Geoscience ›› 2024, Vol. 38 ›› Issue (06): 1532-1544.DOI: 10.19657/j.geoscience.1000-8527.2023.091
• Energy Geology • Previous Articles Next Articles
BAO Qinglin1,2,3(), DENG Ende2(
), MA Zijie4, JIANG Bingren4
Online:
2024-12-10
Published:
2024-12-09
Contact:
DENG Ende
CLC Number:
BAO Qinglin, DENG Ende, MA Zijie, JIANG Bingren. Research on the Pore Structure Characteristics and Gas Storage Properties of Coal Reservoirs in Western Guizhou: A Case Study of Well D1 in Daijiatian Coal Mine[J]. Geoscience, 2024, 38(06): 1532-1544.
编号 | 深度(m) | 水分(Mad)(%) | 灰分(Aad)(%) | 挥发分(Vdaf)(%) | 镜质组(%) | 惰质组(%) | 有机组分总量(%) | Ro(%) |
---|---|---|---|---|---|---|---|---|
6煤 | 425.00 | 2.56 | 27.57 | 10.22 | 55.8 | 21.7 | 77.5 | 2.85 |
14煤 | 475.71 | 2.48 | 17.24 | 9.12 | 64.3 | 24.7 | 89.0 | 3.09 |
16煤 | 506.13 | 1.69 | 18.99 | 15.57 | 56.2 | 20.7 | 76.9 | 3.06 |
27煤 | 580.00 | 2.80 | 22.49 | 7.32 | 71.2 | 22.3 | 93.5 | 3.15 |
32煤 | 612.80 | 2.80 | 38.32 | 11.11 | 58.4 | 21.5 | 79.9 | 3.17 |
Table 1 Basic parameters of coal samples from the Daijiatian Coal Mine in Western Guizhou
编号 | 深度(m) | 水分(Mad)(%) | 灰分(Aad)(%) | 挥发分(Vdaf)(%) | 镜质组(%) | 惰质组(%) | 有机组分总量(%) | Ro(%) |
---|---|---|---|---|---|---|---|---|
6煤 | 425.00 | 2.56 | 27.57 | 10.22 | 55.8 | 21.7 | 77.5 | 2.85 |
14煤 | 475.71 | 2.48 | 17.24 | 9.12 | 64.3 | 24.7 | 89.0 | 3.09 |
16煤 | 506.13 | 1.69 | 18.99 | 15.57 | 56.2 | 20.7 | 76.9 | 3.06 |
27煤 | 580.00 | 2.80 | 22.49 | 7.32 | 71.2 | 22.3 | 93.5 | 3.15 |
32煤 | 612.80 | 2.80 | 38.32 | 11.11 | 58.4 | 21.5 | 79.9 | 3.17 |
编号 | 孔隙类型 |
---|---|
6煤 | 气孔、角砾孔、碎粒孔、摩擦孔 |
14煤 | 气孔、角砾孔、碎粒孔 |
16煤 | 胞间孔、屑间孔、气孔 |
27煤 | 气孔、角砾孔、碎粒孔、晶间孔 |
32煤 | 气孔、屑间孔、铸模孔 |
Table 2 Pore types in the coal reservoir of the Longtan Formation from the Daijiatian Coal Mine in Western Guizhou
编号 | 孔隙类型 |
---|---|
6煤 | 气孔、角砾孔、碎粒孔、摩擦孔 |
14煤 | 气孔、角砾孔、碎粒孔 |
16煤 | 胞间孔、屑间孔、气孔 |
27煤 | 气孔、角砾孔、碎粒孔、晶间孔 |
32煤 | 气孔、屑间孔、铸模孔 |
编号 | 总孔体积 (cm3·g-1) | 阶段孔容(cm3·g-1) | 阶段孔容比例(%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
微孔 | 小孔 | 中孔 | 大孔 | 微孔 | 小孔 | 中孔 | 大孔 | |||
6煤 | 0.0308 | 0.0069 | 0.0118 | 0.0075 | 0.0046 | 22.40 | 38.31 | 24.35 | 14.94 | |
14煤 | 0.0232 | 0.0080 | 0.0111 | 0.0024 | 0.0017 | 34.48 | 47.84 | 10.34 | 7.33 | |
16煤 | 0.0296 | 0.0070 | 0.0206 | 0.0014 | 0.0006 | 23.65 | 69.59 | 4.73 | 2.03 | |
27煤 | 0.0250 | 0.0084 | 0.0134 | 0.0016 | 0.0016 | 33.60 | 53.60 | 6.40 | 6.40 | |
32煤 | 0.0271 | 0.0073 | 0.0119 | 0.0027 | 0.0052 | 26.94 | 43.91 | 9.96 | 19.19 |
Table 3 Pore volume distribution for the Longtan Formation coal reservoir, based on mercury injection data from the Daijiatian Coal Mine in Western Guizhou
编号 | 总孔体积 (cm3·g-1) | 阶段孔容(cm3·g-1) | 阶段孔容比例(%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
微孔 | 小孔 | 中孔 | 大孔 | 微孔 | 小孔 | 中孔 | 大孔 | |||
6煤 | 0.0308 | 0.0069 | 0.0118 | 0.0075 | 0.0046 | 22.40 | 38.31 | 24.35 | 14.94 | |
14煤 | 0.0232 | 0.0080 | 0.0111 | 0.0024 | 0.0017 | 34.48 | 47.84 | 10.34 | 7.33 | |
16煤 | 0.0296 | 0.0070 | 0.0206 | 0.0014 | 0.0006 | 23.65 | 69.59 | 4.73 | 2.03 | |
27煤 | 0.0250 | 0.0084 | 0.0134 | 0.0016 | 0.0016 | 33.60 | 53.60 | 6.40 | 6.40 | |
32煤 | 0.0271 | 0.0073 | 0.0119 | 0.0027 | 0.0052 | 26.94 | 43.91 | 9.96 | 19.19 |
编号 | 比表面积 (m2·g-1) | 阶段比表面积(m2·g-1) | 阶段比表面积比例(%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
微孔 | 小孔 | 中孔 | 大孔 | 微孔 | 小孔 | 中孔 | 大孔 | |||
6煤 | 5.99800 | 3.45100 | 2.44350 | 0.09869 | 0.00481 | 57.54 | 40.74 | 1.65 | 0.08 | |
14煤 | 6.20400 | 3.86100 | 2.30767 | 0.03321 | 0.00212 | 62.23 | 37.20 | 0.54 | 0.03 | |
16煤 | 6.87400 | 2.93700 | 3.91553 | 0.02017 | 0.00130 | 42.73 | 56.96 | 0.29 | 0.02 | |
27煤 | 7.28500 | 4.44600 | 2.81339 | 0.02357 | 0.00204 | 61.03 | 38.62 | 0.32 | 0.03 | |
32煤 | 6.45000 | 3.91600 | 2.48750 | 0.04081 | 0.00569 | 60.71 | 38.57 | 0.63 | 0.09 |
Table 4 Specific surface area distribution for the Longtan Formation coal reservoir, based on mercury injection data from the Daijiatian Coal Mine in Western Guizhou
编号 | 比表面积 (m2·g-1) | 阶段比表面积(m2·g-1) | 阶段比表面积比例(%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
微孔 | 小孔 | 中孔 | 大孔 | 微孔 | 小孔 | 中孔 | 大孔 | |||
6煤 | 5.99800 | 3.45100 | 2.44350 | 0.09869 | 0.00481 | 57.54 | 40.74 | 1.65 | 0.08 | |
14煤 | 6.20400 | 3.86100 | 2.30767 | 0.03321 | 0.00212 | 62.23 | 37.20 | 0.54 | 0.03 | |
16煤 | 6.87400 | 2.93700 | 3.91553 | 0.02017 | 0.00130 | 42.73 | 56.96 | 0.29 | 0.02 | |
27煤 | 7.28500 | 4.44600 | 2.81339 | 0.02357 | 0.00204 | 61.03 | 38.62 | 0.32 | 0.03 | |
32煤 | 6.45000 | 3.91600 | 2.48750 | 0.04081 | 0.00569 | 60.71 | 38.57 | 0.63 | 0.09 |
Fig.4 Pore size distribution map for the Longtan Formation coal reservoir, based on mercury injection data from the Daijiatian Coal Mine in Western Guizhou
Fig.5 Low-temperature nitrogen adsorption-desorption diagrams of the Longtan Formation coal reservoir from the Daijiatian Coal Mine in Western Guizhou
编号 | 总孔体积 (cm3·g-1) | 阶段孔容(cm3·g-1) | 阶段孔容比例(%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
微孔 | 小孔 | 中孔 | 大孔 | 微孔 | 小孔 | 中孔 | 大孔 | |||
6煤 | 0.00323 | 0.00152 | 0.00130 | 0.00041 | 0 | 47.06 | 40.25 | 12.69 | 0 | |
14煤 | 0.00382 | 0.00238 | 0.00113 | 0.00031 | 0 | 62.30 | 29.58 | 8.12 | 0 | |
