现代地质 ›› 2024, Vol. 38 ›› Issue (04): 873-891.DOI: 10.19657/j.geoscience.1000-8527.2024.092
张龙啸1,2(), 杨立强1,2,3,4(
), 杨伟1,2, 谢东1,2
出版日期:
2024-08-10
发布日期:
2024-10-16
通信作者:
杨立强,男,教授,博士生导师,1971年出生,主要从事矿床学及矿产普查与勘探的教学和科研工作。Email:lqyang@cugb.edu.cn。作者简介:
张龙啸,男,硕士研究生,2001年出生,主要从事矿床学的研究。Email:zhanglongxiao2023@163.com。
基金资助:
ZHANG Longxiao1,2(), YANG Liqiang1,2,3,4(
), YANG Wei1,2, XIE Dong1,2
Published:
2024-08-10
Online:
2024-10-16
摘要:
热液成矿系统的形成受控于构造运动引发的成矿流体运移和就位,构造是一级控矿因素,成矿流体的运移与就位则为构造控矿理论的核心。以流体压力差为主导、综合水力梯度和热传导等多种或单一主导因素驱动流体在围岩中由断层、裂隙和孔隙组成的输运通道中运移。流体在构造裂隙或孔隙中发生化学反应、流体混合和不混溶作用、流体沸腾都会导致流体物理化学性质发生变化,导致成矿物质沉淀;流体运移形式影响着矿化形式的表达,以管道流形式在宏观断层和裂隙中运移的流体以形成规模较大且矿化程度高的脉状矿体为主,而在围岩微米级裂隙和孔隙中广泛发育的渗透流多形成矿化品位稳定、规模中等的细脉-浸染状矿体。构造变形与流体压力、应力状态之间的动态耦合导致矿体的时空定位,断层阀-泵吸机制是解释造山型金成矿作用最具代表性的构造-流体耦合成矿动力学模型。胶东焦家金矿带中矿床的形成与分布受到焦家断裂带上一、二、三级断裂构造的联合控制:压剪性的焦家断裂为一级控矿构造,控制了广泛的以绢英岩化为主的热液蚀变作用和破碎带蚀变岩型金矿体的形成与就位;在其下盘张剪性的望儿山断裂为二级控矿构造,热液蚀变相对较弱,发育过渡型金矿体;三级控矿构造为以鲍李断裂为主的数十条张剪性断裂和节理系,蚀变-矿化程度最弱,主要控制石英脉型金矿体的产出。寺庄金矿床矿体三维几何学结构研究表明从I号到Ⅲ号矿体群的形态扁平程度增加,说明成矿流体输运方式由渗透流向管道流的空间演变,矿体产状差异则反映成矿流体运移方向也发生了变化。进一步研究需融合多学科方法和成果,特别是深入剖析显微-超显微变形组构与成矿流体行为耦合关系,构建逼近实际的多尺度构造-流体耦合成矿模型,揭示热液成矿系统形成的精细过程和机理。
中图分类号:
张龙啸, 杨立强, 杨伟, 谢东. 成矿流体运移与就位及其构造控制机理:以胶东焦家金矿带为例[J]. 现代地质, 2024, 38(04): 873-891.
ZHANG Longxiao, YANG Liqiang, YANG Wei, XIE Dong. Migration and Emplacement of Ore-forming Fluids and Their Structural Controlling Mechanisms: An Example from Jiaojia Gold Belt in Jiaodong Peninsula[J]. Geoscience, 2024, 38(04): 873-891.
矿床 | 流体包裹体的 均一温度(℃) | 流体包裹体盐 度特征(%) | 流体组成 | 流体来源 | 成矿压力 (bar) | 成矿深度 (km) | 主控矿 因素 | 资料来源 |
---|---|---|---|---|---|---|---|---|
MVT密西西比河谷型铅锌矿床 | 75~175 | 20±5 | 富含Pb、Zn,Cu等金属元素;挥发性组分为CO2、CH4 | 海水、部分大气降水 | 几百到上千巴之间 | 1~1.8 | 层控 | [26-27] |
VMS火山成因块状硫化物矿床 | 100~360 | 5~10 | 富含Cu、Pb、Zn等金属元素;挥发性组分为CO2、CH4、N2 | 海底热液:海水、岩浆热液 | / | / | 层控 | [28-29] |
浅成热液矿床 | 100~450 | 0~40 | 富含各种金属元素;挥发分为CO2、H2S、CH4、N2和SO2 | 岩浆热液、大气降水 | 100~500 | 1~1.5 | 断裂系统控制 | [30-31] |
斑岩型Cu-Mo矿 | 100~900 | 0~60 | 富含Cu、Mo、Na、K、Fe等金属元素的高盐度流体 | 岩浆热液 | 几十到几百巴,有时高达1000 bar左右 | 1~6 | 断裂系统控制 | [32-33] |
矽卡岩型矿床 | 100~600 | 0~60 | 富含W、Mo、Cu、Pb、Zn等金属元素 | 岩浆热液、变质热液、部分大气降水 | 不同类型的矽卡岩矿床有着不同的成矿压力 | 1~4.5 | 褶皱、断裂构造控制 | [4] |
卡林型金矿 | 100~300 | 0~7 | 富含以Au为主的各种金属元素;主要挥发分为CO2、H2S | 岩浆热液、变质热液、大气降水 | 不同类型的卡林型金矿有着不同的成矿压力 | 2 km左右,甚至达到数千米 | 层控 | [34-35] |
造山型金矿 | 150~350 | 0~10 | 富含Na、Ca、K、Mg等金属元素;为H2O-CO2-NaCl体系 | 岩浆热液、变质热液和深循环大气降水 | 500~1500 | 3~10 | 断裂系统控制 | [3,36] |
胶东型金矿 | 260~340 | 2~10 | 富含Na、K、Mg、Ca等金属元素;为H2O-CO2-NaCl-CH4体系 | 深部岩浆热液与大气水混合 | 900~2400 | 2~10 | 断裂系统控制 | [37-39] |
表1 各类矿床的成矿流体性质与构造控制
Table 1 List of ore-forming fluid properties and structural controls of various ore deposits
矿床 | 流体包裹体的 均一温度(℃) | 流体包裹体盐 度特征(%) | 流体组成 | 流体来源 | 成矿压力 (bar) | 成矿深度 (km) | 主控矿 因素 | 资料来源 |
---|---|---|---|---|---|---|---|---|
MVT密西西比河谷型铅锌矿床 | 75~175 | 20±5 | 富含Pb、Zn,Cu等金属元素;挥发性组分为CO2、CH4 | 海水、部分大气降水 | 几百到上千巴之间 | 1~1.8 | 层控 | [26-27] |
VMS火山成因块状硫化物矿床 | 100~360 | 5~10 | 富含Cu、Pb、Zn等金属元素;挥发性组分为CO2、CH4、N2 | 海底热液:海水、岩浆热液 | / | / | 层控 | [28-29] |
浅成热液矿床 | 100~450 | 0~40 | 富含各种金属元素;挥发分为CO2、H2S、CH4、N2和SO2 | 岩浆热液、大气降水 | 100~500 | 1~1.5 | 断裂系统控制 | [30-31] |
斑岩型Cu-Mo矿 | 100~900 | 0~60 | 富含Cu、Mo、Na、K、Fe等金属元素的高盐度流体 | 岩浆热液 | 几十到几百巴,有时高达1000 bar左右 | 1~6 | 断裂系统控制 | [32-33] |
矽卡岩型矿床 | 100~600 | 0~60 | 富含W、Mo、Cu、Pb、Zn等金属元素 | 岩浆热液、变质热液、部分大气降水 | 不同类型的矽卡岩矿床有着不同的成矿压力 | 1~4.5 | 褶皱、断裂构造控制 | [4] |
卡林型金矿 | 100~300 | 0~7 | 富含以Au为主的各种金属元素;主要挥发分为CO2、H2S | 岩浆热液、变质热液、大气降水 | 不同类型的卡林型金矿有着不同的成矿压力 | 2 km左右,甚至达到数千米 | 层控 | [34-35] |
造山型金矿 | 150~350 | 0~10 | 富含Na、Ca、K、Mg等金属元素;为H2O-CO2-NaCl体系 | 岩浆热液、变质热液和深循环大气降水 | 500~1500 | 3~10 | 断裂系统控制 | [3,36] |
