Geoscience ›› 2025, Vol. 39 ›› Issue (04): 920-930.DOI: 10.19657/j.geoscience.1000-8527.2024.028
• Ore Deposit and Petrology • Previous Articles Next Articles
FAN Pengfei1,2,3(), SHEN Xikun4, HUANG Guangwen5, LI Mangen2,*(
), GU Yong3, WANG Ke3, LIU Tao3, GUO Yeda3
Online:
2025-08-10
Published:
2025-08-27
Contact:
LI Mangen
CLC Number:
FAN Pengfei, SHEN Xikun, HUANG Guangwen, LI Mangen, GU Yong, WANG Ke, LIU Tao, GUO Yeda. LA-ICP-MS In-Situ U-Pb Ages of Uraninite from the Dafuling Uranium Deposit, Eastern Hunan, and Its Implications for Ore Genesis[J]. Geoscience, 2025, 39(04): 920-930.
序号 | TiO2 | CaO | Yb2O3 | ThO2 | Y2O3 | SiO2 | Al2O3 | UO2 | PbO | Ce2O3 | La2O3 | P2O5 | Na2O | MgO | K2O | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | 4.050 | - | - | 0.062 | 0.161 | 0.010 | 90.435 | 0.609 | 0.189 | - | 0.018 | 0.038 | 0.001 | - | 95.573 |
2 | 0.089 | 4.466 | - | - | 0.045 | 0.258 | 0.007 | 87.869 | 0.480 | 0.122 | 0.086 | 0.046 | 0.031 | - | - | 93.499 |
3 | 0.004 | 4.477 | - | - | - | 0.336 | - | 86.467 | 0.477 | 0.092 | - | 0.050 | 0.087 | - | - | 91.990 |
4 | 0.026 | 5.616 | 0.079 | - | - | 0.198 | - | 85.333 | 1.053 | 0.109 | 0.022 | 0.155 | 0.060 | - | - | 92.651 |
5 | - | 5.152 | - | - | 0.122 | 0.339 | 0.010 | 86.325 | 0.566 | 0.106 | - | 0.052 | 0.087 | - | - | 92.759 |
6 | 0.048 | 4.175 | 0.064 | - | - | 0.215 | 0.014 | 89.177 | 0.578 | - | 0.053 | 0.050 | 0.051 | - | - | 94.425 |
7 | - | 5.022 | 0.120 | - | - | 0.551 | 0.004 | 86.289 | 0.356 | 0.029 | - | 0.061 | 0.050 | - | - | 92.482 |
8 | - | 3.798 | - | - | 0.099 | 0.001 | - | 86.103 | 1.370 | 0.172 | - | 0.068 | 0.125 | - | - | 91.736 |
9 | - | 5.264 | - | - | 0.022 | 0.415 | - | 85.188 | 0.979 | 0.065 | - | 0.156 | 0.131 | - | 0.001 | 92.221 |
10 | - | 5.537 | - | - | - | 0.244 | 0.019 | 84.327 | 0.926 | 0.097 | 0.028 | 0.193 | 0.126 | - | 0.001 | 91.498 |
Table 1 EPMA quantitative analysis results of uraninite (wt%)
序号 | TiO2 | CaO | Yb2O3 | ThO2 | Y2O3 | SiO2 | Al2O3 | UO2 | PbO | Ce2O3 | La2O3 | P2O5 | Na2O | MgO | K2O | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | 4.050 | - | - | 0.062 | 0.161 | 0.010 | 90.435 | 0.609 | 0.189 | - | 0.018 | 0.038 | 0.001 | - | 95.573 |
2 | 0.089 | 4.466 | - | - | 0.045 | 0.258 | 0.007 | 87.869 | 0.480 | 0.122 | 0.086 | 0.046 | 0.031 | - | - | 93.499 |
3 | 0.004 | 4.477 | - | - | - | 0.336 | - | 86.467 | 0.477 | 0.092 | - | 0.050 | 0.087 | - | - | 91.990 |
4 | 0.026 | 5.616 | 0.079 | - | - | 0.198 | - | 85.333 | 1.053 | 0.109 | 0.022 | 0.155 | 0.060 | - | - | 92.651 |
5 | - | 5.152 | - | - | 0.122 | 0.339 | 0.010 | 86.325 | 0.566 | 0.106 | - | 0.052 | 0.087 | - | - | 92.759 |
6 | 0.048 | 4.175 | 0.064 | - | - | 0.215 | 0.014 | 89.177 | 0.578 | - | 0.053 | 0.050 | 0.051 | - | - | 94.425 |
7 | - | 5.022 | 0.120 | - | - | 0.551 | 0.004 | 86.289 | 0.356 | 0.029 | - | 0.061 | 0.050 | - | - | 92.482 |
