Geoscience ›› 2021, Vol. 35 ›› Issue (05): 1450-1458.DOI: 10.19657/j.geoscience.1000-8527.2021.048
Previous Articles Next Articles
YANG Qiong1(), YANG Zhongfang1(
), JI Junfeng2, LIU Xu1, JI Wenbing3, WANG Jue1, WU Tiansheng4, WANG Lei5
Received:
2020-11-10
Revised:
2021-04-06
Online:
2021-10-10
Published:
2021-11-04
Contact:
YANG Zhongfang
CLC Number:
YANG Qiong, YANG Zhongfang, JI Junfeng, LIU Xu, JI Wenbing, WANG Jue, WU Tiansheng, WANG Lei. Characteristics of Mineralogy and Heavy Metal Geochemistry in Ferromanganese Nodule Rich Soils with High Geochemical Background from Guigang, Guangxi[J]. Geoscience, 2021, 35(05): 1450-1458.
序号 | 粒径/目 | pH | Al2O3 | TFe2O3 | Mn | As | Cd | Cr | Cu | Hg | Ni | Pb | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 10~20 | 6.52 | 30.73 | 22.87 | 1 807 | 85.7 | 6.152 | 1 520 | 67 | 0.501 | 179 | 124.5 | 791 |
2 | 20~40 | 6.40 | 34.24 | 14.78 | 1 487 | 40.8 | 3.870 | 757 | 58 | 0.486 | 156 | 95.3 | 622 |
3 | 40~60 | 6.39 | 34.88 | 11.83 | 1 341 | 35.1 | 3.458 | 544 | 56 | 0.493 | 152 | 87.9 | 588 |
4 | 60~80 | 6.48 | 35.41 | 10.75 | 1 338 | 30.3 | 3.402 | 449 | 59 | 0.512 | 153 | 85.4 | 575 |
5 | 80~100 | 6.50 | 34.72 | 10.13 | 1 227 | 27.8 | 3.080 | 398 | 55 | 0.467 | 143 | 79.2 | 547 |
6 | 100~120 | 6.52 | 35.37 | 9.87 | 1 252 | 27.8 | 3.302 | 366 | 58 | 0.483 | 148 | 82.0 | 557 |
7 | <120 | 6.45 | 35.06 | 9.69 | 1 222 | 28.7 | 3.067 | 355 | 59 | 0.536 | 143 | 81.2 | 538 |
平均值 | 6.48* | 34.34 | 12.85 | 1 382 | 39.5 | 3.762 | 627 | 59 | 0.497 | 153 | 90.8 | 603 |
Table 1 The chemical properties and heavy metal concentrations in ferromanganese nodules of different sizes
序号 | 粒径/目 | pH | Al2O3 | TFe2O3 | Mn | As | Cd | Cr | Cu | Hg | Ni | Pb | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 10~20 | 6.52 | 30.73 | 22.87 | 1 807 | 85.7 | 6.152 | 1 520 | 67 | 0.501 | 179 | 124.5 | 791 |
2 | 20~40 | 6.40 | 34.24 | 14.78 | 1 487 | 40.8 | 3.870 | 757 | 58 | 0.486 | 156 | 95.3 | 622 |
3 | 40~60 | 6.39 | 34.88 | 11.83 | 1 341 | 35.1 | 3.458 | 544 | 56 | 0.493 | 152 | 87.9 | 588 |
4 | 60~80 | 6.48 | 35.41 | 10.75 | 1 338 | 30.3 | 3.402 | 449 | 59 | 0.512 | 153 | 85.4 | 575 |
5 | 80~100 | 6.50 | 34.72 | 10.13 | 1 227 | 27.8 | 3.080 | 398 | 55 | 0.467 | 143 | 79.2 | 547 |
6 | 100~120 | 6.52 | 35.37 | 9.87 | 1 252 | 27.8 | 3.302 | 366 | 58 | 0.483 | 148 | 82.0 | 557 |
7 | <120 | 6.45 | 35.06 | 9.69 | 1 222 | 28.7 | 3.067 | 355 | 59 | 0.536 | 143 | 81.2 | 538 |
平均值 | 6.48* | 34.34 | 12.85 | 1 382 | 39.5 | 3.762 | 627 | 59 | 0.497 | 153 | 90.8 | 603 |
序号 | 粒径/目 | As | Cd | Cr | Cu | Hg | Ni | Pb | Zn |
---|---|---|---|---|---|---|---|---|---|
1 | 10~20 | 56.8 | 48.2 | 59.4 | 38.2 | 34.7 | 38.5 | 42.8 | 41.7 |
2 | 20~40 | 16.6 | 18.6 | 18.1 | 20.1 | 20.6 | 20.5 | 20.0 | 20.1 |
3 | 40~60 | 11.5 | 13.4 | 10.5 | 15.6 | 16.8 | 16.1 | 14.9 | 15.3 |
4 | 60~80 | 4.7 | 6.3 | 4.1 | 7.9 | 8.4 | 7.8 | 6.9 | 7.1 |
5 | 80~100 | 2.3 | 3.1 | 2.0 | 4.0 | 4.1 | 3.9 | 3.5 | 3.7 |
6 | 100~120 | 1.6 | 2.3 | 1.3 | 2.9 | 3.0 | 2.8 | 2.5 | 2.6 |
7 | <120 | 6.4 | 8.1 | 4.7 | 11.3 | 12.5 | 10.4 | 9.4 | 9.6 |
Table 2 PQ values of heavy metals in ferromanganese nodules of different sizes (%)
序号 | 粒径/目 | As | Cd | Cr | Cu | Hg | Ni | Pb | Zn |
---|---|---|---|---|---|---|---|---|---|
1 | 10~20 | 56.8 | 48.2 | 59.4 | 38.2 | 34.7 | 38.5 | 42.8 | 41.7 |
2 | 20~40 | 16.6 | 18.6 | 18.1 | 20.1 | 20.6 | 20.5 | 20.0 | 20.1 |
3 | 40~60 | 11.5 | 13.4 | 10.5 | 15.6 | 16.8 | 16.1 | 14.9 | 15.3 |
4 | 60~80 | 4.7 | 6.3 | 4.1 | 7.9 | 8.4 | 7.8 | 6.9 | 7.1 |
5 | 80~100 | 2.3 | 3.1 | 2.0 | 4.0 | 4.1 | 3.9 | 3.5 | 3.7 |
6 | 100~120 | 1.6 | 2.3 | 1.3 | 2.9 | 3.0 | 2.8 | 2.5 | 2.6 |
7 | <120 | 6.4 | 8.1 | 4.7 | 11.3 | 12.5 | 10.4 | 9.4 | 9.6 |
序号 | 粒径/目 | 赤铁矿Hm | 针铁矿Gt | Hm/TFe2O3 | Gt/TFe2O3 | (Hm+Gt)/TFe2O3 |
---|---|---|---|---|---|---|
1 | 10~20 | 1.48 | 11.70 | 6.47 | 51.16 | 57.63 |
2 | 20~40 | 0.70 | 4.98 | 4.75 | 33.69 | 38.43 |
3 | 40~60 | 0.47 | 3.77 | 3.96 | 31.84 | 35.79 |
4 | 60~80 | 0.42 | 3.53 | 3.90 | 32.81 | 36.71 |
5 | 80~100 | 0.44 | 3.88 | 4.38 | 38.31 | 42.69 |
6 | 100~120 | 0.42 | 3.72 | 4.24 | 37.72 | 41.96 |
7 | <120 | 0.35 | 2.99 | 3.66 | 30.88 | 34.53 |
平均含量 | 0.61 | 4.94 | 4.48 | 36.63 | 41.11 |
Table 3 Contents of hematite (Hm) and goethite (Gt) in ferromanganese nodules of different sizes(%)
序号 | 粒径/目 | 赤铁矿Hm | 针铁矿Gt | Hm/TFe2O3 | Gt/TFe2O3 | (Hm+Gt)/TFe2O3 |
---|---|---|---|---|---|---|
1 | 10~20 | 1.48 | 11.70 | 6.47 | 51.16 | 57.63 |
2 | 20~40 | 0.70 | 4.98 | 4.75 | 33.69 | 38.43 |
3 | 40~60 | 0.47 | 3.77 | 3.96 | 31.84 | 35.79 |
4 | 60~80 | 0.42 | 3.53 | 3.90 | 32.81 | 36.71 |
5 | 80~100 | 0.44 | 3.88 | 4.38 | 38.31 | 42.69 |
6 | 100~120 | 0.42 | 3.72 | 4.24 | 37.72 | 41.96 |
7 | <120 | 0.35 | 2.99 | 3.66 | 30.88 | 34.53 |
平均含量 | 0.61 | 4.94 | 4.48 | 36.63 | 41.11 |
[1] | 温琰茂, 曾水泉, 潘树荣, 等. 中国东部石灰岩土壤元素含量分异规律研究[J]. 地理科学, 1994, 14(1):16-21. |
[2] | 赵中秋, 后立胜, 蔡运龙. 西南喀斯特地区土壤退化过程与机理探讨[J]. 地学前缘, 2006, 13(3):185-189. |
[3] | 王世杰, 季宏兵, 欧阳自远, 等. 碳酸盐岩风化成土作用的初步研究[J]. 中国科学(D辑), 1999, 29(5):441-449. |
[4] | 李德文, 崔之久, 刘耕年, 等. 岩溶风化壳形成演化及其循环意义[J]. 中国岩溶, 2001, 20(3):183-188. |
[5] | 杨琼, 侯青叶, 顾秋蓓, 等. 广西武鸣县典型土壤剖面Se的地球化学特征及其影响因素研究[J]. 现代地质, 2016, 30(2):455-462. |
[6] |
PALUMBO B, BELLANCA A, NERI R, et al. Trace metal partitioning in Fe-Mn nodules from Sicilian soils, Italy[J]. Chemical Geology, 2001, 173(4):257-269.
DOI URL |
[7] |
GIRAO R D O, MOREIRA L J D S, GIRAO A L D A, et al. Soil genesis and iron nodules in a karst environment of the Apodi Plateau[J]. Revista Ciencia Agronomica, 2014, 45(4):683-695.
DOI URL |
[8] |
LATRILLE C, ELSASS F, OORT F V, et al. Physical speciation of trace metals in Fe-Mn concretions from a rendzic lithosol developed on Sinemurian limestones (France)[J]. Geoderma, 2001, 100(1/2):127-146.
DOI URL |
[9] | BAKKER A P D, TOKASHIKI Y, ARACHCHI L P V. Mineralogy of Okinawan terrestrial Fe/Mn nodules and their surrounding soils[J]. Clay Science, 2003, 12(3):121-130. |
[10] |
FENG J L. Behaviour of rare earth elements and yttrium in ferromanganese concretions, gibbsite spots, and the surrounding terra rossa over dolomite during chemical weathering[J]. Chemical Geology, 2010, 271(3/4):112-132.
DOI URL |
[11] |
FENG J L. Trace elements in ferromanganese concretions, gibbsite spots, and the surrounding terra rossa overlying dolomite: Their mobilization, redistribution and fractionation[J]. Journal of Geochemical Exploration, 2011, 108(1):99-111.
DOI URL |
[12] |
WEN Y B, LI W, YANG Z F, et al. Enrichment and source identification of Cd and other heavy metals in soils with high geochemical background in the karst region, Southwestern China[J]. Chemosphere, 2020, 245:125620.