胶东型金矿 | 260~340 | 2~10 | 富含Na、K、Mg、Ca等金属元素;为H2O-CO2-NaCl-CH4体系 | 深部岩浆热液与大气水混合 | 900~2400 | 2~10 | 断裂系统控制 | [37-39] |
图4 流体通道渐进演化模型[15,24] (a)流体通道的生长演化模型(红线AB代表主干通道,箭头指示流体的流动方向);(b) 微裂隙渗透流随应力的演化(初始渗透流为k0,在εcrit处达到渗流阈值);详细说明见正文
Fig.4 Progressive evolution model of fluid pathways[15,24]
图5 溶解短路过程示意图[63](蓝色区域表示流体沿裂隙流动发生流体-岩石相互作用导致裂隙边缘的溶解,红色箭头表示流体流动方向。详细说明见正文)
Fig.5 Schematic illustration of development of the dissolution short circuit[63]
图6 沿着一个扩张的断裂带AB流体压力随深度和时间的变化[15](流体在t1时刻沿低渗盖层的破裂区向上运移,在t2时刻因膨胀导致的流体压力降低而向下运移,流体流动方向用箭头表示。详细说明见正文)
Fig.6 Variation of fluid pressure with depth over time along a dilatant fault zone AB[15]
图7 有限元模型模拟在断层周围的垂直面内压力驱动的流体流动模式[15,25] (在远离断层的位置保持垂直的静岩流体压力梯度,等值线表示流体压力与静岩压力的差异,浅蓝色区域表示流体压力在静岩压力之下,深蓝色区域表示流体压力在静岩压力之上。红色线段表示断层或剪切带,黑色箭头表示流体运移矢量,其长度与流速相对应。详细说明见正文)
Fig.7 Finite element model simulating pressure-driven fluid-flow pattern in a vertical plane around a fault[15,25]
图8 断层阀-泵吸模式中流体压力演化过程[7,21,121] (a)断层阀模式下张剪性断层中脉体的破裂-愈合过程形成的层压式矿化;(b) 压剪性断层中的扩容空间中由泵吸模式形成的石英脉;(c) 与幕式构造活动导致流体压力演化相关的断层阀和泵吸模式
Fig.8 Evolution of fluid pressure in fault valve-pumping mode[7,21,121]
图9 焦家金矿田地质图和剖面图[13,93] (a) 焦家金矿田主要断裂及矿床分布图;(b) 焦家金矿剖面图;(c) 望儿山金矿剖面图;(d) 村东金矿剖面图
Fig.9 Geologic map and cross-sections of the Jiaojia gold field[13,93]
[1] | 翟裕生, 姚书振, 蔡克勤. 矿床学[M]. 3版. 北京: 地质出版社, 2011: 1-417. |
[2] | ROBB L J. Introduction to Ore-forming Processes[M]. Malden: Blackwell Publication, 2005. |
[3] | GROVES D I. The crustal continuum model for late-Archaean lode-gold deposits of the Yilgarn Block, Western Australia[J]. Mineralium Deposita, 1993, 28(6): 366-374. |
[4] | MEINERT L D, DIPPLE G M, NICOLESCU S. World skarn deposits[M]// One Hundredth Anniversary Volume. Washington: Society of Economic Geologists, 2005. |
[5] | BODNAR R J, LECUMBERRI-SANCHEZ P, MONCADA D, et al. Fluid inclusions in hydrothermal ore deposits[M]// Treatise on Geochemistry. Amsterdam: Elsevier, 2014: 119-142. |
[6] | PHILLIPS G N. Geology and alteration in the golden Mile, Kalgoorlie[J]. Economic Geology, 1986, 81(4): 779-808. |
[7] | COX S F. Chapter 2: The dynamics of permeability enhancement and fluid flow in overpressured, fracture-controlled hydrothermal systems[M]// Applied Structural Geology of Ore-forming Hydrothermal Systems.Society of Economic Geologists, 2020: 25-82. |
[8] | DENG J, WANG Q F, LIU X F, et al. The formation of the Jiaodong gold province[J]. Acta Geologica Sinica, 2022, 96(6): 1801-1820. |
[9] | DENG J, WANG Q F, ZHANG L, et al. Metallogenetic model of Jiaodong-type gold deposits, Eastern China[J]. Science China Earth Sciences, 2023, 66(10): 2287-2310. |
[10] | 杨立强, 邓军, 宋明春, 等. 巨型矿床形成与定位的构造控制: 胶东金矿集区剖析[J]. 大地构造与成矿学, 2019, 43(3): 431-446. |
[11] | DENG J, YANG L Q, GROVES D I, et al. An integrated mineral system model for the gold deposits of the giant Jiaodong province, Eastern China[J]. Earth-Science Reviews, 2020, 208: 103274. |
[130] | DENG J, YANG L Q, SUN Z S, et al. A metallogenic model of gold deposits of the Jiaodong granite-greenstone belt[J]. Acta Geologica Sinica, 2003, 77(4): 537-546. |
[131] | DENG J, WANG Q F. Gold mineralization in China: Metallogenic Provinces, deposit types and tectonic framework[J]. Gondwana Research, 2016, 36: 219-274. |
[132] | 张良. 胶西北金成矿系统热年代学[D]. 北京: 中国地质大学(北京), 2016. |
[133] | DENG J, WANG Q F, LI G J. Tectonic evolution, superimposed orogeny, and composite metallogenic system in China[J]. Gondwana Research, 2017, 50: 216-266. |
