Geoscience ›› 2018, Vol. 32 ›› Issue (03): 574-583.DOI: 10.19657/j.geoscience.1000-8527.2018.03.15
• Hydrogeology and Environmental Geology • Previous Articles Next Articles
WANG Chao(), DONG Shaogang(
), LIU Xiaobo, YANG Yang, LI Zhengkui
Received:
2017-07-15
Revised:
2017-11-14
Online:
2018-06-10
Published:
2023-09-22
Contact:
DONG Shaogang
CLC Number:
WANG Chao, DONG Shaogang, LIU Xiaobo, YANG Yang, LI Zhengkui. Influence of Urbanization on Unconfined Groundwater Recharge in Hohhot, Inner Mongolia[J]. Geoscience, 2018, 32(03): 574-583.
1986年 | ||||||||
---|---|---|---|---|---|---|---|---|
土地利用类型 | 林地 | 草地 | 耕地 | 城镇 | 未利用地 | 水域 | 合计 | |
2014年 | 草地 | 5 697 | 127 449 | 104 616 | 24 066 | 66 141 | 3 330 | 331 299 |
耕地 | 37 107 | 241 416 | 727 452 | 12 465 | 147 591 | 2 961 | 1 168 992 | |
水域 | 477 | 8 469 | 5 301 | 657 | 6 777 | 1 611 | 23 292 | |
城镇 | 78 534 | 450 054 | 892 323 | 715 662 | 559 863 | 19 863 | 2 716 299 | |
未利用地 | 8 352 | 52 596 | 43 398 | 5 067 | 123 183 | 1 395 | 233 991 | |
林地 | 3 159 | 2 367 | 9 036 | 63 | 5 103 | 27 | 19 755 | |
合计 | 133 326 | 882 351 | 1 782 126 | 757 980 | 908 658 | 29 187 | 4 493 628 | |
变化面积 | -113 571 | 551 052 | -613 134 | 1 958 319 | 674 667 | -5 895 | - | |
变化比例/% | -85.18 | -62.45 | -34.41 | -258.36 | -74.25 | -20.20 | - | |
变化倍数 | 0.148 1 | 0.375 5 | 0.656 0 | 3.583 6 | 0.257 5 | 0.798 0 | - |
Table 1 Transfer matrix of land-use change in the study area in 1986 and 2014(100 m2)
1986年 | ||||||||
---|---|---|---|---|---|---|---|---|
土地利用类型 | 林地 | 草地 | 耕地 | 城镇 | 未利用地 | 水域 | 合计 | |
2014年 | 草地 | 5 697 | 127 449 | 104 616 | 24 066 | 66 141 | 3 330 | 331 299 |
耕地 | 37 107 | 241 416 | 727 452 | 12 465 | 147 591 | 2 961 | 1 168 992 | |
水域 | 477 | 8 469 | 5 301 | 657 | 6 777 | 1 611 | 23 292 | |
城镇 | 78 534 | 450 054 | 892 323 | 715 662 | 559 863 | 19 863 | 2 716 299 | |
未利用地 | 8 352 | 52 596 | 43 398 | 5 067 | 123 183 | 1 395 | 233 991 | |
林地 | 3 159 | 2 367 | 9 036 | 63 | 5 103 | 27 | 19 755 | |
合计 | 133 326 | 882 351 | 1 782 126 | 757 980 | 908 658 | 29 187 | 4 493 628 | |
变化面积 | -113 571 | 551 052 | -613 134 | 1 958 319 | 674 667 | -5 895 | - | |
变化比例/% | -85.18 | -62.45 | -34.41 | -258.36 | -74.25 | -20.20 | - | |
变化倍数 | 0.148 1 | 0.375 5 | 0.656 0 | 3.583 6 | 0.257 5 | 0.798 0 | - |
断面 编号 | 渗透系数/ (m/d) | 断面 长度/m | 含水层 厚度/m | α/ (°) | 水力 坡度/‰ | 侧向补给量/ (m3/d) |
---|---|---|---|---|---|---|
1 | 100 | 7 813.80 | 40.0 | 65 | 5.02 | 142 200.69 |
2 | 100 | 1 658.40 | 25.0 | 52 | 2.95 | 9 637.92 |
3 | 100 | 1 646.32 | 18.0 | 90 | 1.93 | 5 719.31 |
4 | 100 | 934.36 | 14.0 | 85 | 1.78 | 2 319.56 |
5 | 75 | 1 696.11 | 15.0 | 80 | 1.83 | 3 438.81 |
6 | 疏干区 | 4 579.88 | 0 | - | - | 0 |
7 | 75 | 4 960.80 | 7.5 | 90 | 4.99 | 13 924.34 |
8 | 75 | 5 599.14 | 15.0 | 70 | 6.29 | 37 231.48 |
9 | 75 | 1 742.04 | 20.0 | 45 | 9.42 | 17 405.45 |
10 | 35 | 4 548.91 | 17.5 | 45 | 5.05 | 9 949.23 |
11 | 35 | 1 296.93 | 12.5 | 45 | 1.89 | 758.30 |
12 | 15 | 914.43 | 12.5 | 90 | 2.59 | 444.07 |
13 | 7.5 | 2 041.60 | 12.5 | 90 | 2.94 | 562.71 |
14 | 15 | 1 345.20 | 12.5 | 60 | 3.41 | 744.85 |
15 | 35 | 6 904.99 | 7.5 | 45 | 4.04 | 5 177.96 |
16 | 35 | 3 291.63 | 15.0 | 75 | 5.36 | 8 947.02 |
17 | 75 | 1 509.34 | 25.0 | 85 | 2.68 | 7 555.57 |
18 | 35 | 3 811.12 | 20.0 | 40 | 3.29 | 5 641.75 |
合计 | - | 56 295.00 | - | - | - | 271 659.02 |
Table 2 Parameters and results of the lateral recharge in the study area in 1986
断面 编号 | 渗透系数/ (m/d) | 断面 长度/m | 含水层 厚度/m | α/ (°) | 水力 坡度/‰ | 侧向补给量/ (m3/d) |
---|---|---|---|---|---|---|
1 | 100 | 7 813.80 | 40.0 | 65 | 5.02 | 142 200.69 |
2 | 100 | 1 658.40 | 25.0 | 52 | 2.95 | 9 637.92 |
3 | 100 | 1 646.32 | 18.0 | 90 | 1.93 | 5 719.31 |
4 | 100 | 934.36 | 14.0 | 85 | 1.78 | 2 319.56 |
5 | 75 | 1 696.11 | 15.0 | 80 | 1.83 | 3 438.81 |
6 | 疏干区 | 4 579.88 | 0 | - | - | 0 |
7 | 75 | 4 960.80 | 7.5 | 90 | 4.99 | 13 924.34 |
8 | 75 | 5 599.14 | 15.0 | 70 | 6.29 | 37 231.48 |
9 | 75 | 1 742.04 | 20.0 | 45 | 9.42 | 17 405.45 |
10 | 35 | 4 548.91 | 17.5 | 45 | 5.05 | 9 949.23 |
11 | 35 | 1 296.93 | 12.5 | 45 | 1.89 | 758.30 |
12 | 15 | 914.43 | 12.5 | 90 | 2.59 | 444.07 |
13 | 7.5 | 2 041.60 | 12.5 | 90 | 2.94 | 562.71 |
14 | 15 | 1 345.20 | 12.5 | 60 | 3.41 | 744.85 |
15 | 35 | 6 904.99 | 7.5 | 45 | 4.04 | 5 177.96 |
16 | 35 | 3 291.63 | 15.0 | 75 | 5.36 | 8 947.02 |
17 | 75 | 1 509.34 | 25.0 | 85 | 2.68 | 7 555.57 |
18 | 35 | 3 811.12 | 20.0 | 40 | 3.29 | 5 641.75 |
合计 | - | 56 295.00 | - | - | - | 271 659.02 |
断面 编号 | 渗透系数/ (m/d) | 断面 长度/m | 含水层 厚度/m | α/ (°) | 水力坡 度/‰ | 侧向补给量/ (m3/d) |
---|---|---|---|---|---|---|
1 | 100 | 10 578.6 | 20.0 | 45 | 1.51 | 22 590.20 |
2 | 疏干区 | 27 171.1 | 0 | - | - | 0 |
3 | 7.5 | 1 730.5 | 2.5 | 45 | 2.73 | 62.64 |
4 | 15 | 1 645.7 | 7.5 | 20 | 3.02 | 191.23 |
5 | 35 | 2 548.4 | 5.0 | 15 | 2.76 | 318.57 |
6 | 35 | 4 227.6 | 2.5 | 5 | 1.63 | 52.55 |
7 | 35 | 3 401.9 | 2.5 | 10 | 1.33 | 34.50 |
8 | 75 | 1 509.9 | 15.0 | 5 | 0.62 | 91.79 |
9 | 35 | 3 481.3 | 7.5 | 0 | 0.42 | 66.65 |
合计 | - | 56 295.0 | - | - | 23 408.13 |
Table 3 The parameters and results of the lateral recharge in the study area in 2014
断面 编号 | 渗透系数/ (m/d) | 断面 长度/m | 含水层 厚度/m | α/ (°) | 水力坡 度/‰ | 侧向补给量/ (m3/d) |
---|---|---|---|---|---|---|
1 | 100 | 10 578.6 | 20.0 | 45 | 1.51 | 22 590.20 |
2 | 疏干区 | 27 171.1 | 0 | - | - | 0 |
3 | 7.5 | 1 730.5 | 2.5 | 45 | 2.73 | 62.64 |
4 | 15 | 1 645.7 | 7.5 | 20 | 3.02 | 191.23 |
5 | 35 | 2 548.4 | 5.0 | 15 | 2.76 | 318.57 |
6 | 35 | 4 227.6 | 2.5 | 5 | 1.63 | 52.55 |
7 | 35 | 3 401.9 | 2.5 | 10 | 1.33 | 34.50 |
8 | 75 | 1 509.9 | 15.0 | 5 | 0.62 | 91.79 |
9 | 35 | 3 481.3 | 7.5 | 0 | 0.42 | 66.65 |
合计 | - | 56 295.0 | - | - | 23 408.13 |
年份 | 土地类型 | 面积/m2 | 多年平均降 水量/mm | 降水入 渗系数 | 降水入渗补 给量/(104m3) |
---|---|---|---|---|---|
1986 | 城镇 | 75 798 000 | 408 | 0 | 0 |
入渗 | 369 547 100 | 408 | 0.1 | 1 507.75 | |
2014 | 城镇 | 271 629 900 | 408 | 0 | 0 |
入渗 | 162 721 800 | 408 | 0.1 | 663.90 |
Table 4 Calculation parameters and results of the precipitation infiltration recharge in 1986 and 2014
年份 | 土地类型 | 面积/m2 | 多年平均降 水量/mm | 降水入 渗系数 | 降水入渗补 给量/(104m3) |
---|---|---|---|---|---|
1986 | 城镇 | 75 798 000 | 408 | 0 | 0 |
入渗 | 369 547 100 | 408 | 0.1 | 1 507.75 | |
2014 | 城镇 | 271 629 900 | 408 | 0 | 0 |
入渗 | 162 721 800 | 408 | 0.1 | 663.90 |
年份 | 灌溉面积/m2 | 灌溉定额/ (m3/hm2) | 农灌水回渗量/ (104m3) |
---|---|---|---|
1986 | 178 212 600 | 2 050 | 730.67 |
2014 | 116 899 200 | 1 930 | 451.23 |
Table 5 Parameters and results of agricultural irrigation water recharge in 1986 and 2014
年份 | 灌溉面积/m2 | 灌溉定额/ (m3/hm2) | 农灌水回渗量/ (104m3) |
---|---|---|---|
1986 | 178 212 600 | 2 050 | 730.67 |
2014 | 116 899 200 | 1 930 | 451.23 |
潜水 | 1986 | 2014 | 减少量/ (104 m3) | |||
---|---|---|---|---|---|---|
补给量/ (104 m3) | 百分比 /% | 补给量/ (104 m3) | 百分比 /% | |||
侧向 | 9 915.55 | 75.0 | 854.40 | 18.2 | 9 061.15 | |
降雨入渗 | 1 506.91 | 11.4 | 663.90 | 14.1 | 843.01 | |
河道渗漏 | 86.38 | 0.6 | 0 | 0 | 86.38 | |
农灌水回渗 | 730.67 | 5.5 | 451.23 | 9.6 | 279.44 | |
管网漏失入渗 | 985.50 | 7.5 | 2 737.50 | 58.1 | -1 752.00 | |
合计 | 13 225.01 | 100.0 | 4 707.03 | 100.0 | 8 517.98 |
Table 6 Comparison of unconfined groundwater recharge in Hohhot in 1986 and 2014
潜水 | 1986 | 2014 | 减少量/ (104 m3) | |||
---|---|---|---|---|---|---|
补给量/ (104 m3) | 百分比 /% | 补给量/ (104 m3) | 百分比 /% | |||
侧向 | 9 915.55 | 75.0 | 854.40 | 18.2 | 9 061.15 | |
降雨入渗 | 1 506.91 | 11.4 | 663.90 | 14.1 | 843.01 | |
河道渗漏 | 86.38 | 0.6 | 0 | 0 | 86.38 | |
农灌水回渗 | 730.67 | 5.5 | 451.23 | 9.6 | 279.44 | |
管网漏失入渗 | 985.50 | 7.5 | 2 737.50 | 58.1 | -1 752.00 | |
合计 | 13 225.01 | 100.0 | 4 707.03 | 100.0 | 8 517.98 |
[1] |
叶许春, 张奇, 宋学良, 等. 昆明盆地城市化的孔隙水水质响应[J]. 自然资源学报, 2009, 24(4):640-649.
DOI |
[2] | KAZEMI G A. Impacts of urbanization on the groundwater resources in Shahrood, Northeastern Iran: Comparison with other Iranian and Asian cities[J]. Physics & Chemistry of the Earth Parts A/b/c, 2011, 36(5/6):150-159. |
[3] |
CARLSON M A, LOHSE K A, MCINTOSH J C, et al. Impacts of urbanization on groundwater quality and recharge in a semi-arid alluvial basin[J]. Journal of Hydrology, 2011, 409(1/2):196-211.
DOI URL |
[4] |
HAQUE S J, ONODERA S I, SHIMIZU Y. An overview of the effects of urbanization on the quantity and quality of groundwater in South Asian megacities[J]. Limnology, 2013, 14(2):135-145.
DOI URL |
[5] | TANIGUCHI M, UEMURA T. Effects of urbanization and groundwater flow on the subsurface temperature in Osaka, Japan[J]. