现代地质 ›› 2023, Vol. 37 ›› Issue (04): 845-857.DOI: 10.19657/j.geoscience.1000-8527.2022.023
收稿日期:
2021-07-16
修回日期:
2022-06-28
出版日期:
2023-08-10
发布日期:
2023-09-02
通讯作者:
郑德顺,男,博士,教授,1977年出生,地质资源与地质工程专业,主要从事沉积学与盆地分析的教学和研究工作。Email:作者简介:
郑德顺,男,博士,教授,1977年出生,地质资源与地质工程专业,主要从事沉积学与盆地分析的教学和研究工作。Email:zhengdeshun@126.com。基金资助:
Received:
2021-07-16
Revised:
2022-06-28
Online:
2023-08-10
Published:
2023-09-02
摘要:
叠层石记录早期环境、蓝细菌和微生物群落的生命活动,其生长形态受到沉积环境的影响,对古环境恢复具有重要意义。豫西中元古界官道口群龙家园组二段叠层石发育形态类型丰富,分布集中,是叠层石发育的典型地区,其分布与全球性事件、海洋地球化学环境和微生物岩的发展密切相关,但尚未见对其详细研究。基于此,本文选取龙家园组二段叠层石发育剖面为研究对象,对叠层石开展野外宏观形态和室内微观特征分析,据此反演沉积环境演化过程和建立沉积模式,并与其他地区同时代叠层石进行对比研究。结果表明龙家园组二段叠层石宏观形态可分为水平纹层状、波纹状、丘状、锥状和柱状,显微表现出明暗纹层,局部含少量鲕粒、球粒、碎屑物质等。鉴于水平层状叠层石发育在潮间带,波纹状、丘状叠层石发育在潮间高能带及潮下低能带,锥状、柱状叠层石则发育在潮下带,认为龙家园组二段叠层石形成于潮坪环境,经历了潮间带-潮下带-潮间带的环境演化过程。本研究有助于揭示华北南缘中元古代早期微生物岩发育环境。另外,将本研究区与华北北缘蓟县地区同时期微生物岩沉积环境进行对比分析,发现该时期微生物岩分布广泛,叠层石结构与环境演变之间存在密切关系,为全面探索该时期华北克拉通周缘海洋环境、大气环境与微生物岩发育之间的关系提供新的证据。
中图分类号:
李倩倩, 郑德顺. 豫西中元古界龙家园组二段叠层石特征及其沉积环境分析[J]. 现代地质, 2023, 37(04): 845-857.
LI Qianqian, ZHENG Deshun. Characteristics of Stromatolites and Its Significance in Depositional Environment Reconstruction of the Mesoproterozoic Longjiayuan Formation (2nd Member), Western Henan[J]. Geoscience, 2023, 37(04): 845-857.