8 | - | 3.798 | - | - | 0.099 | 0.001 | - | 86.103 | 1.370 | 0.172 | - | 0.068 | 0.125 | - | - | 91.736 |
9 | - | 5.264 | - | - | 0.022 | 0.415 | - | 85.188 | 0.979 | 0.065 | - | 0.156 | 0.131 | - | 0.001 | 92.221 |
10 | - | 5.537 | - | - | - | 0.244 | 0.019 | 84.327 | 0.926 | 0.097 | 0.028 | 0.193 | 0.126 | - | 0.001 | 91.498 |
序号 | 同位素比值 | 年龄(Ma) | ||||
---|---|---|---|---|---|---|
207Pb/206Pb(1 σ) | 207Pb/235U(1 σ) | 206Pb/238U(1 σ) | 207Pb/235U(1 σ) | 206Pb/238U(1 σ) | ||
1 | 0.06260(0.00036) | 0.09195(0.00201) | 0.01065(0.00024) | 67.0(1.52) | 68.3(1.52) | |
2 | 0.06292(0.00039) | 0.09428(0.00267) | 0.01088(0.00030) | 68.4(1.92) | 69.8(1.92) | |
3 | 0.06279(0.00033) | 0.10192(0.00224) | 0.01177(0.00025) | 74.0(1.61) | 75.4(1.61) | |
4 | 0.06581(0.00037) | 0.10382(0.00239) | 0.01144(0.00026) | 71.7(1.68) | 73.4(1.68) | |
5 | 0.06502(0.00048) | 0.10066(0.00248) | 0.01124(0.00027) | 70.4(1.74) | 72.0(1.74) | |
6 | 0.06341(0.00033) | 0.09527(0.00260) | 0.01091(0.00030) | 68.5(1.88) | 69.9(1.88) | |
7 | 0.06512(0.00044) | 0.10260(0.00267) | 0.01144(0.00030) | 71.7(1.93) | 73.3(1.93) | |
8 | 0.06722(0.00040) | 0.10333(0.00280) | 0.01114(0.00029) | 69.6(1.85) | 71.4(1.85) | |
9 | 0.06404(0.00031) | 0.10382(0.00418) | 0.01177(0.00049) | 73.9(3.13) | 75.5(3.13) | |
10 | 0.06495(0.00035) | 0.10267(0.00339) | 0.01147(0.00039) | 71.9(2.46) | 73.5(2.46) | |
11 | 0.06163(0.00034) | 0.10093(0.00380) | 0.01188(0.00045) | 74.8(2.84) | 76.1(2.84) | |
12 | 0.06245(0.00037) | 0.10146(0.00394) | 0.01176(0.00046) | 74.0(2.93) | 75.4(2.93) |
Table 2 In-situ micro-area U-Pb dating results of uraninite by LA-ICP-MS
序号 | 同位素比值 | 年龄(Ma) | ||||
---|---|---|---|---|---|---|
207Pb/206Pb(1 σ) | 207Pb/235U(1 σ) | 206Pb/238U(1 σ) | 207Pb/235U(1 σ) | 206Pb/238U(1 σ) | ||
1 | 0.06260(0.00036) | 0.09195(0.00201) | 0.01065(0.00024) | 67.0(1.52) | 68.3(1.52) | |
2 | 0.06292(0.00039) | 0.09428(0.00267) | 0.01088(0.00030) | 68.4(1.92) | 69.8(1.92) | |
3 | 0.06279(0.00033) | 0.10192(0.00224) | 0.01177(0.00025) | 74.0(1.61) | 75.4(1.61) | |
4 | 0.06581(0.00037) | 0.10382(0.00239) | 0.01144(0.00026) | 71.7(1.68) | 73.4(1.68) | |
5 | 0.06502(0.00048) | 0.10066(0.00248) | 0.01124(0.00027) | 70.4(1.74) | 72.0(1.74) | |
6 | 0.06341(0.00033) | 0.09527(0.00260) | 0.01091(0.00030) | 68.5(1.88) | 69.9(1.88) | |
7 | 0.06512(0.00044) | 0.10260(0.00267) | 0.01144(0.00030) | 71.7(1.93) | 73.3(1.93) | |
8 | 0.06722(0.00040) | 0.10333(0.00280) | 0.01114(0.00029) | 69.6(1.85) | 71.4(1.85) | |
9 | 0.06404(0.00031) | 0.10382(0.00418) | 0.01177(0.00049) | 73.9(3.13) | 75.5(3.13) | |
10 | 0.06495(0.00035) | 0.10267(0.00339) | 0.01147(0.00039) | 71.9(2.46) | 73.5(2.46) | |
11 | 0.06163(0.00034) | 0.10093(0.00380) | 0.01188(0.00045) | 74.8(2.84) | 76.1(2.84) | |
12 | 0.06245(0.00037) | 0.10146(0.00394) | 0.01176(0.00046) | 74.0(2.93) | 75.4(2.93) |
[50] | ALEXANDRE P, KYSER T K. Effects of Cationic Substitutions and Alteration in Uraninite, and Impications for the Dating of Uranium Deposits[J]. The Canadian Mineralogist, 2005, 43(3): 1005-1017. |
[51] | MUKHOPADHYAY J, MISHRA B, CHAKRABARTI K, et al. Uraniferous paleoplacers of the Mesoarchean Mahagiri Quartzite, Singhbhum craton, India: Depositional controls, nature and source of >3.0 Ga detrital uraninites[J]. Ore Geology Reviews, 2016,72: 1290-1306. |
[52] | FRIMMEL H, SCHEDEL S, BRÄTZ H. Uraninite Chemistry as Forensic Tool for Provenance Analysis[J]. Applied Geochemistry, 2014,48:104-121. |
[53] | CUNEY M. Evolution of Uranium Fractionation Processes through Time: Driving the Secular Variation of Uranium Deposit Types[J]. Economic Geology, 2010, 105(3): 553-569. |
[54] | 黄广文, 潘春蓉, 潘家永, 等. 东秦岭大石沟钼矿床中晶质铀矿年代学研究及其地质意义[J]. 地质学报, 2022,96: 1-22. |
[55] | 陈佑纬, 胡瑞忠, 骆金诚, 等. 桂北沙子江铀矿床沥青铀矿原位微区年代学和元素分析:对铀成矿作用的启示[J]. 岩石学报, 2019, 35(9): 2679-2694. |
[56] | 钟福军, 严杰, 夏菲, 等. 粤北长江花岗岩型铀矿田沥青铀矿原位U-Pb年代学研究及其地质意义[J]. 岩石学报, 2019, 35(9): 2727-2744. |
[57] | 郑国栋, 罗强, 刘文泉, 等. 粤北书楼丘铀矿床沥青铀矿原位U-Pb年龄和元素特征及其地质意义[J]. 地球科学, 2021, 46(6): 2172-2187. |
[58] | 葛祥坤. 电子探针定年技术在铀及含铀矿物测年中的开发与研究[D]. 北京: 核工业北京地质研究院, 2013. |
[59] | 肖志斌, 张然, 叶丽娟, 等. 沥青铀矿(GBW04420)的微区原位U-Pb定年分析[J]. 地质调查与研究, 2020, 43(1): 1-4. |
[60] | 刘瑞萍, 郭冬发, 崔建勇, 等. LA-ICP-MS铀矿物微区原位U-Pb同位素年龄测定[J]. 铀矿地质, 2021, 37(6): 1141-1154. |
[61] | ZHANG L, WANG F, ZHOU T, et al. Contrasting U-Pb geochronology and geochemistry of uraninite from the Xianshi and Xiwang uranium deposits, South China: Implications for ore genesis[J]. Ore Geology Reviews, 2022,149: 105120. |
[1] | LUO J, HU R, SHI S. Timing of uranium mineralization and geological implications of Shazijiang Granite-Hosted uranium deposit in Guangxi, South China: New constraint from chemical U-Pb age[J]. Journal of Earth Science, 2015, 26(6): 911-919. |
[2] | LUO J, HU R, FAYEK M, et al. In-situ SIMS uraninite U-Pb dating and genesis of the Xianshi granite-hosted uranium deposit, South China[J]. Ore Geology Reviews, 2015,65: 968-978. |
[3] | BONNETTI C, LIU X, MERCADIER J, et al. The genesis of granite-related hydrothermal uranium deposits in the Xiazhuang and Zhuguang ore fields, North Guangdong Province, SE China: Insights from mineralogical, trace elements and U-Pb isotopes signatures of the U mineralisation[J]. Ore Geology Reviews, 2018,92: 588-612. |
[4] | ZHONG F, PAN J, QI J, et al. New In-Situ LA-ICP-MS U-Pb Ages of Uraninite from the Mianhuakeng Uranium Deposit, Northern Guangdong Province, China: Constraint on the Metallogenic Mechanism[J]. Acta Geologica Sinica(English Edition), 2018, 92(2): 852-854. |
[5] | WU Y, MINGKUAN Q, GUO D, et al. Objective Constraint on the Metallogenic Mechanism[J]. Acta Geologica Sinica(English Edition), 2018, 92(S1):1-12. |
[6] | 郭春影, 秦明宽, 徐浩, 等. 广西苗儿山铀矿田张家铀矿床成矿时代:沥青铀矿微区原位测定[J]. 地球科学, 2020, 45(1): 72-89. |
[7] | 李田港. 波西米亚地块铀矿床(二)[J]. 国外铀金地质, 1996, 13(2): 97-109. |
[8] | PETROŠ R, PROKEŠ S, KOMÍNEK J. Uranium deposit of Príbram, Czechoslovakia[R]. Vienna: IAEA, 1986. |
[9] | KRIBEK B, ZAK K, SPANGENBERG J E, et al. Bitumens in the late Variscan hydrothermal vein-type uranium deposit of Pribram, Czech Republic; sources, radiation-induced alteration, and relation to mineralization[J]. Economic Geology, 1999, 94(7): 1093-1114. |
[10] | ŠKÁCHA P, SEJKORA J, PLÁŠIL J. Selenide Mineralization in the Příbram Uranium and Base-Metal District(Czech Republic)[J]. Minerals(Basel), 2017, 7(6): 91. |
[11] | IAEA. Geological Classification of Uranium Deposits and Description of Selected Examples, IAEA-TECDOC-184[R]. Vienna: International Atomic Energy Agency, 2018. |
[62] | 张红雨, 杨立明, 苏犁, 等. LA-ICP-MS独居石的U(Th)-Pb年龄精确测定方法及地质意义探究[J]. 现代地质, 2023, 37(2): 443-462. |
[63] | 黄卉, 潘家永, 洪斌跃, 等. 陕西华阳川铀-多金属矿床晶质铀矿电子探针U-Th-Pb化学定年及其地质意义[J]. 矿床地质, 2020, 39(2): 351-368. |
[64] | 武勇, 秦明宽, 郭冬发, 等. 康滇地轴中南段牟定1101铀矿区沥青铀矿成矿时代及成因[J]. 地球科学, 2020, 45(2): 419-433. |
[65] | HUANG G, PAN C, PAN J, et al. REE mineralization age and geodynamic setting of the Huanglongpu deposit in the East Qinling orogen, China: Evidence from mineralogy, U-Pb geochronology, and in-situ Nd isotope[J]. Ore Geology Reviews, 2023,152: 105255. |
[66] | 柏道远, 黄建中, 刘耀荣, 等. 湘东南及湘粤赣边区中生代地质构造发展框架的厘定[J]. 中国地质, 2005, 32(4): 557-570. |
[67] | MAO J, PIRAJNO F, COOK N. Mesozoic metallogeny in East China and corresponding geodynamic settings — An introduction to the special issue[J]. Ore Geology Reviews, 2011, 43(1): 1-7. |
[68] | MENG L, LI Z, CHEN H, et al. Geochronological and geochemical results from Mesozoic basalts in southern South China Block support the flat-slab subduction model[J]. Lithos, 2012, 132-133: 127-140. |
[69] | 陈小东, 许厚兴, 李建威, 等. 湘东地区铀成矿远景圈定及定位预测[J]. 铀矿地质, 2002, 18(6): 352-358. |
[70] | HU R Z, BI X W, ZHOU M, et al. Uranium Metallogenesis in South China and Its Relationship to Crustal Extension during the Cretaceous to Tertiary[J]. Economic Geology, 2008,103: 583-598. |
[71] | HU R, BURNARD P G, BI X, et al. Mantle-derived gaseous components in ore-forming fluids of the Xiangshan uranium deposit, Jiangxi province, China: Evidence from He, Ar and C isotopes[J]. Chemical Geology, 2009, 266(1): 86-95. |
[72] | MIN M Z, LUO X Z, DU G S, et al. Mineralogical and geochemical constraints on the genesis of the granite-hosted Huangao uranium deposit, SE China[J]. Ore Geology Reviews, 1999, 14(2): 105-127. |
[73] |
FAN P, LI M, HUANG H, et al. Mineral Chemistry and Chronology Investigation of Uraninite in the Jinguanchong Uranium Deposit in Eastern Hunan Province and the Implications for Geological Significance[J]. ACS Omega, 2024, 9(9): 10782-10792.
DOI PMID |
[74] | 李紫金, 傅昭仁, 李建威. 湘赣边区NNE向走滑断裂-流体-铀成矿动力学分析[J]. 现代地质, 1998(4): 67-76. |
[12] | BOLONIN A V, GRADOVSKY I F. Supergene processes and uranium ore formation in the Ronneburg ore field, Germany[J]. Geology of Ore Deposits, 2012, 54(2): 122-131. |
[13] | LANGE G, FREYHOFF G. Geology and mining in the uranium deposit of Ronneburg/Thuringia. Geologie und Bergbau in der Uranlagerstaette Ronneburg/Thueringen[C]. Germany,1991: 264-269. |
[14] | 赵路通, 王京彬, 王玉往. 西南天山陆相砂砾岩型铜铅锌矿床成矿特征与成矿作用研究进展[J]. 吉林大学学报(地球科学版), 2024, 54(4):1177-1198. |
[15] | VINOKUROV S F, RYBALOV B L, TIMOFEEV A V. Uranium deposits of the Ronneburg ore field(Germany): Tectonic setting, localization conditions and genetic issues[M]. Prague: Czech Republic, 2002: 125-126. |
[16] | 王隆秋. 720铀矿床围岩蚀变及地球化学特征[J]. 湖南地质, 1994(1): 11-16. |
[17] | 李振球. 720富铀矿床热液蚀变及地球化学特征[J]. 铀矿地质, 1995(2): 88. |
[18] | 林锦荣, 蔡根庆, 刘建桥. 明月峰地区碎裂蚀变花岗岩型铀矿研究[J]. 铀矿地质, 1998,(5): 265-273. |
[19] | 李建威, 李紫金, 李先福, 等. 湘东地区某些典型铀矿床的成矿流体特征[J]. 地质科技情报, 1999, 18(4): 63-66. |
[20] | 谭双, 陈琪, 万建军, 等. 苗儿山中段向阳坪铀矿床矿石特征及铀的赋存状态[J]. 东华理工大学学报(自然科学版), 2021, 44(6): 527-539. |
[21] | 王波, 张文高, 陈正乐, 等. 浙北张家坞铀矿床矿石特征及铀的赋存状态研究[J]. 矿物学报, 2022, 42(1): 40-50. |
[22] | 杨世平, 杨细华, 李安邦, 等. 电子探针技术研究大别造山带富硫独居石地球化学特征及稀土矿化成因[J]. 岩矿测试, 2022, 41(4): 541-553. |
[23] | 王芳, 朱丹, 鲁力, 等. 应用电子探针分析技术研究某铌-稀土矿中铌和稀土元素的赋存状态[J]. 岩矿测试, 2021, 40(5): 670-679. |
[24] |
郭伟康, 李光明, 付建刚, 等. 喜马拉雅成矿带嘎波伟晶岩型锂矿成矿时代、岩浆演化及成矿指示意义[J]. 地学前缘, 2023, 30(5): 275-297.
DOI |
[25] | 黄际能. 大富岭铀矿床放射性水化学数据处理方法及其找矿效果[J]. 华东地质学院学报, 1989(4): 48-57. |
[26] |
陈可, 邵拥军, 刘忠法, 等. 岩浆因素对中国东部铜陵矿集区差异性矿化的控制作用:来自角闪石、斜长石矿物学证据[J]. 地学前缘, 2024, 31(3): 199-217.
DOI |
[27] | 王中良, 林木森, 周瑞辉. 滇东南荒田钨矿床白钨矿原位U-Pb年代学、Sr同位素组成及成矿启示[J]. 现代地质, 2025, 39(1): 133-145. |
[28] | 傅昭仁, 李紫金, 郑大瑜. 湘赣边区NNE向走滑造山带构造发展样式[J]. 地学前缘, 1999, 6(4): 263-272. |
[29] | 陈小东, 刘翔, 邓国泉, 等. 湘桂地区中新生代走滑断裂系统对铀成矿的控制作用[J]. 大地构造与成矿学, 2002(4): 345-353. |
[30] | 柏道远, 王先辉, 马铁球, 等. 湘东南印支期褶皱特征及形成机制[J]. 华南地质与矿产, 2006(4): 50-57. |
[31] | 张仲培, 徐勤琪, 刘士林, 等. 塔里木盆地巴麦地区东段北东向走滑断裂体系特征及油气地质意义[J]. 石油实验地质, 2023, 45(4):761-769. |
[32] | 柏道远, 邹宾微, 赵龙辉, 等. 湘东太湖逆冲推覆构造基本特征研究[J]. 中国地质, 2009, 36(1): 53-64. |
[33] | 李建威, 李紫金, 傅昭仁. 湘东金管冲铀矿床控矿构造解析[J]. 华南地质与矿产, 1997(1): 70-75. |
[34] | 贾宝华, 黄建中, 刘耀荣, 等. 中华人民共和国湖南省区域地质志[M]. 北京: 全国地质资料馆, 2011. |
[35] | 谢永坚. 金管冲铀矿床综合找矿方法模式[J]. 世界核地质科学, 2006, 23(1): 38-43. |
[36] | 李彬, 邓新, 李银敏, 等. 湘东丫江桥岩体同位素年代学、地球化学及其构造意义[J]. 华南地质与矿产, 2019, 35(4): 410-422. |
[37] | 于玉帅, 戴平云, 张旺驰, 等. 湘东丫江桥岩体时代与成因:来自LA-ICP-MS锆石U-Pb年代学、地球化学和Lu-Hf同位素制约[J]. 地质学报, 2019, 93(2): 394-413. |
[38] | ZONG K, CHEN J, HU Z, et al. In-situ U-Pb dating of uraninite by fs-LA-ICP-MS[J]. SCIENCE CHINA Earth Sciences, 2015, 58(10): 1731-1740. |
[39] | HU Z, ZHANG W, LIU Y, et al. “Wave” signal-smoothing and mercury-removing device for laser ablation quadrupole and multiple collector ICPMS analysis: application to lead isotope analysis[J]. Analytical Chemistry, 2015, 87(2): 1152-1157. |
[40] | LIU Y, HU Z, GAO S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1): 34-43. |
[41] | LIU Y, GAO S, HU Z, et al. Continental and Oceanic Crust Recycling-induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths[J]. Journal of Petrology, 2010, 51(1-2): 537-571. |
[42] | LUDWIG K R. User’s Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel[Z]. Berkeley CA: Kenneth R. Ludwig, 2003. |
[43] | TERA F, WASSERBURG G J. U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks[J]. Earth and Planetary Science Letters, 1972, 14(3): 281-304. |
[44] | TERA F, WASSERBURG G J. U-Th-Pb systematics in lunar highland samples from the Luna 20 and Apollo 16 missions[J]. Earth and Planetary Science Letters, 1972,17: 36-51. |
[45] | KOTZER T G, KYSER T K. Petrogenesis of the Proterozoic Athabasca Basin, northern Saskatchewan, Canada, and its relation to diagenesis, hydrothermal uranium mineralization and paleohydrogeology[J]. Chemical Geology, 1995, 120(1): 45-89. |
[46] | STACEY J S, KRAMERS J D. Approximation of terrestrial lead isotope evolution by a two-stage model[J]. Earth and Planetary Science Letters, 1975, 26(2): 207-221. |
[47] | 胡子奇, 张德贤, 刘磊. 束斑直径和能量密度对锆石U-Pb定年准确度的影响研究[J]. 现代地质, 2023, 37(3):722-732. |
[48] | ALEXANDRE P, KYSER K, LAYTON-MATTHEWS D, et al. Chemical Compositions of Natural Uraninite[J]. The Canadian Mineralogist, 2016, 53(4): 595-622. |
[49] | LUO J, HU R, FAYEK M, et al. Newly discovered uranium mineralization at -2.0 Ma in the Menggongjie granite-hosted uranium deposit, South China[J]. Journal of Asian Earth Sciences, 2017,137: 241-249. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||