[134] | WANG S R, YANG L Q, WANG J G, et al. Geostatistical determination of ore shoot plunge and structural control of the Sizhuang world-class epizonal orogenic gold deposit, Jiaodong Peninsula, China[J]. Minerals, 2019, 9(4): 214. |
[135] | 王偲瑞. 胶西北金矿床构造-流体成矿动力学[D]. 北京: 中国地质大学(北京), 2020. |
[136] | DENG J, WANG C M, BAGAS L, et al. Crustal architecture and metallogenesis in the south-eastern North China Craton[J]. Earth-Science Reviews, 2018, 182: 251-272. |
[137] | MICKLETHWAITE S, COX S F. Progressive fault triggering and fluid flow in aftershock domains: Examples from mineralized Archaean fault systems[J]. Earth and Planetary Science Letters, 2006, 250(1/2): 318-330. |
[138] | 王中亮. 焦家金矿田成矿系统[D]. 北京: 中国地质大学(北京), 2012. |
[139] | TENTHOREY E, COX S F, TODD H F. Evolution of strength recovery and permeability during fluid-rock reaction in experimental fault zones[J]. Earth and Planetary Science Letters, 2003, 206(1/2): 161-172. |
[140] | 王偲瑞, 杨立强, 孔鹏飞. 焦家断裂渗透性结构与金矿床群聚机理: 构造应力转移模拟[J]. 岩石学报, 2016, 32(8): 2494-2508. |
[12] | HRONSKY J M A. Deposit-scale structural controls on orogenic gold deposits: An integrated, physical process-based hypothesis and practical targeting implications[J]. Mineralium Deposita, 2020, 55(2): 197-216. |
[13] | ZHANG L, GROVES D I, YANG L Q, et al. Relative roles of formation and preservation on gold endowment along the Sanshandao gold belt in the Jiaodong gold province, China: Importance for province- to district-scale gold exploration[J]. Mineralium Deposita, 2020, 55(2): 325-344. |
[14] | SIBSON R H. Seismogenic framework for ore deposition[M]//Structural Controls on Ore Genesis. Society of Economic Geologists, 2001, 14: 25-50. |
[15] | COX S F. Coupling between deformation, fluid pressures, and fluid flow in ore-producing hydrothermal systems at depth in the crust[M]// One Hundredth Anniversary Volume. Washington: Society of Economic Geologists, 2005. |
[16] | RHYS D, VALLI F, BURGESS R, et al. Controls of fault and fold geometry on the distribution of gold mineralization on the Carlin trend[J]. New Concepts and Discoveries, 2015, 1: 333-389. |
[17] | BLENKINSOP T G, OLIVER N H S, DIRKS P G H M, et al. Chapter 1: Structural geology applied to the evaluation of hydrothermal gold deposits[M]//Applied Structural Geology of Ore-forming Hydrothermal Systems. Society of Economic Geologists, 2020: 1-23. |
[18] | GOLDFARB R J, BAKER T, DUBÉ B, et al. Distribution, character, and genesis of gold deposits in metamorphic terran[M]// One Hundredth Anniversary Volume 1905-2005. Washington: Society of Economic Geologists, 2005. |
[19] | GROVES D I, SANTOSH M, MÜLLER D, et al. Mineral systems: Their advantages in terms of developing holistic genetic models and for target generation in global mineral exploration[J]. Geosystems and Geoenvironment, 2022, 1(1): 100001. |
[20] | TALE FAZEL E, PAŠAVA J, WILKE F D H, et al. Source of gold and ore-forming processes in the Zarshuran gold deposit, NW Iran: Insights from in situ elemental and sulfur isotopic compositions of pyrite, fluid inclusions, and O-H isotopes[J]. Ore Geology Reviews, 2023, 156: 105382. |
[21] | SIBSON R H, ROBERT F, POULSEN K H. High-angle reverse faults, fluid-pressure cycling, and mesothermal gold-quartz deposits[J]. Geology, 1988, 16(6): 551. |
[22] | FIELDING I O H, JOHNSON S P, ZI J W, et al. Gold metallogeny of the northern Capricorn Orogen: The relationship between crustal architecture, fault reactivation and hydrothermal fluid flow[J]. Ore Geology Reviews, 2020, 122: 103515. |
