 2001, 27(6): 26-29.
|
[12] |
宋明光, 王筠松, 郭耘, 等. 改性二氧化钛负载贵金属Ru催化剂催化降解苯胺溶液[J]. 催化学报, 2017, 38(7): 1155-1165.
|
[13] |
许珊珊, 林存旺, 丁亚磊, 等. MgO/活性炭催化臭氧化降解有机物的作用机制[J]. 环境科学, 2018, 39(2): 838-843.
|
[14] |
胡应模, 李梦灿, 安文峰, 等. 新型高分子改性剂的合成及含电气石功能聚合物的制备[J]. 现代地质, 2019, 33(1): 246-250.
|
[15] |
蒲清三, 张祝豪, 史硕, 等. COD快速消解法测定地表水体中的总氮[J]. 三峡生态环境监测, 2017, 2(1): 58-63.
|
[16] |
陈东洋, 冯家力, 张昊, 等. 固相萃取/高效液相色谱法测定饮用水中苯并(a)芘及双酚A[J]. 分析测试学报, 2015, 34(7): 848-851.
|
[17] |
LUO J, WU J, LIU Z, et al. Controlled synjournal of porous Co3O4 nanostructures for efficient electrochemical sensing of glucose[J]. Journal of Nanomaterials, 2019, 19:1-7.
|
[18] |
KANDAMBETH S, VENKATESH V, SHINDE D B, et al. Self-templated chemically stable hollow spherical covalent organic framework[J]. Nature Communications, 2015, 6:6786.
DOI
URL
|
[19] |
HAMMOUDA S B, ZHAO F, SAFAEI Z, et al. Degradation and mineralization of phenol in aqueous medium by heterogeneous monopersulfate activation on nanostructured cobalt based-perovskite catalysts ACoO3(A=La, Ba, Sr and Ce): Characterization, kinetics and mechanism study[J]. Applied Catalysis B: Environmental, 2017, 215:60-73.
DOI
URL
|
[20] |
陈昕海, 陈星, 王小丽, 等. Nd-Er/ZnO-TiO2光催化剂制备及对酸性品红的光催化降解效应[J]. 三峡生态环境监测, 2018, 3(1): 41-46.
|
[21] |
王益平, 蓝月存, 饶义飞, 等. NiO/AC催化臭氧氧化去除水中的苯酚[J]. 环境工程学报, 2010, 4(11): 2441-2445.
|
[22] |
HUANG C P, HUANG Y H. Comparison of catalytic decomposition of hydrogen peroxide and catalytic degradation of phenol by immobilized iron oxides[J]. Applied Catalysis A: General, 2008, 346(1/2): 140-148.
DOI
URL
|
[23] |
XU B, QI F, ZHANG J, et al. Cobalt modified red mud catalytic ozonation for the degradation of bezafibrate in water: catalyst surface properties characterization and reaction mechanism[J]. Chemical Engineering Journal, 2016, 284:942-952.
DOI
URL
|
[24] |
SUN J, MENG X, SHI Y, et al. A novel catalyst of Cu-Bi-V-O complex in phenol hydroxylation with hydrogen peroxide[J]. Journal of Catalysis, 2000, 193(2): 199-206.
DOI
URL
|
[25] |
董玉明, 王光丽, 蒋平平, 等. 陶瓷粉体催化臭氧化降解水中苯酚[J]. 水处理技术, 2010, 36(10): 28-31.
|
[26] |
贾彦博, 王红青, 韩里明. 液相色谱-串联质谱法快速测定饮用水中6种雌激素[J]. 分析测试学报, 2011, 30(7): 808-812.
|
[27] |
KASPRZYK-HORDERN B, ZIÓŁEK M, NAWROCKI J. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment[J]. Applied Catalysis B: Environmental, 2003, 46(4): 639-669.
DOI
URL
|
[28] |
SCHMITT G L, PIETRZYK D J. Liquid chromatographic separation of inorganic anions on an alumina column[J]. Analytical Chemistry, 1985, 57(12): 2247-2253.
DOI
URL
|
[29] |
BAI Z, YANG Q, WANG J. Catalytic ozonation of sulfamethazine antibiotics using Fe3O4/multiwalled carbon nanotubes[J]. Environmental Progress & Sustainable Energy, 2018, 37(2): 678-685.
|
[30] |
SUH M, BAGUS P S, PAK S, et al. Reactions of hydroxyl radicals on titania, silica, alumina, and gold surfaces[J]. The Journal of Physical Chemistry B, 2000, 104(12): 2736-2742.
DOI
URL
|
[31] |
VALDÉS H, TARDÓN R F, ZAROR C A. Methylene blue removal from contaminated waters using heterogeneous catalytic ozonation promoted by natural zeolite: mechanism and kinetic approach[J]. Environmental Technology, 2012, 33(16): 1895-1903.
DOI
URL
|
[32] |
HOIGNÉ J, BADER H. Rate constants of reactions of ozone with organic and inorganic compounds in water—I: non-dissociating organic compounds[J]. Water Research, 1983, 17(2): 173-183.
DOI
URL
|
[33] |
MA J, SUI M, ZHANG T, et al. Effect of pH on MnOx/GAC catalyzed ozonation for degradation of nitrobenzene[J]. Water Research, 2005, 39(5): 779-786.
DOI
URL
|
[34] |
VON GUNTEN U. Ozonation of drinking water: Part I. Oxidation kinetics and product formation[J]. Water Research, 2003, 37(7): 1443-1467.
DOI
URL
|