图1 华北南缘前寒武纪地质简图及龙家园组地层分布概况 (a)华北南缘前寒武纪主要构造格架图(据吕奇奇等[30]修改);(b)华北南缘前寒武纪地质简图(据吕奇奇等[30]修改);(c)豫西地区龙家园组剖面位置图;(d)豫西官道口群地层柱状图
Fig.1 Precambrian geological map of the southern margin of North China and stratigraphic distribution of Longjiayuan Formation
图3 豫西地区龙家园组二段叠层石类型及宏观特征 (a)水平层状叠层石;(b)波纹状叠层石;(c)丘状叠层石;(d)丘状叠层石,中间水平纹层过渡;(e)锥状叠层石;(f)柱状叠层石
Fig.3 Types and macroscopic characteristics of stromatolites from the Longjiayuan Formation (2nd member) in western Henan
图4 豫西地区龙家园组二段叠层石显微镜下特征 (a)同心圈层状原始核物质,单偏光,样品号83;(b)密集分布的微球体、碎屑颗粒,正交偏光,样品号83;(c)黄色箭头指向为空心球体颗粒,正交偏光,样品号83;(d)黄色箭头指向亮色纹层,红色箭头指向暗色纹层,正交偏光,样品号82;(e)叠层石藻丝纹层弯曲分布,正交偏光,样品号69;(f)黄色箭头指向细菌团状球体,单偏光,样品号57;(g)放射状鲕粒,单偏光,样品号66;(h)黄色箭头指向放射状鲕粒,红色箭头指向不规则状鲕粒,边缘分布许多颗粒碎屑,单偏光,样品号66
Fig.4 Microscopic characteristics of stromatolites from the Longjiayuan Formation (2nd member) in western Henan
图7 豫西地区龙家园组二段叠层石沉积模式(据金廷福[48]修改) (a)锥状叠层石,硅质团块;(b)核形石,椭圆形结核状构造;(c)厚层丘状叠层石;(d)不规则水平纹层叠层石,硅质条带
Fig.7 Sedimentary model of stromatolites in the Longjiayuan Formation (2nd member) in western Henan (modified after Jin[48])
[1] | WALTER M R. Stromatolites, Development Sedimentology[M]. Amsterdam: Elsevier,1976. |
[2] | 曹瑞骥, 袁训来. 中国叠层石研究进展[J]. 古生物学报, 2009, 48(3): 314-321. |
[3] | 常玉光. 豫西寒武纪叠层石特征、成因及演化研究[D]. 焦作: 河南理工大学, 2013. |
[4] |
肖传桃, 周思宇, 许昕玥, 等. 湖北松滋地区下奥陶统微生物岩[J]. 地学前缘, 2018, 25(5): 286-297.
DOI |
[5] | HOLLAND H D. The oxygenation of the atmosphere and oceans[J]. Philosophical Transactions of the Royal Society of London(Series B, Biological Sciences), 2006, 361: 903-915. |
[6] |
JAVAUX E J, LEPOT K. The Paleoproterozoic fossil record: Implications for the evolution of the biosphere during Earth’s middle-age[J]. Earth-Science Reviews, 2018, 176: 68-86.
DOI URL |
[7] |
SHI M, FENG Q L, KHAN M Z, et al. An eukaryote-bearing microbiota from the Early Mesoproterozoic Gaoyuzhuang Formation, Tianjin, China and its significance[J]. Precambrian Research, 2017, 303: 709-726.
DOI URL |
[8] |
ZHANG K, ZHU X K, WOOD R A, et al. Oxygenation of the Mesoproterozoic Ocean and the evolution of complex eukaryotes[J]. Nature Geoscience, 2018, 11(5): 345-350.
DOI |
[9] |
CHOUDHURI A, BANERJEE S, SARKAR S. A review of biotic signatures within the Precambrian Vindhyan Supergroup: Implications on evolution of microbial and metazoan life on Earth[J]. Journal of Mineralogical and Petrological Sciences, 2020, 115(2): 162-174.
DOI URL |
[10] |
JAHNERT R J, COLLINS L B. Characteristics,distribution and morphogenesis of subtidal microbial systems in Shark Bay, Australia[J]. Marine Geology, 2012, 303/306: 115-136.
DOI URL |
[11] |
TANG D J, SHI X Y, WANG X Q, et al. Extremely low oxygen concentration in mid-Proterozoic shallow seawaters[J]. Precambrian Research, 2016, 276: 145-157.
DOI URL |
[12] | 邢智峰, 刘云龙, 付玉鑫, 等. 豫西鲁山中元古界云梦山组微生物成因沉积构造发育特征及古环境意义[J]. 沉积学报, 2020, 38(1): 46-54. |
[13] |
史晓颖, 李一良, 曹长群, 等. 生命起源、早期演化阶段与海洋环境演变[J]. 地学前缘, 2016, 23(6): 128-139.
DOI |
[14] | 王伟, 卢桂梅, 黄思访, 等. 扬子陆块古—中元古代地质演化与Columbia超大陆重建[J]. 矿物岩石地球化学通报, 2019, 38(1): 30-52, 203. |
[15] | 孙龙飞, 汤冬杰, 周利敏, 等. 华北地台中元古界雾迷山组浅海脉冲式增氧[J]. 古地理学报, 2020, 22(6):1181-1196. |
[16] | 旷红伟, 柳永清, 范正秀. 地球早期生物-环境演化记录:前寒武纪叠层石[M]. 北京: 地质出版社, 2018. |
[17] | 赵贵生. 华北中元古代雾迷山组微生物岩及其古海洋环境意义[D]. 北京: 中国地质大学(北京), 2011. |
[18] | 汤冬杰. 华北地台中元古代微生物岩:微组构、有机矿化过程及其古海洋环境研究[D]. 北京: 中国地质大学(北京), 2013. |
[19] | 张恒, 高林志, 周洪瑞, 等. 华北克拉通南缘官道口群和洛峪群的年代学研究新进展:来自凝灰岩SHRIMP锆石U-Pb年龄的新证据[J]. 岩石学报, 2019, 35(8): 2470-2486. |
[20] |
ZHAO G C, SUN M, WILDE S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited[J]. Precambrian Research, 2005, 136(22): 177-202.
DOI URL |
[21] | 翟明国, 彭澎. 华北克拉通古元古代构造事件[J]. 岩石学报, 2007, 23(11): 2665-2682. |
[22] | 胡国辉, 赵太平, 周艳艳, 等. 华北克拉通南缘中—新元古代沉积地层对比研究及其地质意义[J]. 岩石学报, 2013, 29(7): 2491-2507. |
[23] | 翟明国, 胡波, 彭澎, 等. 华北中—新元古代的岩浆作用与多期裂谷事件[J]. 地学前缘, 2014, 21(1): 100-119. |
[24] | 汪校锋. 华北南缘中—新元古代地层年代学研究及其地质意义[D]. 武汉: 中国地质大学(武汉), 2015: 1-88. |
[25] | 翟明国. 华北克拉通构造演化[J]. 地质力学学报, 2019, 25(5): 722-745. |
[26] | 左鹏飞, 李雨, 刘思聪, 等. 华北克拉通南缘中—新元古代沉积演化: 以豫西地区黄连垛组和董家组为例[J]. 岩石学报, 2019, 35(8): 2545-2572. |
[27] |
LI Z H, XI S L, HU J M, et al. New insights about the Mesoproterozoic sedimentary framework of North China Craton[J]. Geological Journal, 2019, 54(1): 409-425.
DOI URL |
[28] | 席文祥, 裴放. 河南省地质矿产厅[M]. 武汉: 中国地质大学出版社,1997. |
[29] | 河南省地质矿产局. 河南省区域地质志[M]. 北京: 地质出版社, 1989. |
[30] | 吕奇奇, 罗顺社, 官玉龙, 等. 华北克拉通南缘中:新元古界沉积充填特征及演化[J]. 沉积学报, 2020, 38(6): 1123-1139. |
[31] | 祝禧艳, 王世炎, 苏文博, 等. 华北克拉通南缘白术沟组归属中元古界“待建系”:来自凝灰岩LA-MC-ICPMS锆石U-Pb年龄的约束[J]. 中国科学(地球科学), 2020, 50(11): 1569-1584. |
[32] | 董云超. 太行山中段寒武纪叠层石形态特征及环境意义[D]. 石家庄: 河北地质大学, 2018. |
[33] | 唐新宇. 豫西渑池地区寒武系第二、三统馒头组中的叠层石及其意义[D]. 焦作: 河南理工大学, 2014. |
[34] | 杨孝群, 李忠. 微生物碳酸盐岩沉积学研究进展:基于第33届国际沉积学会议的综述[J]. 沉积学报, 2018, 36(4): 639-650. |
[35] | MARTIN L, ARENAS A, ZARZA A, et al. Preliminary interpretation of the stable-isotope composition in lacustrine stromatolites of the Sierra de Alcubierre(Miocene, Ebro Basin, Spain)[J]. Geogaceta, 2017, 61: 171-174. |
[36] |
LUO M, CHEN Z Q, SHI G R, et al. Upper Lower Triassic stromatolite from Anhui, South China: Geobiologic features and paleoenvironmental implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 452: 40-54.