[23] | YANG L Q, DENG J, GROVES D I, et al. Metallogenic ‘factories’ and resultant highly anomalous mineral endowment on the craton margins of China[J]. Geoscience Frontiers, 2022, 13(2): 101339. |
[24] |
杨立强, 杨伟, 张良, 等. 热液成矿系统构造控矿理论[J]. 地学前缘, 2024, 31(1): 239-266.
DOI |
[25] | COX S F, KNACKSTEDT M A, BRAUN J. Principles of structural control on permeability and fluid flow in hydrothermal systems[M]// Structural Controls on Ore Genesis. Washington: Society of Economic Geologists, 2001: 1-24. |
[26] | HAYNES F M, KESLER S E. Chemical evolution of brines during Mississippi valley-type mineralization: evidence from East Tennessee and Pine Point[J]. Economic Geology, 1987, 82(1): 53-71. |
[27] | STOFFELL B, APPOLD M S, WILKINSON J J, et al. Geochemistry and evolution of Mississippi valley-type mineralizing brines from the tri-state and northern Arkansas districts determined by LA-ICP-MS microanalysis of fluid inclusions[J]. Economic Geology, 2008, 103(7): 1411-1435. |
[28] | KELLEY D S, DELANEY J R. Two-phase separation and fracturing in mid-ocean ridge gabbros at temperatures greater than 700℃[J]. Earth and Planetary Science Letters, 1987, 83(1/2/3/4): 53-66. |
[29] | YANG K H, SCOTT S D. Possible contribution of a metal-rich magmatic fluid to a sea-floor hydrothermal system[J]. Nature, 1996, 383: 420-423. |
[30] | BODNAR R J, REYNOLDS T J, KUEHN C A. Fluid-inclusion systematics in epithermal systems[M]// Geology and Geochemistry of Epithermal Systems. Washington: Society of Economic Geologists, 1985, 2: 73-97. |
[31] | ROEDDER E. Volume 12: fluid inclusions[J]. Reviews in Mineralogy, 1984, 12: 644. |
[32] | SEEDORFF E, DILLES J H, PROFFETT J M, et al. Porphyry deposits: Characteristics and origin of hypogene features[M]// One Hundredth Anniversary Volume. Washington: Society of Economic Geologists, 2005. |
[33] | SINGER D, BERGER V I, MORING B. Porphyry copper deposits of the world: Database and grade and tonnage models[R]. Washington: US Geological Survey, 2008. |
[34] | LAMB J B, CLINE J. Depths of formation of the Meikle and Betze/Post deposits[J]. Society of Economic Geologists Guidebook Series, 1997, 28: 101-108. |
[35] | OSTERBERG M W. Geology and geochemistry of the Chimney Creek gold deposit, Humboldt County, Nevada[D]. Arizona: The University of Arizona, 1990. |
[36] | GROVES D I, GOLDFARB R J, GEBRE-MARIAM M, et al. Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types[J]. Ore Geology Reviews, 1998, 13(1/2/3/4/5): 7-27. |
[37] | 杨立强, 邓军, 王中亮, 等. 胶东中生代金成矿系统[J]. 岩石学报, 2014, 30(9): 2447-2467. |
[38] | YANG L Q, DENG J, GUO C Y, et al. Ore-forming fluid characteristics of the Dayingezhuang gold deposit, Jiaodong gold province, China[J]. Resource Geology, 2009, 59(2): 181-193. |
[39] | GOLDFARB R J, SANTOSH M. The dilemma of the Jiaodong gold deposits: Are they unique?[J]. Geoscience Frontiers, 2014, 5(2): 139-153. |
[40] | SIBSON R H. Structural permeability of fluid-driven fault-fracture meshes[J]. Journal of Structural Geology, 1996, 18(8): 1031-1042. |
[41] | SIBSON R H. Controls on maximum fluid overpressure defining conditions for mesozonal mineralisation[J]. Journal of Structural Geology, 2004, 26(6/7): 1127-1136. |
[42] | BRACE W F. An extension of the Griffith theory of fracture to rocks[J]. Journal of Geophysical Research, 1960, 65(10): 3477-3480. |
[43] | HANCOCK P L. Brittle microtectonics: Principles and practice[J]. Journal of Structural Geology, 1985, 7(3/4): 437-457. |
[44] | SECOR D T. Role of fluid pressure in jointing[J]. American Journal of Science, 1965, 263(8): 633-646. |