16煤 | 0.00290 | 0.00140 | 0.00114 | 0.00036 | 0 | 48.28 | 39.31 | 12.41 | 0 | |
27煤 | 0.00410 | 0.00258 | 0.00120 | 0.00032 | 0 | 62.93 | 29.27 | 7.80 | 0 | |
32煤 | 0.00349 | 0.00229 | 0.00108 | 0.00012 | 0 | 65.62 | 30.95 | 3.44 | 0 |
Table 5 Pore volume distribution of the Longtan Formation coal reservoir, based on N2 adsorption data from the Daijiatian Coal Mine in Western Guizhou
编号 | 总孔体积 (cm3·g-1) | 阶段孔容(cm3·g-1) | 阶段孔容比例(%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
微孔 | 小孔 | 中孔 | 大孔 | 微孔 | 小孔 | 中孔 | 大孔 | |||
6煤 | 0.00323 | 0.00152 | 0.00130 | 0.00041 | 0 | 47.06 | 40.25 | 12.69 | 0 | |
14煤 | 0.00382 | 0.00238 | 0.00113 | 0.00031 | 0 | 62.30 | 29.58 | 8.12 | 0 | |
16煤 | 0.00290 | 0.00140 | 0.00114 | 0.00036 | 0 | 48.28 | 39.31 | 12.41 | 0 | |
27煤 | 0.00410 | 0.00258 | 0.00120 | 0.00032 | 0 | 62.93 | 29.27 | 7.80 | 0 | |
32煤 | 0.00349 | 0.00229 | 0.00108 | 0.00012 | 0 | 65.62 | 30.95 | 3.44 | 0 |
编号 | 比表面积 (m2·g-1) | 阶段比表面积(m2·g-1) | 阶段比表面积比例(%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
微孔 | 小孔 | 中孔 | 大孔 | 微孔 | 小孔 | 中孔 | 大孔 | |||
6煤 | 1.46121 | 1.21187 | 0.23800 | 0.01134 | 0 | 82.94 | 16.29 | 0.78 | 0 | |
14煤 | 2.41003 | 2.16755 | 0.23657 | 0.00591 | 0 | 89.94 | 9.82 | 0.25 | 0 | |
16煤 | 1.34629 | 1.12677 | 0.20964 | 0.00988 | 0 | 83.69 | 15.57 | 0.73 | 0 | |
27煤 | 2.56813 | 2.32652 | 0.23526 | 0.00635 | 0 | 90.59 | 9.16 | 0.25 | 0 | |
32煤 | 2.08237 | 1.77562 | 0.29951 | 0.00724 | 0 | 85.27 | 14.38 | 0.35 | 0 |
Table 6 Specific surface area distribution of the Longtan Formation coal reservoir, based on N2 adsorption data from the Daijiatian Coal Mine in Western Guizhou
编号 | 比表面积 (m2·g-1) | 阶段比表面积(m2·g-1) | 阶段比表面积比例(%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
微孔 | 小孔 | 中孔 | 大孔 | 微孔 | 小孔 | 中孔 | 大孔 | |||
6煤 | 1.46121 | 1.21187 | 0.23800 | 0.01134 | 0 | 82.94 | 16.29 | 0.78 | 0 | |
14煤 | 2.41003 | 2.16755 | 0.23657 | 0.00591 | 0 | 89.94 | 9.82 | 0.25 | 0 | |
16煤 | 1.34629 | 1.12677 | 0.20964 | 0.00988 | 0 | 83.69 | 15.57 | 0.73 | 0 | |
27煤 | 2.56813 | 2.32652 | 0.23526 | 0.00635 | 0 | 90.59 | 9.16 | 0.25 | 0 | |
32煤 | 2.08237 | 1.77562 | 0.29951 | 0.00724 | 0 | 85.27 | 14.38 | 0.35 | 0 |
Fig.6 Pore size distribution map of the Longtan Formation coal reservoir, based on low-temperature N2 adsorption data from the Daijiatian Coal Mine in WesternGuizhou
编号 | 总孔体积 (cm3·g-1) | 阶段孔容(cm3·g-1) | 阶段孔容比例(%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
微孔 | 小孔 | 中孔 | 大孔 | 微孔 | 小孔 | 中孔 | 大孔 | |||
6煤 | 0.01612 | 0.00152 | 0.00250 | 0.0075 | 0.0046 | 9.43 | 15.51 | 46.53 | 28.54 | |
14煤 | 0.00851 | 0.00238 | 0.00203 | 0.0024 | 0.0017 | 27.97 | 23.85 | 28.20 | 19.98 | |
16煤 | 0.00544 | 0.00140 | 0.00204 | 0.0014 | 0.0006 | 25.74 | 37.50 | 25.74 | 11.03 | |
27煤 | 0.00778 | 0.00258 | 0.00200 | 0.0016 | 0.0016 | 33.16 | 25.71 | 20.57 | 20.57 | |
32煤 | 0.01192 | 0.00229 | 0.00173 | 0.0027 | 0.0034 | 19.21 | 14.51 | 22.65 | 28.52 |
Table 7 Pore volume distribution of pore sizes in the Longtan Formation coal reservoir from the Daijiatian Coal Mine in Western Guizhou
编号 | 总孔体积 (cm3·g-1) | 阶段孔容(cm3·g-1) | 阶段孔容比例(%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
微孔 | 小孔 | 中孔 | 大孔 | 微孔 | 小孔 | 中孔 | 大孔 | |||
6煤 | 0.01612 | 0.00152 | 0.00250 | 0.0075 | 0.0046 | 9.43 | 15.51 | 46.53 | 28.54 | |
14煤 | 0.00851 | 0.00238 | 0.00203 | 0.0024 | 0.0017 | 27.97 | 23.85 | 28.20 | 19.98 | |
16煤 | 0.00544 | 0.00140 | 0.00204 | 0.0014 | 0.0006 | 25.74 | 37.50 | 25.74 | 11.03 | |
27煤 | 0.00778 | 0.00258 | 0.00200 | 0.0016 | 0.0016 | 33.16 | 25.71 | 20.57 | 20.57 | |
32煤 | 0.01192 | 0.00229 | 0.00173 | 0.0027 | 0.0034 | 19.21 | 14.51 | 22.65 | 28.52 |
编号 | 比表面积 (m2·g-1) | 阶段比表面积(m2·g-1) | 阶段比表面积比例(%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
微孔 | 小孔 | 中孔 | 大孔 | 微孔 | 小孔 | 中孔 | 大孔 | |||
6煤 | 1.61047 | 1.21187 | 0.29510 | 0.09869 | 0.00481 | 75.25 | 18.32 | 6.13 | 0.30 | |
14煤 | 2.46641 | 2.16895 | 0.26213 | 0.03321 | 0.00212 | 87.94 | 10.63 | 1.35 | 0.09 | |
16煤 | 1.39939 | 1.12677 | 0.25115 | 0.02017 | 0.00130 | 80.52 | 17.95 | 1.44 | 0.09 | |
27煤 | 2.62820 | 2.32652 | 0.27607 | 0.02357 | 0.00204 | 88.52 | 10.50 | 0.90 | 0.08 | |
32煤 | 2.15487 | 1.77562 | 0.33275 | 0.04081 | 0.00569 | 82.40 | 15.44 | 1.89 | 0.26 |
Table 8 Specific surface area distribution of pore sizes in the Longtan Formation coal reservoir of the Daijiatian Coal Mine in Western Guizhou
编号 | 比表面积 (m2·g-1) | 阶段比表面积(m2·g-1) | 阶段比表面积比例(%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
微孔 | 小孔 | 中孔 | 大孔 | 微孔 | 小孔 | 中孔 | 大孔 | |||
6煤 | 1.61047 | 1.21187 | 0.29510 | 0.09869 | 0.00481 | 75.25 | 18.32 | 6.13 | 0.30 | |
14煤 | 2.46641 | 2.16895 | 0.26213 | 0.03321 | 0.00212 | 87.94 | 10.63 | 1.35 | 0.09 | |
16煤 | 1.39939 | 1.12677 | 0.25115 | 0.02017 | 0.00130 | 80.52 | 17.95 | 1.44 | 0.09 | |
27煤 | 2.62820 | 2.32652 | 0.27607 | 0.02357 | 0.00204 | 88.52 | 10.50 | 0.90 | 0.08 | |
32煤 | 2.15487 | 1.77562 | 0.33275 | 0.04081 | 0.00569 | 82.40 | 15.44 | 1.89 | 0.26 |
Fig.9 Relationship between pore surface area and maximum CH4 adsorption in the Longtan Formation coal reservoir of the Daijiatian Coal Mine in Western Guizhou
Fig.10 Relationship between pore surface area and on-site desorption volume in the Longtan Formation coal reservoir of the Daijiatian Coal Mine in Western Guizhou
[1] | 张玉贵, 焦银秋, 雷东记, 等. 煤体纳米级孔隙低温氮吸附特征及分形性研究[J]. 河南理工大学学报(自然科学版), 2016, 35(2): 141-148. |
[2] | 刘娜, 康永尚, 李喆, 等. 煤岩孔隙度主控地质因素及其对煤层气开发的影响[J]. 现代地质, 2018, 32(5): 963-974. |
[3] | DENG E D, ZHANG Q, JIN Z J, et al. Non-overmature equivalents confirmed a high initial hydrocarbon generation potential of the Permian Longtan Shale in Southern China[J]. International Journal of Coal Geology, 2022, 259: 104043. |
[4] | 王凯, 乔鹏, 王壮森, 等. 基于二氧化碳和液氮吸附、高压压汞和低场核磁共振的煤岩多尺度孔径表征[J]. 中国矿业, 2017, 26(4): 146-152. |
[5] | 付常青, 朱炎铭, 陈尚斌. 浙西荷塘组页岩孔隙结构及分形特征研究[J]. 中国矿业大学学报, 2016, 45(1): 77-86. |
[6] | LOUCKS R G, REED R M, RUPPEL S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian barnett shale[J]. Journal of Se-dimentary Research, 2009, 79(12): 848-861. |
[7] | LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098. |
[8] | 田华, 张水昌, 柳少波, 等. 压汞法和气体吸附法研究富有机质页岩孔隙特征[J]. 石油学报, 2012, 33(3): 419-427. |
[9] | 樊祺章, 蔡益栋, 贝金翰, 等. 煤岩演化程度对煤储层孔裂隙结构的控制作用[J]. 现代地质, 2020, 34(2): 273-280. |
[10] | 邓恩德, 金军, 王冉, 等. 黔北地区龙潭组海陆过渡相页岩微观孔隙特征及其储气性[J]. 科学技术与工程, 2017, 17(24): 190-195. |
[11] | DANG W, NIE H K, ZHANG J C, et al. Pore-scale mechanisms and characterization of light oil storage in shale nanopores: New method and insights[J]. Geoscience Frontiers, 2022, 13(5): 50-58. |
[12] | 邓恩德, 姜秉仁, 高为, 等. 黔西地区龙潭组煤系泥页岩孔隙结构及分形特征研究[J]. 煤炭科学技术, 2020, 48(8): 184-190. |
[13] |
党伟, 张金川, 聂海宽, 等. 页岩油微观赋存特征及其主控因素: 以鄂尔多斯盆地延安地区延长组7段3亚段陆相页岩为例[J]. 石油学报, 2022, 43(4): 507-523.
DOI |
[14] | 李松, 汤达祯, 许浩, 等. 贵州省织金、纳雍地区煤储层物性特征研究[J]. 中国矿业大学学报, 2012, 41(6): 951-958. |
[15] | ZHANG S, WANG Z M, ZHANG X D, et al. Construction of molecular structure model of Tunlan coal and its microscopic physicochemical mechanism[J]. Fuel, 2022, 308: 121936. |
[16] | 兰海平, 包庆林, 邓恩德. 贵州织金地区八步向斜煤层气储层特征及有利勘探层段研究[J]. 煤炭技术, 2023, 42(6): 100-103. |
[17] | 牛新生, 冯常茂, 刘进. 黔中隆起的形成时间及形成机制探讨[J]. 海相油气地质, 2007, 12(2): 46-50. |
[18] | 曹文杰, 何金先, 杨甜甜, 等. 贵州织金地区龙潭组沉积环境及其对页岩发育的控制[J]. 中国煤炭地质, 2021, 33(5): 25-31, 37. |
[19] | 张金川, 金之钧, 袁明生. 页岩气成藏机理和分布[J]. 天然气工业, 2004, 24(7): 15-18, 131-132. |
[20] | GAN H, NANDI S P, WALKER P L. Nature of porosity in American coals[J]. Fuel, 1972, 51(4):272-277. |
[21] | 郝琦. 煤的显微孔隙形态特征及其成因探讨[J]. 煤炭学报, 1987, (4): 51-56+97-101. |
[22] | 张慧. 煤孔隙的成因类型及其研究[J]. 煤炭学报, 2001, 26(1): 40-44. |
[23] | XIE J N, XIE J, NI G H, et al. Effects of pulse wave on the variation of coal pore structure in pulsating hydraulic fracturing process of coal seam[J]. Fuel, 2020, 264: 116906. |
[24] |
许耀波, 朱玉双. 高阶煤的孔隙结构特征及其对煤层气解吸的影响[J]. 天然气地球科学, 2020, 31(1): 84-92.
DOI |
[25] |
朱炎铭, 王阳, 陈尚斌, 等. 页岩储层孔隙结构多尺度定性-定量综合表征: 以上扬子海相龙马溪组为例[J]. 地学前缘, 2016, 23(1): 154-163.
DOI |
[26] |
刘世明, 唐书恒, 霍婷, 等. 柴达木盆地东缘上石炭统泥页岩孔隙结构及分形特征[J]. 天然气地球科学, 2020, 31(8): 1069-1081.
DOI |
[27] | LUO N, SUO Y C, FAN X R, et al. Research on confining pressure effect of pore structure of coal-rich in coalbed methane under cyclic impact[J]. Energy Reports, 2022, 8: 7336-7348. |
[28] | 李振, 邵龙义, 侯海海, 等. 高煤阶煤孔隙结构及分形特征[J]. 现代地质, 2017, 31(3): 595-605. |
[29] | GREGG S J, SING K S W. Adsorption, Surface Area, and Porosity[M]. 2nd ed. London: Academic Press, 1982. |
[30] | 李阳, 张玉贵, 张浪, 等. 基于压汞、低温N2吸附和CO2吸附的构造煤孔隙结构表征[J]. 煤炭学报, 2019, 44(4): 1188-1196. |
[31] |
符宏斌, 苑坤, 卢树藩, 等. 黔西上二叠统龙潭组高煤级煤微观孔隙结构特征及其对含气性的影响[J]. 天然气地球科学, 2020, 31(12): 1814-1825.
DOI |
[32] | 林海飞, 卜婧婷, 严敏, 等. 中低阶煤孔隙结构特征的氮吸附法和压汞法联合分析[J]. 西安科技大学学报, 2019, 39(1): 1-8. |
[33] | FU H J, YAN D T, YANG S G, et al. A study of the gas-water characteristics and their implications for the coalbed methane accumulation modes in the Southern Junggar Basin, China[J]. AAPG Bulletin, 2021, 105(1): 189-221. |
[34] | 许启鲁, 黄文辉, 唐书恒, 等. 深部中-高煤级煤储层孔隙结构与吸附性[J]. 现代地质, 2016, 30(2): 413-419. |
[35] | WANG X L, CHENG Y P, ZHANG D M, et al. Influence of tectonic evolution on pore structure and fractal characteristics of coal by low pressure gas adsorption[J]. Journal of Natural Gas Science and Engineering, 2021, 87: 103788. |
[36] | 降文萍, 崔永君, 张群, 等. 不同变质程度煤表面与甲烷相互作用的量子化学研究[J]. 煤炭学报, 2007, 32(3): 292-295. |
[37] | 王可新, 潘树仁, 傅雪海. 低煤级煤的孔、裂隙特征研究[J]. 地质论评, 2017, 63(增): 67-68. |
[1] | YAN Taotao, DENG Zhiyu, WU Peng, GAO Guosen, CHANG Suoliang, FU Xinyu, MENG Yanjun, LIU Yanfei. Characteristics and Key Control Factors of Coalbed Methane Well Productivity in the Yangjiapo Block, Eastern Linxing District, Ordos Basin [J]. Geoscience, 2024, 38(06): 1545-1556. |
[2] | LI Dongsheng, GAO Ping, GAI Haifeng, LIU Ruobing, CAI Yidong, LI Gang, ZHOU Qin, XIAO Xianming. Organic Nano-pore Textural Characteristics of the Longmaxi Formation Shale in the Southeastern Sichuan Basin [J]. Geoscience, 2023, 37(05): 1293-1305. |
[3] | ZHANG Jinqing, LI Xianqing, ZHANG Boxiang, ZHANG Xueqing, YANG Jingwei, YU Zhenfeng. Pore Characteristics and Pore Structure of the Upper Paleozoic Coal-bearing Shale Gas Reservoir in the Wuxiang Block, Qinshui Basin [J]. Geoscience, 2022, 36(06): 1551-1562. |
[4] | LI Qing, LI Jiangshan, LU Hao, QI Fengqiang, HE Yu, AN Keqin, LI Longyu, ZHANG Houmin, WU Yue. Characteristics and Control Factors of the Chang 73 Shale Reservoirs in the Southern Ordos Basin [J]. Geoscience, 2022, 36(05): 1254-1270. |
[5] | QI Yang, LÜ Chunyan, WANG Yuhui, TANG Shuheng, XI Zhaodong. Pore Structural Characteristics of Wufeng-Longmaxi Formations Under Biostratigraphic Framework in Northwestern Hunan [J]. Geoscience, 2022, 36(05): 1292-1303. |
[6] | WEI Yongheng, GE Yanyan, WANG Gang, WANG Wenfeng, TIAN Jijun, LI Xin, WU Bin, ZHANG Xiao. In-situ Stress Distribution and Its Influence on Coalbed Methane Development in Tielieke Mining Area, Kubai Coalfield, Xinjiang [J]. Geoscience, 2022, 36(05): 1324-1332. |
[7] | ZHAI Jiayu, ZHANG Songhang, TANG Shuheng, GUO Huiqiu, LIU Bing, JI Chaoqi. Origin and Productivity Response of Gas and Water in Coalbed Methane Field of Yuwang Block at Laochang, Yunnan Province [J]. Geoscience, 2022, 36(05): 1341-1350. |
[8] | LI Jinlong, LI Qian, CAI Yidong, CHEN Wei, CHEN Zhizhu, WANG Jian, XUE Xiaohui. Geological Conditions and Resource Potential of Coalbed Methane Reservoirs in Laochang Mining Area, Yunnan Province [J]. Geoscience, 2022, 36(05): 1351-1359. |
[9] | YAN Taotao, GUO Yilin, MENG Yanjun, CHANG Suoliang, JIN Shangwen, KANG Lifang, FU Xinyu, WANG Qingqing, ZHAO Yuan, ZHANG Yu. Coal Reservoir Gas Content Correction Based on Coalbed Methane Well Production Data [J]. Geoscience, 2022, 36(05): 1360-1370. |
[10] | JIANG Bingren, DENG Ende, HAN Minghui, MA Zijie. Microscopic Pore Structure and Fractal Characteristics From the Carboniferous Xiangbai Formation Shale in Northwestern Guizhou [J]. Geoscience, 2022, 36(04): 1065-1073. |
[11] | CUI Weiping, YANG Yuqing, LIU Jianxin. Logging Identification Method of Low Porosity and Low Permeability Reservoir Effectiveness Based on Lithofacies Units and Pore Structures: An Example from NB1 Structure in Xihu Depression [J]. Geoscience, 2022, 36(01): 140-148. |
[12] | YANG Yi, ZHANG Hengrong, YUAN Wei, YANG Dong, HU Desheng. Fractal Characteristics Comparison and Genesis of Conventional Sandstone and Glutenite [J]. Geoscience, 2022, 36(01): 149-158. |
[13] | LIU Wenfeng, ZHANG Xiaoshuan, LIU Jinming, AILIMAN·Daoerji , YANG Yuanfeng, ZHANG Xiwen, QI Liqi, YU Jingwei. Evaluation and Characteristics of Pore Structures in Sand and Conglomerate Reservoirs of Badaowan Formation in the AH5 Well Block [J]. Geoscience, 2021, 35(06): 1844-1853. |
[14] | LI Yangyang, LI Xianqing, ZHANG Xueqing, YANG Jingwei, ZHANG Boxiang, XIAO Xianming, YU Zhenfeng. Pore Structure Characteristics of Taiyuan Formation Coal Measures Shale in the Yangquan Block of the Qinshui Basin [J]. Geoscience, 2021, 35(04): 1033-1042. |
[15] | YU Jingwei, NIU Zhijie, QI Liqi, SUN Xinming, LIU Ni, ZHANG Jin, CAO Song. Comprehensive Study on Reservoir Heterogeneity of Toutunhe Formation in the Slope Area, North of Fukang Sag, Junggar Basin [J]. Geoscience, 2021, 35(03): 819-831. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||