DOI URL |
[13] | 刘旭, 顾秋蓓, 杨琼, 等. 广西象州与横县碳酸盐岩分布区土壤中Cd形态分布特征及影响因素[J]. 现代地质, 2017, 31(2):374-385. |
[14] | 苏春田, 唐健生, 邹胜章, 等. 锰元素在铁锰结核-土壤-旱地作物的分布研究[J]. 热带地理, 2011, 31(3):262-265. |
[15] |
GAO T, KE S, WANG S J, et al. Contrasting Mg isotopic compositions between Fe-Mn nodules and surrounding soils: Accumulation of light Mg isotopes by Mg-depleted clay minerals and Fe oxides[J]. Geochimica et Cosmochimica Acta, 2018, 237:205-222.
DOI URL |
[16] | 唐瑞玲, 王惠艳, 吕许朋, 等. 西南重金属高背景区农田系统土壤重金属生态风险评价[J]. 现代地质, 2020, 34(5):917-927. |
[17] |
JI W B, YANG Z F, YU T, et al. Potential ecological risk assessment of heavy metals in the Fe-Mn nodules in the karst area of Guangxi, Southwest China[J]. Bulletin of Environmental Contamination and Toxicology, 2021, 106(3):51-56.
DOI URL |
[18] |
LIU Q S, TORRENT J, BARRON V, et al. Quantification of hematite from the visible diffuse reflectance spectrum: effects of aluminium substitution and grain morphology[J]. Clay Minerals, 2011, 46:137-147.
DOI URL |
[19] |
HAN J, KATZ L E. Capturing the variable reactivity of goethites in surface complexation modeling by correlating model parameters with specific surface area[J]. Geochimica et Cosmochimica Acta, 2019, 244:248-263.
DOI URL |
[20] | 朱立军, 李景阳. 碳酸盐岩红色风化壳中的氧化铁矿物[J]. 地质科学, 2001, 36(4):395-401. |
[21] |
ZHANG Y G, JI J F, BALSAM W L, et al. High resolution hematite and goethite records from ODP 1143, South China Sea: Co-evolution of monsoonal precipitation and El Niño over the past 600,000 years[J]. Earth and Planetary Science Letters, 2007, 264(1/2):136-150.
DOI URL |
[22] |
ZHOU W, CHEN L X, ZHOU M, et al. Thermal identification of goethite in soils and sediments by diffuse reflectance spectroscopy[J]. Geoderma, 2010, 155(3/4):419-425.
DOI URL |
[23] |
LONG X Y, JI J F, BARRON V, et al. Climatic thresholds for pedogenic iron oxides under aerobic conditions: Processes and their significance in paleoclimate reconstruction[J]. Quaternary Science Reviews, 2016, 150:264-277.
DOI URL |
[24] | 季峻峰, 陈骏, BALSAM W, 等. 黄土剖面中赤铁矿和针铁矿的定量分析与气候干湿变化研究[J]. 第四纪研究, 2007, 27(2):221-229. |
[25] | 李风玲. 长江三角洲地区土壤中铁氧化物对重金属的富集作用[D]. 南京: 南京大学, 2011. |
[26] |
LI M, XI X H, XIAO G Y, et al. National multi-purpose regional geochemical survey in China[J]. Journal of Geochemical Exploration, 2014, 139(1):21-30.
DOI URL |
[27] | 中华人民共和国国土资源部. DZ/T 0258—2014 多目标区域地球化学调查规范 (1:250 000)[S]. 北京: 全国国土资源标准化技术委员会, 2014. |
[28] |
MEHRA O P, JACKSON M L. Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate[J]. Clays and Clay Minerals, 1960, 7(1):317-327.
DOI URL |
[29] |
JI J F, BALSAM W, CHEN J, et al. Rapid and quantitative measurement of hematite and goethite in the Chinese loess-paleosol sequence by diffuse reflectance spectroscopy[J]. Clays and Clay Minerals, 2002, 50(2):208-216.
DOI URL |
[30] | 郑国东. 广西北部湾地区表层土壤重金属分布特征及其影响因素研究[D]. 北京: 中国地质大学 (北京), 2016. |
[31] |
YANG Q, YANG Z F, FILIPPELLI G M, et al. Distribution and secondary enrichment of heavy metal elements in karstic soils with high geochemical background in Guangxi, China[J]. Chemical Geology, 2021, 567:120081.
DOI URL |
[32] | 谌建国, 刘云华, 许俊文. 广西两种三水铝石铝土矿成矿的差异性[J]. 地学前缘, 1999, 6(增):251-256. |
[33] | 张颖异, 程相利, 齐渊洪, 等. 广西贵港高铁型铝土矿的矿物学特征研究[J]. 矿业研究与开发, 2015, 35(5):52-55. |
[34] | 郑国东, 覃建勋, 付伟, 等. 广西北部湾地区表层土壤As分布特征及其影响因素[J]. 吉林大学学报(地球科学版), 2018, 48(1):181-192. |
[35] | 李永华, 王五一, 谭文峰, 等. 土壤铁锰结核中生命有关元素的化学地理特征[J]. 地理研究, 2001, 20(5):609-615. |
[36] | 苏春田, 唐健生, 单海平, 等. 黎塘岩溶区土壤铁锰结核的地球化学特征研究[J]. 中国岩溶, 2008, 27(1):43-49. |
[37] |
CHRISTL I, KRETZSCHMAR R. Interaction of copper and fulvic acid at the hematite-water interface[J]. Geochimica et Cosmochimica Acta, 2001, 65(20):3435-3442.
DOI URL |
[38] |
STICHER H, HOINS U, CHARLETHANS L. Ligand effect on the adsorption of heavy metals: the sulfate-Cadmium-Goethite case[J]. Water, Air and Soil Pollution, 1993, 68(1/2):241-255.
DOI URL |
[39] |
HIEMSTRA T, RIEMSDIJK W H V. A surface structural approach to ion adsorption: the charge distribution (CD) model[J]. Journal of Colloid and Interface Science, 1996, 179(2):488-508.
DOI URL |
[40] | WEERASOORIYA R, TOBSCHALL H J. Modeling the Cd(II) adsorption onto goethite[J]. Toxicological and Environmental Chemistry Reviews, 1999, 68(1/2):169-177. |
[41] |
SWEDLUND P J, WEBSTER J G, MISKELLY G M. Goethite adsorption of Cu(II), Pb(II), Cd(II), and Zn(II) in the presence of sulfate: properties of the ternary complex[J]. Geochimica et Cosmochimica Acta, 2009, 73(6):1548-1562.
DOI URL |
[42] |
MANGOLD J E, CHANG M P, LILJESTRAND H M, et al. Surface complexation modeling of Hg(II) adsorption at the goethite/water interface using the Charge Distribution Multi-Site Complexation (CD-MUSIC) model[J]. Journal of Colloid and Interface Science, 2014, 418:147-161.
DOI URL |
[43] |
JEON B H, DEMPSEY B A, BURGOS W D, et al. Sorption kinetics of Fe(II), Zn(II), Co(II), Ni(II), Cd(II), and Fe(II)/Me(II) onto hematite[J]. Water Research, 2003, 37(17):4135-4142.
DOI URL |
[44] | RIEMSDIJK W H V, HIEMSTRA T. Chapter 8 The CD-MUSIC model as a framework for interpreting ion adsorption on metal (hydr) oxide surfaces[J]. Interface Science and Technology, 2006, 11:251-268. |
[45] |
ELZINGA E J, KRETZSCHMAR R. In situ ATR-FTIR spectroscopic analysis of the co-adsorption of orthophosphate and Cd(II) onto hematite[J]. Geochimica et Cosmochimica Acta, 2013, 117(5):53-64.
DOI URL |
[46] |
KHORSHIDI N, AZADMEHR A R. Characterization and adsorption properties of oxalate-loaded hematite composite for Cd (II) and Pb (II) adsorption: equilibrium models, thermodynamic, and kinetic studies[J]. Separation Science and Technology, 2016, 51(13):2122-2137.
DOI URL |
[47] | GAILLARDET J, VIERS J, DUPRE B. Trace elements in river waters[J]. Treatise on Geochemistry, 2014, 7:195-235. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||