DOI URL |
[37] | 梅冥相, 高金汉. 光合作用的起源: 一个引人入胜的重大科学命题[J]. 古地理学报, 2015, 17(5): 577-592. |
[38] |
LEE J H, CHEN JT, CHOUGH S K. Paleoenvironmental implications of an extensive maceriate microbialite bed in the Furongian Chaomidian Formation, Shandong Province, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 297(3/4): 621-632.
DOI URL |
[39] | 梅冥相, 孟庆芬. 现代叠层石的多样化构成: 认识古代叠层石形成的关键和窗口[J]. 古地理学报, 2016, 18(2): 127-146. |
[40] | KHALID L. 华北地台寒武系由蓝细菌主导的微生物席形成的微生物碳酸盐岩地层和沉积[D]. 北京: 中国地质大学(北京), 2019. |
[41] |
BOSAK T, KNOLL A H, PETROFF A P. The meaning of stro-matolites[J]. Annual Review of Earth and Planetary Sciences, 2013, 41: 21-44.
DOI URL |
[42] | 梅冥相, 高金汉. 叠层石形成的光合作用信号: 来自于锥状叠层石形态学研究的精妙启示[J]. 现代地质, 2015, 29(6): 1328-1337. |
[43] |
ANTOSHKINA A. Ooid-stromatolite association as a precursor of bioevents (Silurian, Timan-northern Ural Region)[J]. Palaeoworld, 2015, 24(1/2): 198-206.
DOI URL |
[44] | 黄秀, 周洪瑞, 王自强, 等. 豫西地区中元古代蓟县纪沉积相[J]. 古地理学报, 2008, 10(6): 589-598. |
[45] | 齐永安, 李小燕, 陈白兵, 等. 豫西宜阳地区寒武系第三统馒头组二段鲕粒滩-微生物丘组合及其成因分析[J]. 河南理工大学学报(自然科学版), 2019, 38(2): 34-41. |
[46] | 白莹, 罗平, 刘伟, 等. 北京西郊丁家滩剖面寒武系第二统昌平组核形石特征及成因[J]. 现代地质, 2019, 33(3):587-597. |
[47] | 胡安平, 沈安江, 郑剑锋, 等. 微生物碳酸盐岩分类、沉积环境与沉积模式[J]. 海相油气地质, 2021, 26(1): 1-15. |
[48] | 金廷福. 天津蓟县雾迷山组微生物碳酸盐岩沉积与储层特征[D]. 成都: 成都理工大学, 2014. |
[49] | 李怀坤, 苏文博, 周红英, 等. 中—新元古界标准剖面蓟县系首获高精度年龄制约:蓟县剖面雾迷山组和铁岭组斑脱岩锆石SHRIMP U-Pb同位素定年研究[J]. 岩石学报, 2014, 30(10): 2999-3012. |
[50] | 田辉, 李怀坤, 张健, 等. 天津蓟州东水厂中元古代高于庄组凝灰岩锆石SHRIMP U-Pb年龄:对中元古代生物-环境事件的制约[J]. 地质调查与研究, 2020, 43(2): 153-160. |
[51] | 梅冥相. 北京延庆千沟中元古代高于庄组第三段: 一个典型的前寒武纪非叠层石碳酸盐岩沉积序列[J]. 沉积学报, 2008, 26(4): 565-574. |
[52] | 梅冥相. 宏观藻类化石及其相关的“前寒武纪谜”: 对天津蓟县剖面中元古代早期高于庄组第三段中一些现象的思考[J]. 现代地质, 2009, 23(4): 616-624. |
[53] | 旷红伟, 李家华, 彭楠, 等. 燕山地区1.6-1.0Ga时期碳酸盐岩碳、氧同位素组成、演化及其地质意义[J]. 地学前缘, 2009, 16(5): 118-133. |
[54] | 郭荣涛. 燕山西段雾迷山组层序地层格架及古地理演化[J]. 吉林大学学报(地球科学版), 2014, 44(2): 446-459. |
[55] | 汤冬杰, 史晓颖, 裴云鹏, 等. 华北中元古代陆表海氧化还原条件[J]. 古地理学报, 2011, 13(5): 563-580. |
[56] |
CHEN X Y, LI M H, SPERLING E A, et al. Mesoproterozoic paleo-redox changes during 1500—1400 Ma in the Yanshan Basin, North China[J]. Precambrian Research, 2020, 347: 105835.