[45] | SIBSON R H. Brittle failure mode plots for compressional and extensional tectonic regimes[J]. Journal of Structural Geology, 1998, 20(5): 655-660. |
[46] | 杨林, 王庆飞, 赵世宇, 等. 造山型金矿构造控矿作用[J]. 岩石学报, 2023, 39(2): 277-292. |
[47] | RICE J R, CLEARY M P. Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents[J]. Reviews of Geophysics, 1976, 14(2): 227-241. |
[48] | JAEGER J C, COOK N G W. Fundamentals of Rock Mechanics.[M]. 3rd ed. London: Chapman and Hall, 1979: 1-475. |
[49] | COX S F. Deformational controls on the dynamics of fluid flow in mesothermal gold systems[J]. Geological Society, London, Special Publications, 1999, 155(1): 123-140. |
[50] | COX S F. Injection-driven swarm seismicity and permeability enhancement: Implications for the dynamics of hydrothermal ore systems in high fluid-flux, overpressured faulting regimes—An invited paper[J]. Economic Geology, 2016, 111(3): 559-587. |
[51] | 张云国, 周朝宪. 斑岩铜矿床研究进展[J]. 地球科学进展, 2011, 26(11): 1173-1190. |
[52] | 王庆飞, 邓军, 赵鹤森, 等. 造山型金矿研究进展: 兼论中国造山型金成矿作用[J]. 地球科学, 2019, 44(6): 2155-2186. |
[53] | GROVES D I, SANTOSH M, GOLDFARB R J, et al. Structural geometry of orogenic gold deposits: Implications for exploration of world-class and giant deposits[J]. Geoscience Frontiers, 2018, 9(4): 1163-1177. |
[54] | 陈懋弘, 乐兴文, 李忠阳, 等. 桂西隆林孤立台地卡林型金矿的“梯式” 结构模型及找矿前景[J]. 大地构造与成矿学, 2018, 42(5): 832-845. |
[55] | AGUE J J. Fluid flow in the deep crust[M]// Treatise on Geochemistry. Amsterdam: Elsevier, 2014: 203-247. |
[56] | OLIVER N H S. Review and classification of structural controls on fluid flow during regional metamorphism[J]. Journal of Metamorphic Geology, 1996, 14(4): 477-492. |
[57] | STERN R J. Subduction zones[J]. Reviews of Geophysics, 2002, 40(4): 3-1-3-38. |
[58] | 刘颖员, 张立飞. 俯冲带流体不混溶及其演化[J]. 地质学报, 2022, 96(12): 4101-4130. |
[59] | MATTHÄI S K, BELAYNEH M. Fluid flow partitioning between fractures and a permeable rock matrix[J]. Geophysical Research Letters, 2004, 31(7): 1-5. |
[60] | TAYLOR W L, POLLARD D D, AYDIN A. Fluid flow in discrete joint sets: Field observations and numerical simulations[J]. Journal of Geophysical Research(Solid Earth), 1999, 104(12): 28983-29006. |
[61] | SINGHAL B B S, GUPTA R P. Applied Hydrogeology of Fractured Rocks[M]. Dordrecht: Springer Netherlands, 2010. |
[62] | DULLIEN F A L. Porous Media: Fluid Transport and Pore Structure[M]. 2nd ed. San Diego: Academic Press, 1992. |
[63] | STEINER A P, HICKEY K A. Fluid partitioning between veins/fractures and the host rocks in Carlin-type Au deposits: A significant control on fluid-rock interaction and Au endowment[J]. Mineralium Deposita, 2023, 58(4): 797-823. |
[64] | FORSTER C, SMITH L. Fluid flow in tectonic regimes[M]// Mineralogical Association of Canada. Short Course on “Crustal Fluids” Handbook. Toronto: Mineralogical Association of Canada, 1990: 1-47. |
[65] | PERSON M, RAFFENSPERGER J P, GE S M, et al. Basin-scale hydrogeologic modeling[J]. Reviews of Geophysics, 1996, 34(1): 61-87. |
[66] | OLIVER N H S. Linking of regional and local hydrothermal systems in the mid-crust by shearing and faulting[J]. Tectonophysics, 2001, 335(1/2): 147-161. |
[67] | ORD A, OLIVER N H S. Mechanical controls on fluid flow during regional metamorphism: Some numerical models[J]. Journal of Metamorphic Geology, 1997, 15(3):345-359. |
[68] | MUIR-WOOD R, KING G C P. Hydrological signatures of earthquake strain[J]. Journal of Geophysical Research(Solid Earth), 1993, 98(12):22035-22068. |
[69] | ETHERIDGE M A, WALL V J, COX S F, et al. High fluid pressures during regional metamorphism and deformation: Implications for mass transport and deformation mechanisms[J]. Journal of Geophysical Research(Solid Earth), 1984, 89(6): 4344-4358. |
[70] | BRAUN J, MUNROE S M, COX S F. Transient fluid flow in and around a fault[J]. Geofluids, 2003, 3(2): 81-87. |
[71] | MATTHÄI S K, ROBERTS S G. Transient versus continuous fluid flow in seismically active faults: An investigation by electric analogue and numerical modelling[M]// JAMTVEITB, YARDLEYBWD. Fluid Flow and Transport in Rocks. Dordrecht: Springer, 1997: 263-295. |
[72] | PHILLIPS O M. Flow and Reactions in Permeable Rocks[M]. Cambridge: Cambridge University Press, 1991. |
[73] | TURCOTTE D L, SCHUBERT G. Geodynamics[M]. 2nd ed. Cambridge: Cambridge University Press, 2002. |
[74] | PHILLIPS G N, GROVES D I, MARTYN J E. An epigenetic origin for Archean banded iron-formation-hosted gold deposits[J]. Economic Geology, 1984, 79(1): 162-171. |
[75] | CAMPBELL MCCUAIG T, KERRICH R. P-T-T-Deformation-Fluid characteristics of lode gold deposits: Evidence from alteration systematics[J]. Ore Geology Reviews, 1998, 12(6): 381-453. |
[76] | GOLDFARB R J, GROVES D I. Orogenic gold: Common or evolving fluid and metal sources through time[J]. Lithos, 2015, 233: 2-26. |
[77] | REED M H. Hydrothermal alteration and its relationship to ore fluid composition[J]. Geochemistry of Hydrothermal Ore Deposits, 1997: 303-366. |
[78] | GAO S, XU H, LI S R, et al. Hydrothermal alteration and ore-forming fluids associated with gold-tellurium mineralization in the Dongping gold deposit, China[J]. Ore Geology Reviews, 2017, 80: 166-184. |
[79] | 王贵玲, 张薇, 梁继运, 等. 中国地热资源潜力评价[J]. 地球学报, 2017, 38(4): 449-450, 134, 451-459. |
[80] | 华仁民. 成矿过程中由流体混合而导致金属沉淀的研究[J]. 地球科学进展, 1994, 9(4): 15-22. |
[81] | 张招崇, 王怀洪, 谢秋红, 等. “禹城式”矽卡岩型富铁矿的形成机制[J]. 现代地质, 2024, 38(1): 1-12. |
[82] | 李丽荣, 许德如, 黄泌怡, 等. 海南高通岭石英脉型钼矿床成矿流体来源与成矿机制研究[J]. 大地构造与成矿学, 2023, 47(4): 778-790. |
[83] | 曾键年, 范永香. 流体混合作用导致金沉淀机理的实验研究[J]. 地球科学, 2002, 27(1): 41-45. |
[84] | 张德会. 成矿流体中金属沉淀机制研究综述[J]. 地质科技情报, 1997, 16(3): 53-58. |
[85] | 林舸, ZHAO C B, 王岳军, 等. 含矿流体混合反应与成矿作用的动力平衡模拟研究[J]. 岩石学报, 2003, 19(2): 275-282. |
[86] | 卢焕章. 高盐度、高温和高成矿金属的岩浆成矿流体: 以格拉斯伯格Cu-Au矿为例[J]. 岩石学报, 2000, 16(4): 465-472. |
[87] | 卢焕章, 王中刚, 李院生. 岩浆-流体过渡和阿尔泰三号伟晶岩脉之成因[J]. 矿物学报, 1996, 16(1): 1-7. |
[88] | GUHA J, LU H Z, DUBE B, et al. Fluid characteristics of vein and altered wall rock in Archean mesothermal gold deposits[J]. Economic Geology, 1991, 86(3): 667-684. |
[89] | YANG L Q, DENG J, GUO R P, et al. World-class Xincheng gold deposit: An example from the giant Jiaodong gold province[J]. Geoscience Frontiers, 2016, 7(3): 419-430. |
[90] | YANG L Q, DENG J, GUO L N, et al. Origin and evolution of ore fluid, and gold-deposition processes at the giant Taishang gold deposit, Jiaodong Peninsula, Eastern China[J]. Ore Geology Reviews, 2016, 72: 585-602. |
[91] | SAI S X, DENG J, QIU K F, et al. Textures of auriferous quartz-sulfide veins and 40Ar/39Ar geochronology of the Rushan gold deposit: Implications for processes of ore-fluid infiltration in the eastern Jiaodong gold province, China[J]. Ore Geology Reviews, 2020, 117: 103254. |
[92] | WEATHERLEY D K, HENLEY R W. Flash vaporization during earthquakes evidenced by gold deposits[J]. Nature Geoscience, 2013, 6: 294-298. |
[93] | YANG L Q, DENG J, WANG Z L, et al. Relationships between gold and pyrite at the Xincheng gold deposit, Jiaodong peninsula, China: Implications for gold source and deposition in a brittle epizonal environment[J]. Economic Geology, 2016, 111(1): 105-126. |
[94] | YANG L Q, DENG J, WANG Z L, et al. Thermochronologic constraints on evolution of the Linglong Metamorphic Core Complex and implications for gold mineralization: A case study from the Xiadian gold deposit, Jiaodong Peninsula, Eastern China[J]. Ore Geology Reviews, 2016, 72: 165-178. |
[95] | YANG L Q, GUO L N, WANG Z L, et al. Timing and mechanism of gold mineralization at the Wang’ershan gold deposit, Jiaodong Peninsula, Eastern China[J]. Ore Geology Reviews, 2017, 88: 491-510. |
[96] | 赛盛勋, 邱昆峰. 胶东乳山金矿床成矿过程: 周期性压力波动诱发的流体不混溶[J]. 岩石学报, 2020, 36(5): 1547-1566. |
[97] | 池国祥, 卢焕章. 流体相分离的深度(压力)-温度场特征及其对热液矿床定位的意义[J]. 矿物学报, 1991, 11(4): 355-362. |
[98] | 卢焕章, 范宏瑞, 倪培, 等. 流体包裹体[M]. 北京: 科学出版社, 2004: 1-491. |
[99] | 常铭, 刘家军, 杨永春, 等. 甘肃省鹿儿坝金矿流体包裹体研究: 对流体演化和成矿机制的探讨[J]. 现代地质, 2021, 35(6): 1576. |
[100] | PAN J Y, NI P, WANG R C. Comparison of fluid processes in coexisting wolframite and quartz from a giant vein-type tungsten deposit, South China: Insights from detailed petrography and LA-ICP-MS analysis of fluid inclusions[J]. American Mineralogist, 2019, 104(8): 1092-1116. |
[101] | 王国光, 倪培, 潘君屹. 花岗质岩石相关成矿系统的流体作用[J]. 矿物岩石地球化学通报, 2020, 39(3): 463-471, 441. |
[102] | 严子清, 石文杰, 张鹏涛, 等. 胶东大尹格庄金矿成矿流体时空演化及矿床成因:来自流体包裹体、成矿元素和H-O-S-Pb同位素证据[J]. 地质科技通报, 2024, 43(2): 156-174. |
[103] | 张艳, 韩润生, 胡体才, 等. 构造-流体-成矿耦合机制: 以会泽超大型富锗铅锌矿床为例[J]. 大地构造与成矿学, 2023, 47(5): 969-983. |
[104] | LECUMBERRI-SANCHEZ P, VIEIRA R, HEINRICH C A, et al. Fluid-rock interaction is decisive for the formation of tungsten deposits[J]. Geology, 2017, 45(7): 579-582. |
[105] | LEGROS H, RICHARD A, TARANTOLA A, et al. Multiple fluids involved in granite-related W-Sn deposits from the world-class Jiangxi Province (China)[J]. Chemical Geology, 2019, 508: 92-115. |
[106] | WILLIAMS-JONES A, BOWELL R, MIGDISOV A A. Gold in solution[J]. Elements, 2009, 5: 281-287. |
[107] | FYFE W, KERRICH R. Fluids and thrusting[J]. Chemical Geology, 1985, 49: 353-362. |
[108] | SPENCER J E, WELTY J W. Possible controls of base-and precious-metal mineralization associated with Tertiary detachment faults in the lower Colorado River trough, Arizona and California[J]. Geology, 1986, 14(3): 195. |
[109] | ROBERT F, BOULLIER A M, FIRDAOUS K. Gold-quartz veins in metamorphic terranes and their bearing on the role of fluids in faulting[J]. Journal of Geophysical Research(Solid Earth), 1995, 100(7): 12861-12879. |
[110] | CAMERON E M. Derivation of gold by oxidative metamorphism of a deep ductile shear zone: Part 1.Conceptual model[J]. Journal of Geochemical Exploration, 1989, 31(2): 135-147. |
[111] | HODGSON C J. The structure of shear-related, vein-type gold deposits: A review[J]. Ore Geology Reviews, 1989, 4(3): 231-273. |
[112] | BONNEMAISON M, MARCOUX E. Auriferous mineralization in some shear-zones: A three-stage model of metallogenesis[J]. Mineralium Deposita, 1990, 25(2): 96-104. |
[113] | COX S F, WALL V J, ETHERIDGE M A, et al. Deformational and metamorphic processes in the formation of mesothermal vein-hosted gold deposits—Examples from the Lachlan Fold Belt in central Victoria, Australia[J]. Ore Geology Reviews, 1991, 6(5): 391-423. |
[114] | BOWERS T S. The deposition of gold and other metals: Pressure-induced fluid immiscibility and associated stable isotope signatures[J]. Geochimica et Cosmochimica Acta, 1991, 55(9): 2417-2434. |
[115] | CLINE J S, BODNAR R J, RIMSTIDT J D. Numerical simulation of fluid flow and silica transport and deposition in boiling hydrothermal solutions: Application to epithermal gold deposits[J]. Journal of Geophysical Research(Solid Earth), 1992, 97(6): 9085-9103. |
[116] | BOULLIER A M, ROBERT F. Palaeoseismic events recorded in Archaean gold-quartz vein networks, Vald’Or, Abitibi, Quebec, Canada[J]. Journal of Structural Geology, 1992, 14(2):161-179. |
[117] | COX S F. Faulting processes at high fluid pressures: An example of fault valve behavior from the Wattle Gully Fault, Victoria, Australia[J]. Journal of Geophysical Research(Solid Earth), 1995, 100(7): 12841-12859. |
[118] | ROBERT F, POULSEN K H. Vein formation and deformation in greenstone gold deposits[M]// Structural Controls on Ore Genesis. Washington: Society of Economic Geologists, 2001: 1-45. |
[119] | FALEIROS F M, DA CRUZ CAMPANHA G A, DA SILVEIRA BELLO R M, et al. Fault-valve action and vein development during strike-slip faulting: An example from the Ribeira Shear Zone, Southeastern Brazil[J]. Tectonophysics, 2007, 438(1/2/3/4): 1-32. |
[120] | PETERSON E C, MAVROGENES J A. Linking high-grade gold mineralization to earthquake-induced fault-valve processes in the Porgera gold deposit, Papua New Guinea[J]. Geology, 2014, 42(5): 383-386. |
[121] | NGUYEN P T, HARRIS L B, POWELL C M, et al. Fault-valve behaviour in optimally oriented shear zones: An example at the Revenge gold mine, Kambalda, Western Australia[J]. Journal of Structural Geology, 1998, 20(12): 1625-1640. |
[141] | 王偲瑞, 杨立强, 成浩, 等. 基底构造对矿床定位的控制机制: 焦家金矿带构造应力转移模拟[J]. 岩石学报, 2020, 36(5): 1529-1546. |
[142] | BLENKINSOP T G. Orebody geometry in lode gold deposits from Zimbabwe: Implications for fluid flow, deformation and mineralization[J]. Journal of Structural Geology, 2004, 26(6/7): 1293-1301. |
[143] | CAINE J S, EVANS J P, FORSTER C B. Fault zone architecture and permeability structure[J]. Geology, 1996, 24(11):1025. |
[144] | EVANS J P, FORSTER C B, GODDARD J V. Permeability of fault-related rocks, and implications for hydraulic structure of fault zones[J]. Journal of Structural Geology, 1997, 19(11): 1393-1404. |
[145] | PÁEZ G N, RUIZ R, GUIDO D M, et al. Structurally controlled fluid flow: High-grade silver ore-shoots at Martha epithermal mine, Deseado Massif, Argentina[J]. Journal of Structural Geology, 2011, 33(5): 985-999. |
[122] | SIBSON R H. Earthquake rupturing as a mineralizing agent in hydrothermal systems[J]. Geology, 1987, 15(8): 701. |
[123] | SANCHEZ-ALFARO P, REICH M, DRIESNER T, et al. The optimal windows for seismically-enhanced gold precipitation in the epithermal environment[J]. Ore Geology Reviews, 2016, 79: 463-473. |
[124] | 杨立强, 邓军, 张良, 等. 胶东型金矿[J]. 岩石学报, 2024, 40(6): 1691-1711. |
[125] | DENG J, YANG L Q, LI R H, et al. Regional structural control on the distribution of world-class gold deposits: An overview from the Giant Jiaodong Gold Province, China[J]. Geological Journal, 2019, 54(1): 378-391. |
[126] | 舒斌, 郭涛, 吕古贤, 等. 构造应力对焦家金矿床的成矿控制[J]. 现代地质, 1999, 13(4): 425-431. |
[127] | 杨立强, 张中杰, 邓军. 深浅构造耦合成矿效应: 以胶东招掖金矿带为例[J]. 地学前缘, 2004, 11(1): 56. |
[128] | 邓军, 陈玉民, 刘钦, 等. 胶东三山岛断裂带金成矿系统与资源勘查[M]. 北京: 地质出版社, 2010: 1-371. |
[129] | 宋明春, 崔书学, 伊丕厚, 等. 胶西北金矿集中区深部大型-超大型金矿找矿与成矿模式[M]. 北京: 地质出版社, 2010: 1-346. |
[1] | 刘基, 杨可, 张晓星, 寇少磊, 杨伟, 王占彬, 田渊. 后龙门山造山带辛家咀金矿床地质特征及成因探讨[J]. 现代地质, 2022, 36(01): 378-388. |
[2] | 钱建平, 谢彪武, 陈宏毅, 白艳萍, 吴小雷. 广西金山金银矿区成矿构造分析和构造地球化学找矿[J]. 现代地质, 2011, 25(3): 531-544. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||