Geoscience ›› 2025, Vol. 39 ›› Issue (04): 931-946.DOI: 10.19657/j.geoscience.1000-8527.2025.021
• Ore Deposit and Petrology • Previous Articles Next Articles
SUN Shiqiang(), CHEN Cuihua*(
), LAI Xiang, GU Ying, ZHAO Wenhao, ZHANG Haijun, MA Tianqi, CHEN Xiaojie, SONG Zhijiao
Online:
2025-08-10
Published:
2025-08-27
Contact:
CHEN Cuihua
CLC Number:
SUN Shiqiang, CHEN Cuihua, LAI Xiang, GU Ying, ZHAO Wenhao, ZHANG Haijun, MA Tianqi, CHEN Xiaojie, SONG Zhijiao. Characteristics of Ore-Forming Fluids and Physicochemical Conditions for Ge Enrichment in the Wusihe Lead-Zinc Deposit, Sichuan[J]. Geoscience, 2025, 39(04): 931-946.
Fig.1 Tectonic setting of South China (a) and regional geological map of the Sichuan-Yunnan-Guizhou Pb-Zn metallogenic belt (b) (modified after Ref.[8])
成矿阶段 | 样品编号 | Mn | Fe | Cu | Ga | Ge | Ag | Cd |
---|---|---|---|---|---|---|---|---|
第Ⅰ阶段 | WSH-10-1-(1)-1 | 59.5 | 27189 | 103.0 | 0.19 | 180.0 | 94.9 | 2863.0 |
WSH-10-1-(1)-2 | 59.2 | 27225 | 101.0 | 1.21 | 148.0 | 84.3 | 2931.0 | |
WSH-10-1-(1)-3 | 65.3 | 27234 | 103.0 | 1.39 | 163.0 | 91.9 | 2954.0 | |
WSH-10-1-(1)-4 | 54.6 | 29176 | 115.0 | 0.47 | 155.0 | 95.7 | 3206.0 | |
WSH-10-1-(2)-1 | 50.5 | 14035 | 82.6 | 0.41 | 195.0 | 50.2 | 2714.0 | |
WSH-10-1-(2)-2 | 53.0 | 4385 | 33.6 | 0.29 | 110.0 | 30.1 | 3589.0 | |
WSH-3-1-(1)-1 | 10.7 | 6462 | 154.0 | 24.80 | 98.4 | 49.1 | 881.0 | |
WSH-3-1-(1)-2 | 6.58 | 4184 | 262.0 | 14.10 | 225.0 | 60.7 | 803.0 | |
WSH-2-(1)-1 | 39.7 | 21318 | 146.0 | 15.10 | 113.0 | 42.5 | 1556.0 | |
WSH-2-(1)-2 | 37.2 | 14776 | 147.0 | 19.10 | 118.0 | 40.1 | 1562.0 | |
WSH-2-(5)-1 | 16.4 | 12249 | 858.0 | 0.30 | 624.0 | 92.8 | 78.7 | |
WSH-2-(5)-2 | 11.3 | 10440 | 666.0 | 0.65 | 511.0 | 73.6 | 54.7 | |
WSH-2-(5)-3 | 24.5 | 9151 | 229.0 | 0.05 | 246.0 | 33.0 | 55.3 | |
第Ⅱ阶段 | WSH-10-1-(3)-1 | 5.86 | 1073 | 60.0 | 3.93 | 50.1 | 61.8 | 4618.0 |
WSH-10-1-(3)-2 | 6.34 | 1437 | 240.0 | 0.59 | 169.0 | 95.7 | 3269.0 | |
WSH-3-1-(2)-1 | 41.80 | 6517 | 115.0 | 2.64 | 78.4 | 47.6 | 3786.0 | |
WSH-3-1-(2)-2 | 43.20 | 7807 | 79.0 | 4.70 | 77.7 | 52.6 | 3750.0 | |
WSH-2-1-(1)-1 | - | 361 | 411.0 | 12.19 | 204.0 | 78.4 | 1850.0 | |
WSH-2-1-(1)-2 | - | 534 | 163.0 | 0.69 | 109.0 | 53.8 | 1926.0 | |
WSH-2-1-(2)-2 | 2.77 | 1357 | 128.0 | 83.7 | 40.6 | 16.9 | 2839.0 | |
WSH-2-(2)-1 | 3.22 | 1059 | 64.1 | 17.5 | 7.90 | 61.7 | 7530.0 | |
WSH-2-(2)-2 | 3.58 | 1218 | 4.96 | 0.44 | 1.54 | 5.49 | 9062.0 | |
WSH-2-(3)-1 | 12.10 | 7560 | 96.0 | 36.1 | 53.1 | 39.7 | 1965.0 | |
WSH-2-(3)-2 | 13.90 | 6693 | 80.7 | 29.1 | 49.3 | 37.3 | 2009.0 | |
WSH-2-(4)-3 | 8.26 | 5620 | 85.6 | 28.2 | 35.8 | 34.8 | 1555.0 | |
WSH10-1-3 | 2.23 | 210 | 155.0 | 20.0 | 73.6 | 144.0 | 2568.0 | |
WSH3-1-4 | 80.60 | 4220 | 97.7 | 1.43 | 70.0 | 81.3 | 2766.0 |
Table 1 LA-ICP-MS analytical results of sphalerite from the Wusihe Deposit (10-6)
成矿阶段 | 样品编号 | Mn | Fe | Cu | Ga | Ge | Ag | Cd |
---|---|---|---|---|---|---|---|---|
第Ⅰ阶段 | WSH-10-1-(1)-1 | 59.5 | 27189 | 103.0 | 0.19 | 180.0 | 94.9 | 2863.0 |
WSH-10-1-(1)-2 | 59.2 | 27225 | 101.0 | 1.21 | 148.0 | 84.3 | 2931.0 | |
WSH-10-1-(1)-3 | 65.3 | 27234 | 103.0 | 1.39 | 163.0 | 91.9 | 2954.0 | |
WSH-10-1-(1)-4 | 54.6 | 29176 | 115.0 | 0.47 | 155.0 | 95.7 | 3206.0 | |
WSH-10-1-(2)-1 | 50.5 | 14035 | 82.6 | 0.41 | 195.0 | 50.2 | 2714.0 | |
WSH-10-1-(2)-2 | 53.0 | 4385 | 33.6 | 0.29 | 110.0 | 30.1 | 3589.0 | |
WSH-3-1-(1)-1 | 10.7 | 6462 | 154.0 | 24.80 | 98.4 | 49.1 | 881.0 | |
WSH-3-1-(1)-2 | 6.58 | 4184 | 262.0 | 14.10 | 225.0 | 60.7 | 803.0 | |
WSH-2-(1)-1 | 39.7 | 21318 | 146.0 | 15.10 | 113.0 | 42.5 | 1556.0 | |
WSH-2-(1)-2 | 37.2 | 14776 | 147.0 | 19.10 | 118.0 | 40.1 | 1562.0 | |
WSH-2-(5)-1 | 16.4 | 12249 | 858.0 | 0.30 | 624.0 | 92.8 | 78.7 | |
WSH-2-(5)-2 | 11.3 | 10440 | 666.0 | 0.65 | 511.0 | 73.6 | 54.7 | |
WSH-2-(5)-3 | 24.5 | 9151 | 229.0 | 0.05 | 246.0 | 33.0 | 55.3 | |
第Ⅱ阶段 | WSH-10-1-(3)-1 | 5.86 | 1073 | 60.0 | 3.93 | 50.1 | 61.8 | 4618.0 |
WSH-10-1-(3)-2 | 6.34 | 1437 | 240.0 | 0.59 | 169.0 | 95.7 | 3269.0 | |
WSH-3-1-(2)-1 | 41.80 | 6517 | 115.0 | 2.64 | 78.4 | 47.6 | 3786.0 | |
WSH-3-1-(2)-2 | 43.20 | 7807 | 79.0 | 4.70 | 77.7 | 52.6 | 3750.0 | |
WSH-2-1-(1)-1 | - | 361 | 411.0 | 12.19 | 204.0 | 78.4 | 1850.0 | |
WSH-2-1-(1)-2 | - | 534 | 163.0 | 0.69 | 109.0 | 53.8 | 1926.0 | |
WSH-2-1-(2)-2 | 2.77 | 1357 | 128.0 | 83.7 | 40.6 | 16.9 | 2839.0 | |
WSH-2-(2)-1 | 3.22 | 1059 | 64.1 | 17.5 | 7.90 | 61.7 | 7530.0 | |
WSH-2-(2)-2 | 3.58 | 1218 | 4.96 | 0.44 | 1.54 | 5.49 | 9062.0 | |
WSH-2-(3)-1 | 12.10 | 7560 | 96.0 | 36.1 | 53.1 | 39.7 | 1965.0 | |
WSH-2-(3)-2 | 13.90 | 6693 | 80.7 | 29.1 | 49.3 | 37.3 | 2009.0 | |
WSH-2-(4)-3 | 8.26 | 5620 | 85.6 | 28.2 | 35.8 | 34.8 | 1555.0 | |
WSH10-1-3 | 2.23 | 210 | 155.0 | 20.0 | 73.6 | 144.0 | 2568.0 | |
WSH3-1-4 | 80.60 | 4220 | 97.7 | 1.43 | 70.0 | 81.3 | 2766.0 |
热液期成矿阶段 | 寄主矿物 | 测试个数 | 大小(μm) | 均一相态 | 均一温度(℃) | 冰点(℃) | 盐度w(NaCleq) | pH |
---|---|---|---|---|---|---|---|---|
Ⅰ | 闪锌矿 | 22 | 3~15 | L | 154.0~269.0 | -9.8~-3.2 | 5.3~13.7 | 5.42~5.66 |
石英 | 14 | 7~40 | L | 153.2~290.0 | -7.1~-0.9 | 1.6~10.6 | 5.44~5.66 | |
白云石 | 18 | 3~13 | L | 150.1~254.2 | -9.0~-2.3 | 3.9~12.8 | 5.44~5.66 | |
Ⅱ | 闪锌矿 | 17 | 3~15 | L | 144.6~210.8 | -3.9~-0.8 | 1.4~6.3 | 5.47~5.70 |
石英 | 14 | 6~40 | L | 160.0~236.9 | -8.6~-1.5 | 2.6~12.4 | 5.46~5.63 | |
白云石 | 16 | 3~10 | L | 152.7~203.5 | -9.4~-3.0 | 5.0~13.3 | 5.48~5.66 |
Table 2 Microthermometric data of fluid inclusions from each mineralization stage of the hydrothermal period
热液期成矿阶段 | 寄主矿物 | 测试个数 | 大小(μm) | 均一相态 | 均一温度(℃) | 冰点(℃) | 盐度w(NaCleq) | pH |
---|---|---|---|---|---|---|---|---|
Ⅰ | 闪锌矿 | 22 | 3~15 | L | 154.0~269.0 | -9.8~-3.2 | 5.3~13.7 | 5.42~5.66 |
石英 | 14 | 7~40 | L | 153.2~290.0 | -7.1~-0.9 | 1.6~10.6 | 5.44~5.66 | |
白云石 | 18 | 3~13 | L | 150.1~254.2 | -9.0~-2.3 | 3.9~12.8 | 5.44~5.66 | |
Ⅱ | 闪锌矿 | 17 | 3~15 | L | 144.6~210.8 | -3.9~-0.8 | 1.4~6.3 | 5.47~5.70 |
石英 | 14 | 6~40 | L | 160.0~236.9 | -8.6~-1.5 | 2.6~12.4 | 5.46~5.63 | |
白云石 | 16 | 3~10 | L | 152.7~203.5 | -9.4~-3.0 | 5.0~13.3 | 5.48~5.66 |
Fig.9 Comparison of trace element contents in sphalerite from the Wusihe deposit (data of some deposits in the Sichuan-Yunnan-Guizhou region are cited from references [6] and [31])
Fig.10 Relationship between salinity of ore-forming fluids and Ge enrichment in sphalerite (data from other deposits are cited from references [41-48])
序号 | 反应方程式 | 序号 | 反应方程式 |
---|---|---|---|
1 | Ge+O2=GeO2 | 2 | Ge+S2=GeS2 |
3 | GeS2+O2=GeO2+S2 | 4 | Zn+1/2O2=ZnO |
5 | Zn+1/2S2=ZnS | 6 | ZnS+1/2O2=ZnO+1/2S2 |
7 | Pb+ 1/2O2=PbO | 8 | 3Pb+2O2=Pb3O4 |
9 | Pb+O2=PbO2 | 10 | Pb+1/2S2=PbS |
11 | PbS+1/2O2=PbO+1/2S2 | 12 | 3PbS+ 2O2=Pb3O4+3/2S2 |
13 | PbS+O2=PbO2+1/2S2 | 14 | 4S2=S8 |
15 | 3Fe+2O2=Fe3O4 | 16 | Fe3O4+1/2O2=3Fe2O3 |
17 | Fe+1/2S2=FeS | 18 | FeS+1/2S2=FeS2 |
19 | 3FeS+2O2=Fe3O4+3/2S2 | 20 | 3FeS2+2O2=Fe3O4+3S2 |
21 | 3FeS2+3/2O2=Fe2O3+2S2 |
Table 3 Chemical formulas of relevant reactions
序号 | 反应方程式 | 序号 | 反应方程式 |
---|---|---|---|
1 | Ge+O2=GeO2 | 2 | Ge+S2=GeS2 |
3 | GeS2+O2=GeO2+S2 | 4 | Zn+1/2O2=ZnO |
5 | Zn+1/2S2=ZnS | 6 | ZnS+1/2O2=ZnO+1/2S2 |
7 | Pb+ 1/2O2=PbO | 8 | 3Pb+2O2=Pb3O4 |
9 | Pb+O2=PbO2 | 10 | Pb+1/2S2=PbS |
11 | PbS+1/2O2=PbO+1/2S2 | 12 | 3PbS+ 2O2=Pb3O4+3/2S2 |
13 | PbS+O2=PbO2+1/2S2 | 14 | 4S2=S8 |
15 | 3Fe+2O2=Fe3O4 | 16 | Fe3O4+1/2O2=3Fe2O3 |
17 | Fe+1/2S2=FeS | 18 | FeS+1/2S2=FeS2 |
19 | 3FeS+2O2=Fe3O4+3/2S2 | 20 | 3FeS2+2O2=Fe3O4+3S2 |
21 | 3FeS2+3/2O2=Fe2O3+2S2 |
温度(K) | 413.15 | 453.15 | 493.15 | 533.15 |
---|---|---|---|---|
log | log | log | log | log |
log fS2 | -21.53≤log | -18.64≤log | -15.75≤log | -13.62≤log fS2≤-3.94 |
Table 4 log f O 2-log f S 2 for precipitation of Ge-rich sphalerite-galena-pyrite at different temperatures
温度(K) | 413.15 | 453.15 | 493.15 | 533.15 |
---|---|---|---|---|
log | log | log | log | log |
log fS2 | -21.53≤log | -18.64≤log | -15.75≤log | -13.62≤log fS2≤-3.94 |
序号 | 反应方程式 | 序号 | 反应方程式 |
---|---|---|---|
1 | H2S=HS-+H+ | 2 | HS-=S2-+H+ |
3 | Zn2++H2S=ZnS+2H+ | 4 | Zn2++HS-=ZnS+H+ |
5 | Zn2++S2-=ZnS | 6 | Ge4++2H2S=GeS2+4H+ |
7 | Ge4++2HS-=GeS2+2H+ | 8 | Ge4++2S2-=GeS2 |
9 | Ge(OH)4+2H2S= GeS2+4H2O | 10 | Ge(OH)4+2HS-= GeS2+2H2O+2OH- |
11 | Ge(OH)4+2S2-= GeS2+4OH- | 12 | ZnC ZnS+4Cl-+2H+ |
13 | ZnC ZnS+4Cl-+H+ | 14 | ZnC ZnS+4Cl- |
Table 5 Relevant chemical reaction equations
序号 | 反应方程式 | 序号 | 反应方程式 |
---|---|---|---|
1 | H2S=HS-+H+ | 2 | HS-=S2-+H+ |
3 | Zn2++H2S=ZnS+2H+ | 4 | Zn2++HS-=ZnS+H+ |
5 | Zn2++S2-=ZnS | 6 | Ge4++2H2S=GeS2+4H+ |
7 | Ge4++2HS-=GeS2+2H+ | 8 | Ge4++2S2-=GeS2 |
9 | Ge(OH)4+2H2S= GeS2+4H2O | 10 | Ge(OH)4+2HS-= GeS2+2H2O+2OH- |
11 | Ge(OH)4+2S2-= GeS2+4OH- | 12 | ZnC ZnS+4Cl-+2H+ |
13 | ZnC ZnS+4Cl-+H+ | 14 | ZnC ZnS+4Cl- |
[1] | 胡瑞忠, 苏文超, 戚华文, 等. 锗的地球化学, 赋存状态和成矿作用[J]. 矿物岩石地球化学通报, 2000, 19(4): 215-217. |
[2] | 周墨, 梁晓红, 张明, 等. 南京市溧水区表层土壤锗地球化学特征及影响因素[J]. 现代地质, 2023, 37(1): 217-226. |
[3] | European Commission Critical Raw Materials for the EU. Report of the Ad Hoc Working Group on Defining Critical Raw Materials. European Commission: Brussels, Belgium, 2014. |
[4] | COOK N J, CIOBANU C L, PRING A, et al. Trace and minor elements in sphalerite: A LA-ICPMS study[J]. Geochimica et Cosmochimica Acta, 2009, 73(16): 4761-4791. |
[5] | LIU W H, MEI Y, ETSCHMANN B, et al. Germanium speciation in experimental and natural sphalerite: Implications for critical metal enrichment in hydrothermal Zn-Pb ores[J]. Geochimica et Cosmochimica Acta, 2023, 342: 198-214. |
[6] | YUAN B, ZHANG C Q, YU H J, et al. Element enrichment characteristics: Insights from element geochemistry of sphalerite in Daliangzi Pb-Zn deposit, Sichuan, Southwest China[J]. Journal of Geochemical Exploration, 2018, 186: 187-201. |
[7] | 魏宇, 杨永峰, 柳维, 等. 四川甘洛铅锌矿集区闪锌矿Rb-Sr等时线年龄及其地质意义[J]. 地质与勘探, 2024, 60(3):482-493. |
[8] | 罗开, 周家喜, 徐畅, 等. 四川乌斯河大型锗铅锌矿床锗超常富集特征及其地质意义[J]. 岩石学报, 2021, 37(9): 2761-2777. |
[9] | MENG Y M, GU X P, MENG S N, et al. Ruizhongite, (Ag2O)Pb3Ge2S8, a thiogermanate mineral from the Wusihe Pb-Zn deposit, Sichuan Province, Southwest China[J]. American Mineralogist, 2023, 108(9): 1818-1823. |
[10] | FRENZEL M, HIRSCH T, GUTZMER J. Gallium, germanium, indium, and other trace and minor elements in sphalerite as a function of deposit type—a meta-analysis[J]. Ore Geology Reviews, 2016, 76: 52-78. |
[11] | BAUER M E, BURISCH M, OSTENDORF J, et al. Trace element geochemistry of sphalerite in contrasting hydrothermal fluid systems of the Freiberg district, Germany: Insights from LA-ICP-MS analysis, near-infrared light microthermometry of sphalerite-hosted fluid inclusions, and sulfur isotope geochemistry[J]. Mineralium Deposita, 2019, 54(2): 237-262. |
[12] | NIU P P, MUÑOZ M, MATHON O, et al. Mechanism of germanium enrichment in the world-class Huize MVT Pb-Zn deposit, southwestern China[J]. Mineralium Deposita, 2024, 59(5): 995-1016. |
[13] | 吉晓佳. 会泽铅锌矿闪锌矿中锗的赋存状态研究和元素替代机制探讨[D]. 北京: 中国地质大学(北京), 2019. |
[14] | 周家喜, 孟庆田, 任厚州, 等. 贵州黄丝背斜地区发现特大型共(伴)生锗矿床[J]. 大地构造与成矿学, 2020, 44(5): 1025-1026. |
[15] | ZHANG J K, SHAO Y J, LIU Z F, et al. Sphalerite as a record of metallogenic information using multivariate statistical analysis: Constraints from trace element geochemistry[J]. Journal of Geochemical Exploration, 2022, 232: 106883. |
[16] | 韦晨, 叶霖, 李珍立, 等. 四川乌斯河铅锌矿床成矿物质来源及矿床成因: 来自原位 S-Pb 同位素证据[J]. 岩石学报, 2020, 36(12): 3783-3796. |
[17] | 熊索菲, 姚书振, 宫勇军, 等. 四川乌斯河铅锌矿床成矿流体特征及 TSR 作用初探[J]. 地球科学, 2016, 41(1): 105-120. |
[18] | ZHANG H J, FAN H F, XIAO C Y, et al. The mixing of multi-source fluids in the Wusihe Zn-Pb ore deposit in Sichuan Province, Southwestern China[J]. Acta Geochimica, 2019, 38(5): 642-653. |
[19] | 王雅萍, 鲍志东, 张连进, 等. 四川盆地蓬莱地区埃迪卡拉系灯影组二段微生物岩储层成岩作用:对优质储层形成与演化的启示[J]. 地质力学学报, 2024, 30(4):579-594. |
[20] | LUO K, ZHOU J X, HUANG Z L, et al. New insights into the evolution of Mississippi Valley-Type hydrothermal system: A case study of the Wusihe Pb-Zn deposit, South China, using quartz in situ trace elements and sulfides in situ S-Pb isotopes[J]. American Mineralogist, 2020, 105(1): 35-51. |
[21] | ZHOU J X, XIANG Z Z, ZHOU M F, et al. The giant Upper Yangtze Pb-Zn Province in SW China: Reviews, new advances and a new genetic model[J]. Journal of Asian Earth Sciences, 2018, 154: 280-315. |
[22] | QIU Y M, GAO S, MCNAUGHTON N J, et al. First evidence of >3.2 Ga continental crust in the Yangtze craton of South China and its implications for Archean crustal evolution and Phanerozoic tectonics[J]. Geology, 2000, 28(1): 11-14. |
[23] | GAO S, YANG J, ZHOU L, et al. Age and growth of the Archean Kongling terrain, South China, with emphasis on 3.3 Ga granitoid gneisses[J]. American Journal of Science, 2011, 311(2): 153-182. |
[24] | 孙自明, 卞昌蓉, 刘光祥. 峨眉山地幔柱主要研究进展及四川盆地二叠纪成盆动力学机制[J]. 现代地质, 2023, 37(5): 1089-1099. |
[25] | 王亮, 张嘉玮, 向坤鹏, 等. 黔西北地区地球物理特征与铅锌矿控矿构造分析[J]. 现代地质, 2019, 33(2): 325-336. |
[26] | 杨兴玉, 任厚州, 刘雨, 等. 黔西北五指山地区叠加构造变形特征对铅锌矿成矿的控制[J]. 现代地质, 2018, 32(4): 739-749. |
[27] | 林方成. 扬子地台西缘大渡河谷超大型层状铅锌矿床地质地球化学特征及成因[J]. 地质学报, 2005, 79(4): 540-556. |
[28] | HALL D L, STERNER S M, BODNAR R J. Freezing point depression of NaCl-KCl-H2O solutions[J]. Economic Geology, 1988, 83(1): 197-202. |
[29] | 卢焕章, 范宏瑞, 倪培, 等. 流体包裹体[M]. 北京: 科学出版社, 2004. |
[30] | 刘斌. 简单体系水溶液包裹体pH和Eh的计算[J]. 岩石学报, 2011, 27(5): 1533-1542. |
[31] | LIU J J, SPIRO B F, DAI S F, et al. Strontium isotopes in high- and low-Ge coals from the Shengli Coalfield, Inner Mongolia, Northern China: New indicators for Ge source[J]. International Journal of Coal Geology, 2021, 233: 103642. |
[32] | BERNSTEIN L R. Germanium geochemistry and mineralogy[J]. Geochimica et Cosmochimica Acta, 1985, 49(11): 2409-2422. |
[33] | 邵洁涟. 金矿找矿矿物学[M]. 武汉: 中国地质大学出版社, 1988. |
[34] | 王晓虎, 薛春纪, 李智明, 等. 扬子陆块北缘马元铅锌矿床地质和地球化学特征[J]. 矿床地质, 2008, 27(1): 37-48. |
[35] | 刘英俊, 曹励明, 李兆麟, 等. 元素地球化学[M]. 北京: 科学出版社, 1984. |
[36] | LAI X, CHEN C H, YANG Y L, et al. Constraints on metallogenic temperature and mineralization style from reflection color of sphalerite[J]. Ore Geology Reviews, 2023, 161: 105634. |
[37] | YANG Y L, CHEN C H, QIN S P, et al. Mineral textures, mineral chemistry and S isotopes of sulphides from the Tianbaoshan Pb-Zn-Cu deposit in the Sichuan-Yunnan-Guizhou triangle: Implications for mineralization process[J]. Geological Magazine, 2023, 160(3): 471-489. |
[38] | 张雪琴, 徐登峰, 赵云, 等. 新疆东天山照壁山金铅锌多金属矿床地质特征及矿床成因[J]. 矿床地质, 2023, 42(6): 1121-1138. |
[39] | KELLEY K D. Textural, compositional, and sulfur isotope variations of sulfide minerals in the red dog Zn-Pb-Ag deposits, Brooks range, Alaska: Implications for ore formation[J]. Economic Geology, 2004, 99(7): 1509-1532. |
[40] | 卢焕章, 池国祥, 王中刚. 典型金属矿床的成因及其构造环境[M]. 北京: 地质出版社, 1995. |
[41] | 王健, 张均, 仲文斌, 等. 川滇黔地区天宝山, 会泽铅锌矿床成矿流体来源初探: 来自流体包裹体及氦氩同位素的证据[J]. 地球科学, 2018, 43(6): 2076-2099. |
[42] | 陈锌. 四川会东大梁子铅锌矿床成矿模式综合研究[D]. 成都: 成都理工大学, 2021. |
[43] | 余冲, 魏美丽, 胡广灿. 四川会理县天宝山铅锌矿流体包裹体地球化学特征[J]. 云南地质, 2015, 34(4): 531-538. |
[44] | 杨清, 张均, 王健, 等. 四川天宝山大型铅锌矿床成矿流体及同位素地球化学[J]. 矿床地质, 2018, 37(4): 816-834. |
[45] | 王海, 王京彬, 祝新友, 等. 扬子地台西缘大梁子铅锌矿床成因: 流体包裹体及同位素地球化学约束[J]. 大地构造与成矿学, 2018, 42(4): 681-698. |
[46] | 王海, 祝新友, 王京彬, 等. 四川天宝山铅锌矿成矿物质来源与成矿机制: 来自流体包裹体及同位素地球化学制约[J]. 岩石学报, 2021, 37(6): 1830-1846. |
[47] | 黎洪秩. 陕西马元地区楠木树铅锌矿床有机流体成矿的包裹体证据[D]. 成都: 成都理工大学, 2017. |
[48] | 张艳. 滇东北矿集区会泽超大型铅锌矿床流体混合成矿机制[D]. 昆明: 昆明理工大学, 2016. |
[49] | 张振亮. 云南会泽铅锌矿床成矿流体性质和来源: 来自流体包裹体和水岩反应实验的证据[D]. 贵阳: 中国科学院地球化学研究所, 2006. |
[50] | 林传仙, 白正华, 张哲儒. 矿物及有关化合物热力学数据手册[M]. 北京: 科学出版社, 1985. |
[51] | 叶大伦, 胡建华. 实用无机物热力学数据手册[M]. 2版. 北京: 冶金工业出版社, 2002. |
[52] | 刘金波. 广东凡口铅锌矿床闪锌矿矿物学和地球化学研究[D]. 长沙: 中南大学, 2023. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||