DOI URL |
[57] | 吴孟亭, 方浩, 孙龙飞, 等. 华北中元古代浅海碳酸盐沉淀方式变化: 海水氧化还原条件波动的响应?[J]. 古地理学报, 2021, 23(4): 703-722. |
[58] |
ZHAO C X, SHI M, FENG Q L, et al. New study of microbial mats from the Mesoproterozoic Jixian Group, North China: Evidence for photosynthesis and oxygen release[J]. Precambrian Research, 2020, 344:105734.
DOI URL |
[59] |
ZHU S X, ZHU M Y, KNOLL A H, et al. Decimetre-scale multicellular eukaryotes from the 1.56-billion-year-old Gaoyuzhuang Formation in North China[J]. Nature Communications, 2016, 7: 11500.
DOI PMID |
[60] | 张凤廉, 王华建, 张水昌, 等. 元古宙真核藻类演化及环境控制因素[J]. 地质学报, 2021, 95(5): 1334-1355. |
[61] |
BARTLEY J K, KAH L C, MCWILLIAMS J L, et al. Carbon isotope chemostratigraphy of the Middle Riphean type section(Avzyan Formation, Southern Urals, Russia): Signal recovery in a fold-and-thrust belt[J]. Chemical Geology, 2007, 237(1/2): 211-232.
DOI URL |
[62] |
KAH L C, BARTLEY J K, TEAL D A. Chemostratigraphy of the Late Mesoproterozoic Atar Group,Taoudeni Basin, Mauritania: Muted isotopic variability, facies correlation, and global isotopic trends[J]. Precambrian Research, 2012, 200/203: 82-103.
DOI URL |
[63] |
SHIRAISHI F. Chemical conditions favoring photosynthesis-induced CaCO3 precipitation and implications for microbial carbonate formation in the ancient ocean[J]. Geochimica et Cosmochimica Acta, 2012, 77: 157-174.
DOI URL |
[64] |
FEDORCHUK N D, DORNBOS S Q, CORSETTI F A, et al. Early non-marine life: Evaluating the biogenicity of mesoproterozoic fluvial-lacustrine stromatolites[J]. Precambrian Research, 2016, 275: 105-118.
DOI URL |
[65] |
GROTZINGER J P, KNOLL A H. Stromatolites in Precambrian carbonates: Evolutionary mileposts or environmental dipsticks?[J]. Annual Review of Earth and Planetary Sciences, 1999, 27: 313-358.
PMID |
[66] |
CAIRD R A, PUFAHL P K, HIATT E E, et al. Ediacaran stromatolites and intertidal phosphorite of the Salitre Formation, Brazil: Phosphogenesis during the Neoproterozoic Oxygenation Event[J]. Sedimentary Geology, 2017, 350: 55-71.
DOI URL |
[1] | 姚雅琴, 杨纪磊, 赵都菁, 齐玉民, 魏文艳, 曹洁, 杨娇娇, 李国良. 渤海湾盆地辽西凹陷古近纪微体化石组合特征及地质意义[J]. 现代地质, 2024, 38(01): 230-239. |
[2] | 倪敏婕, 祝贺暄, 何文军, 杨森, 邹阳, 张元元. 准噶尔盆地玛湖凹陷风城组沉积环境与沉积模式分析[J]. 现代地质, 2023, 37(05): 1194-1207. |
[3] | 师良, 范柏江, 王霞, 李亚婷, 黄飞飞, 戴欣洋. 鄂尔多斯盆地长9页岩烃源岩的元素组成及其古沉积环境[J]. 现代地质, 2023, 37(05): 1254-1263. |
[4] | 陈曦, 肖玲, 王明瑜, 郝晨曦, 王峰, 唐红南. 鄂尔多斯盆地西南缘长8油层组物源与古沉积环境恢复:来自岩石地球化学的证据[J]. 现代地质, 2023, 37(05): 1264-1281. |
[5] | 李志鹏, 余麒麟, 昝灵, 余文端, 张枝焕. 苏北盆地溱潼凹陷阜二段不同岩性烃源岩的地球化学特征及生烃潜力对比[J]. 现代地质, 2023, 37(05): 1345-1357. |
[6] | 贾冰玲, 张碧云, 汤彬, 郑德顺. 豫西寒武系辛集组含磷层沉积环境及磷酸盐富集机制[J]. 现代地质, 2023, 37(04): 858-869. |
[7] | 苟富刚, 龚绪龙, 杨露梅, 张岩, 刘明遥. 长江河口百米以浅土体含盐特征及其沉积环境演化[J]. 现代地质, 2022, 36(02): 462-473. |
[8] | 陈耀飞, 侯恩刚, 高金汉, 肖红吉, 王根厚. 西藏荣玛地区上三叠统日干配错组沉积环境及其构造意义[J]. 现代地质, 2022, 36(01): 48-57. |
[9] | 柯昌炜, 李素梅, 张洪安, 徐田武, 张云献, 曾凡纲, 张树海, 张韩静. 东濮凹陷盐湖相烃源岩有机硫同位素分布特征及其地球化学意义[J]. 现代地质, 2021, 35(02): 301-314. |
[10] | 蔺东林, 唐书恒, 郗兆栋, 张松航, 周淑林. 湘西北ZY3井五峰组页岩地球化学特征与有机质富集控制因素[J]. 现代地质, 2020, 34(06): 1144-1152. |
[11] | 李阅薇, 王成善, 李国彪, 徐星, 马文恩, 李兴鹏, 吕昶良, 吕贝贝, 张文苑, 韩丹丹. 广西龙江泥盆纪苔藓虫的发现及其地质意义[J]. 现代地质, 2020, 34(04): 745-756. |
[12] | 胡向阳, 梁玉楠, 吴丰, 廖明光, 张恒荣, 杨冬, 杨毅, 代槿, 钟华明, 吴一雄. 珠江口盆地文昌X-2油田新近系珠江组低阻油层成因机理[J]. 现代地质, 2020, 34(02): 390-398. |
[13] | 陈瑞琛, 陈剑, 崔之久. 混杂堆积石英砂表面特征研究[J]. 现代地质, 2019, 33(05): 1128-1136. |
[14] | 马奂奂, 刘池洋, 张龙, 张东东, 王文青, 赵岩, 高明, 全晓园. 鄂尔多斯盆地延长组长7段沉积岩元素地球化学特征及沉积环境分析[J]. 现代地质, 2019, 33(04): 872-882. |
[15] | 席胜利, 刚文哲, 杨清宇, 陈果, 刘亚洲, 王宁, 刘兰. 鄂尔多斯盆地盐池-定边地区长7烃源岩有机地球化学特征及沉积环境研究[J]. 现代地质, 2019, 33(04): 890-901. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||