欢迎访问现代地质!

现代地质 ›› 2024, Vol. 38 ›› Issue (04): 892-909.DOI: 10.19657/j.geoscience.1000-8527.2024.091

• 构造物理化学理论和方法 • 上一篇    下一篇

煤变质作用的构造物理化学机理实验研究进展

董博1(), 曹代勇1,2(), 魏迎春1,2(), 王安民1, 李新1, 张昀1   

  1. 1.中国矿业大学(北京) 地球科学与测绘工程学院,北京 100083
    2.中国矿业大学(北京) 煤炭精细勘探与智能开发全国重点实验室,北京 100083
  • 出版日期:2024-08-10 发布日期:2024-10-16
  • 通信作者: 曹代勇,男,教授,博士生导师,1955年出生,主要从事盆地构造和矿产地质研究。Email:cdy@cumtb.edu.cn
    魏迎春,女,教授,博士生导师,1977年出生,主要从事煤与煤系矿产地质勘查研究。Email:wyc@cumtb.edu.cn
  • 作者简介:董 博,男,博士研究生,1994年出生,主要从事煤与煤系矿产地质研究。Email:705107217@qq.com
  • 基金资助:
    国家自然科学基金项目(42372187);国家自然科学基金项目(42072197);国家重点研发计划资助项目(2021YFC2902004);宁夏2023年地质事业发展专项资金资助项目(640000233000000011005)

Advancements in Experimental Studies on the Tectonic Physical-chemical Mechanisms of Coal Metamorphism

DONG Bo1(), CAO Daiyong1,2(), WEI Yingchun1,2(), WANG Anmin1, LI Xin1, ZHANG Yun1   

  1. 1. College of Geoscience and Surveying Engineering, China University of Mining and Technology(Beijing), Beijing 100083, China
    2. State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology(Beijing), Beijing 100083, China
  • Published:2024-08-10 Online:2024-10-16

摘要:

煤作为对温度、压力等地质环境条件极敏感的有机岩,地质历史演化过程中各种构造-热事件必然导致煤发生一系列物理、化学、结构和构造变化,物理模拟实验则是揭示煤变质作用机理的重要手段。本文基于煤变质热模拟实验、高温高压模拟实验方面的研究成果,着重对煤变质作用机理、演化进程及煤变质作用模拟实验的应用和发展趋势进行阐述。煤变质作用包含煤化作用和石墨化作用两个阶段,体现为多尺度、多阶段的物理化学结构演化,基本特征趋向于分子结构有序化和化学成分单一化。温度是煤变质的主导因素,而力的作用方式同样约束着煤变质作用。热模拟实验基于“时间-温度补偿原理”,采用开放、半开放和封闭等不同实验体系,模拟不同温压条件和构造-热环境下的热解过程。高温高压模拟实验基于相似性原理,在热模拟基础上加入压力变量,模拟不同温压条件和应力-应变环境,以全面模拟煤在各种构造物理化学条件下所发生的物理化学变化,探究不同温压耦合条件下煤变质作用机理、影响因素与演化途径。煤变质的热模拟及高温高压模拟实验在油气生成、煤储层评价、煤成石墨化及煤中战略性金属元素迁移等多个领域得到广泛应用,今后将朝多学科交叉融合和多场耦合模拟实验方向发展,以期更精确地模拟地层构造作用下的复杂地质条件,为深入探究煤变质作用的构造物理化学机理提供更有效的技术手段。

关键词: 煤变质作用, 构造物理化学机理, 热模拟实验, 高温高压模拟实验

Abstract:

Coal is an organic rock that is highly sensitive to geological conditions such as temperature and pressure.Various tectono-thermal events during geological evolution inevitably result in a series of changes in the physics, chemistry, texture, and structure of coal.Physical simulation experiments are essential to reveal the mechanisms of coal metamorphism.Based on previous thermal simulation experiments and high-temperature, high-pressure simulation studies of coal metamorphism, this paper reviews the previous research on the metamorphism processes, evolutionary stages, applications, and simulation experiments of coal.Coal metamorphism includes coalification and graphitization, which manifest as multi-scale and multi-stage physical and chemical structural evolution.Its basic characteristics involve a progressive simplification of chemical constituents and structural ordering.Temperature is the dominant factor in coal metamorphism, while the mode of force also influences coal metamorphism.The thermal simulation experiment is based on the “time-temperature compensation principle” and utilizes various experimental systems, such as open, semi-open, and closed, to simulate the pyrolysis process under different temperature and pressure conditions, and tectono-thermal environments.According to the principle of similarity, high-temperature and high-pressure experiments include pressure as a variable in addition to thermal simulation.These experiments were conducted under varying temperature and pressure conditions, and stress-strain conditions to comprehensively simulate the physical and chemical changes of coal across different physicochemical environments.The mechanism, influencing factors, and evolutionary pathway of coal metamorphism under different coupling conditions of temperature and pressure have been investigated.Thermal simulation and high-temperature, high-pressure experiments of coal metamorphism have been widely used in various fields such as oil and gas generation, coal reservoir evaluation, coal-forming graphitization, and strategic migration of metal elements in coal.In the future, these experiments will evolve towards multidisciplinary cross-integration and multi-field coupling simulation, aiming to more accurately simulate the complex geological conditions influenced by stratigraphic structure.It provides a more effective technical means for the in-depth exploration of the tectonic-physicochemical mechanisms of coal metamorphism.

Key words: coal metamorphism, tectonic-physicochemical mechanism, thermal simulation experiment, high-temperature and high-pressure simulation experiment

中图分类号: