Geoscience ›› 2019, Vol. 33 ›› Issue (02): 422-430.DOI: 10.19657/j.geoscience.1000-8527.2019.02.17
• Hydrogeology • Previous Articles Next Articles
SHENG Yizhi(), ZHANG Xu, ZHAI Xiaobo, LI Guanghe
Received:
2018-02-17
Revised:
2019-01-20
Online:
2019-05-08
Published:
2019-05-08
CLC Number:
SHENG Yizhi, ZHANG Xu, ZHAI Xiaobo, LI Guanghe. Ex-situ Chemical Oxidation Treatment for Non-aqueous Liquid Contaminated Groundwater: A Pilot Study[J]. Geoscience, 2019, 33(02): 422-430.
测试指标 | 检出值(检出率/%) | 测试指标 | 检出值(检出率/%) | |
---|---|---|---|---|
pH | 8.55±0.17 (100) | 苯/(μg/L) | 2.68±0.71 (77) | |
SS/(mg/L) | 224.83±47.97 (100) | 甲苯/(μg/L) | 3.73±2.10 (77) | |
浊度/(NTU) | 159.20±47.65 (100) | 乙苯/(μg/L) | 0.16±0.03 (46) | |
COD/(mg/L) | 155.44±30.33 (100) | 二甲苯/(μg/L) | 0.23±0.04 (62) | |
BOD/(mg/L) | 10.60±9.71 (100) | 1,2-二氯乙烷/(μg/L) | 17.58±4.26 (100) | |
总磷/(mg/L) | 4.05±0.80 (100) | 2-甲基苯酚/(μg/L) | 2.75±1.36 (54) | |
总氮/(mg/L) | 18.39±2.62 (100) | 3,4-甲基苯酚/(μg/L) | 2.27±0.46 (77) | |
氨氮/(mg/L) | 8.43±0.82 (100) | 萘/(μg/L) | 75.33±60.50 (77) | |
C6—C9/(μg/L) | 28.94±9.50 (100) | 2-甲基萘/(μg/L) | 302.27±257.31 (62) | |
C10—C14/(μg/L) | 695.73±231.20 (100) | 芴/(μg/L) | 1.38±0.44 (85) | |
C15—C28/(μg/L) | 397.60±48.58 (100) | 菲/(μg/L) | 1.10±0.05 (31) | |
C29—C36/(μg/L) | 66.83±20.23 (83) | 邻苯二甲酸二甲酯/(μg/L) | 23.54±15.65 (31) |
Table 1 Characteristics of groundwater quality at the contaminated site
测试指标 | 检出值(检出率/%) | 测试指标 | 检出值(检出率/%) | |
---|---|---|---|---|
pH | 8.55±0.17 (100) | 苯/(μg/L) | 2.68±0.71 (77) | |
SS/(mg/L) | 224.83±47.97 (100) | 甲苯/(μg/L) | 3.73±2.10 (77) | |
浊度/(NTU) | 159.20±47.65 (100) | 乙苯/(μg/L) | 0.16±0.03 (46) | |
COD/(mg/L) | 155.44±30.33 (100) | 二甲苯/(μg/L) | 0.23±0.04 (62) | |
BOD/(mg/L) | 10.60±9.71 (100) | 1,2-二氯乙烷/(μg/L) | 17.58±4.26 (100) | |
总磷/(mg/L) | 4.05±0.80 (100) | 2-甲基苯酚/(μg/L) | 2.75±1.36 (54) | |
总氮/(mg/L) | 18.39±2.62 (100) | 3,4-甲基苯酚/(μg/L) | 2.27±0.46 (77) | |
氨氮/(mg/L) | 8.43±0.82 (100) | 萘/(μg/L) | 75.33±60.50 (77) | |
C6—C9/(μg/L) | 28.94±9.50 (100) | 2-甲基萘/(μg/L) | 302.27±257.31 (62) | |
C10—C14/(μg/L) | 695.73±231.20 (100) | 芴/(μg/L) | 1.38±0.44 (85) | |
C15—C28/(μg/L) | 397.60±48.58 (100) | 菲/(μg/L) | 1.10±0.05 (31) | |
C29—C36/(μg/L) | 66.83±20.23 (83) | 邻苯二甲酸二甲酯/(μg/L) | 23.54±15.65 (31) |
指标 | Ⅲ类 标准 | 荷兰 干涉值 | 新泽西 州标准 | 超标 率/% | 最大超 标倍数 |
---|---|---|---|---|---|
总石油烃/(μg/L) | 600 | 69.2 | 7.2 | ||
苯/(μg/L) | 10 | 30 | 23.1 | 11.7 | |
甲苯/(μg/L) | 700 | 1 000 | 0 | ||
乙苯/(μg/L) | 300 | 150 | 0 | ||
二甲苯/(μg/L) | 500 | 70 | 0 | ||
1,2-二氯乙烷/(μg/L) | 30 | 23.1 | 1.4 | ||
苯酚/(μg/L) | 2 000 | 0 | |||
3,4-甲基苯酚/(μg/L) | 70 | 0 | |||
萘/(μg/L) | 100 | 100 | 15.4 | 5.6 | |
2-甲基萘/(μg/L) | 30 | 30.1 | 48.3 | ||
芴/(μg/L) | 280 | 0 | |||
菲/(μg/L) | 5 | 0 | |||
邻苯二甲酸二甲酯/(μg/L) | 6 | 0 |
Table 2 Groundwater quality assessment of the targeted organic contaminants at the contaminated site
指标 | Ⅲ类 标准 | 荷兰 干涉值 | 新泽西 州标准 | 超标 率/% | 最大超 标倍数 |
---|---|---|---|---|---|
总石油烃/(μg/L) | 600 | 69.2 | 7.2 | ||
苯/(μg/L) | 10 | 30 | 23.1 | 11.7 | |
甲苯/(μg/L) | 700 | 1 000 | 0 | ||
乙苯/(μg/L) | 300 | 150 | 0 | ||
二甲苯/(μg/L) | 500 | 70 | 0 | ||
1,2-二氯乙烷/(μg/L) | 30 | 23.1 | 1.4 | ||
苯酚/(μg/L) | 2 000 | 0 | |||
3,4-甲基苯酚/(μg/L) | 70 | 0 | |||
萘/(μg/L) | 100 | 100 | 15.4 | 5.6 | |
2-甲基萘/(μg/L) | 30 | 30.1 | 48.3 | ||
芴/(μg/L) | 280 | 0 | |||
菲/(μg/L) | 5 | 0 | |||
邻苯二甲酸二甲酯/(μg/L) | 6 | 0 |
氧化剂 | 反应方程 | 标准电极 电势/V |
---|---|---|
高锰酸盐 | 0.59 | |
高铁酸盐 | 0.70 | |
过氧化氢 | 0.88 | |
次氯酸盐 | ClO- + H2O + 2e → Cl- + 2OH- | 0.90 |
Table 3 Standard electrode potential of common oxidants in groundwater environment
氧化剂 | 反应方程 | 标准电极 电势/V |
---|---|---|
高锰酸盐 | 0.59 | |
高铁酸盐 | 0.70 | |
过氧化氢 | 0.88 | |
次氯酸盐 | ClO- + H2O + 2e → Cl- + 2OH- | 0.90 |
[1] |
HOU Y, ZHANG T Z. Evaluation of major polluting accidents in China—Results and perspectives[J]. Journal of Hazardous Materials, 2009,168(2/3):670-673.
DOI URL |
[2] | XUE P, ZENG W. Trends of environmental accidents and impact factors in China[J]. Frontiers of Environmental Science & Engineering in China, 2011,5(2):266-276. |
[3] |
YAO H, ZHANG T, LIU B, et al. Analysis of surface water pollution accidents in China: characteristics and lessons for risk management[J]. Environmental Management, 2016,57(4):868-878.
URL PMID |
[4] | SHENG Y, TIAN X, WANG G, et al. Bacterial diversity and biogeochemical processes of oil-contaminated groundwater, Bao-ding, North China[J]. Geomicrobiology, 2016,33(6):537-551. |
[5] |
ZHANG Q, WANG G, SUGIURA N, et al. Distribution of petroleum hydrocarbons in soils and the underlying unsaturated subsurface at an abandoned petrochemical site, North China[J]. Hydrological Processes, 2013,28(4):2185-2191.
DOI URL |
[6] | 王平, 黄爽兵, 韩占涛, 等. 基于溶质运移模拟的某化工场地污染物对拟建水库污染风险预测[J]. 现代地质, 2015,29(2):307-315. |
[7] | 张丹, 张旭, 李广贺, 等. Fenton试剂快速氧化处理事故场地地下水中的硝基苯[J]. 环境工程学报, 2016,10(7):3439-3444. |
[8] | NYER E K. Groundwater Treatment Technology[M]. 3rd ed. New York:Van Nostrand Reinhold, 2009: 104-119. |
[9] | 蔡婧怡, 陈宗宇, 蔡五田, 等. 某石化污染场地含水层自然降解BTEX能力评估[J]. 现代地质, 2015,29(2):383-389. |
[10] | 翟晓波, 盛益之, 张旭, 等. 混凝-气浮工艺处理有机物污染地下水现场中试试验[J]. 化工环保, 2018,38(1):33-39. |
[11] |
HE L, HUANG G H, ZENG G M, et al. An integrated simulation, inference, and optimization method for identifying groundwater remediation strategies at petroleum-contaminated aquifers in western Canada[J]. Water Research, 2008,42(10/11):2629-2639.
DOI URL |
[12] |
TRUEX M, JOHNSON C, MACBETH T, et al. Performance assessment of pump-and-treat systems[J]. Ground Water Monitoring and Remediation, 2017,37(3):28-44.
DOI URL |
[13] |
MACKAY D, MCHERRY J A. Groundwater contamination: pump-and-treat remediation[J]. Environmental Science & Technology, 1989,23(6):630-636.
DOI URL |
[14] | 万鹏, 张旭, 李广贺, 等. 基于模拟-优化模型的某场地污染地下水抽水方案设计[J]. 环境科学研究, 2016,29(11):1608-1616. |
[15] | TSAI T T, KAO C M, YEH T Y, et al. Chemical oxidation of chlorinated solvents in contaminated groundwater: review[J]. Practice Periodical of Hazardous Toxic & Radioactive Waste Mana-gement, 2008,12(12):116-126. |
[16] | 王东升, 李文涛, 杨晓芳, 等. 高铁酸盐: 一种绿色的多功能水处理剂[J]. 应用化学, 2016,33(11):1221-1233. |
[17] | 尹贞, 廖书林, 马强, 等. 化学氧化技术在地下水修复中的应用[J]. 环境工程学报, 2015,9(10):4910-4914. |
[18] | 田璐, 杨琦, 尚海涛. 高锰酸钾降解地下水中PCE的研究[J]. 环境工程学报, 2009,3(8):1355-1359. |
[19] |
JOUSSE E, ATTEIA O, HOHENER P, et al. Removal of NAPL from columns by oxidation, sparging, surfactant and thermal treatment[J]. Chemosphere, 2017,188:182-189.
DOI URL PMID |
[20] | 国家环境保护总局. 水和废水监测分析方法[M].4版. 北京: 中国环境科学出版社, 2002: 1-295. |
[21] |
BROWN D G, GUPTA L, KIM T H, et al. Comparative assessment of coal tars obtained from 10 former manufactured gas plant sites in the Eastern United States[J]. Chemosphere, 2006,65(9):1562-1569.
DOI URL PMID |
[22] |
COULON F, ORSI R, TURNER C, et al. Understanding the fate and transport of petroleum hydrocarbons from coal tar within Gasholders[J]. Environment International, 2009,35(2):248-252.
URL PMID |
[23] | VROM. Circular Values and Intervention Values for Soil Remediation Annex A: Target Values, Soil Remediation Intervention Values and Indictive Levels for Serious Contamination[M]. Amster dam: Ministry of Housing, Spatial Planning and Environment (VROM), 2010. |
[24] | NJDEP. Ground Water Quality Standards Class II-A[S]. Trenton:New Jersey Department of Environmental Protection, 2018. |
[25] | 盛益之, 王广才, 张琦伟, 等. 某污染场地周边地下水环境质量评价[J]. 现代地质, 2012,26(3):601-606. |
[26] |
金伟, 范瑾初. 紫外吸光值(UV_(254))作为有机物替代参数的探讨[J]. 工业水处理, 1997,17(6):30-32.
DOI URL |
[27] |
BOONRATTANAKIJ N, LU M, CANOTAI J. Iron crystallization in a fluidized-bed Fenton process[J]. Water Research, 2011,45(10):3255-3262.
URL PMID |
[28] | 吴建新. 高铁酸盐处理制药废水的试验研究[J]. 中国给水排水, 2010,26(15):79-81. |
[29] | 周建红, 李军, 令玉林, 等. 高铁酸钾和次氯酸钠联用处理苯酚废水研究[J]. 工业水处理, 2013,33(10):27-29. |
[30] | 杨涛. 高锰酸钾、次氯酸钠复合预氧化与常规处理工艺联用处理微污染水源水的中试研究[J]. 辽宁化工, 2006,35(4):217-218. |
[31] | 赵丹, 阎秀兰, 廖晓勇, 等. 不同化学氧化剂对焦化污染场地苯系物的修复效果[J]. 环境科学, 2011,32(3):849-856. |
[32] |
BERGENDAHL J, HUBBARD S, GRASSO D. Pilot-scale Fenton’s oxidation of organic contaminants in groundwater using autochthonous iron[J]. Journal of Hazardous Materials, 2003,99(1):43-56.
DOI URL PMID |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||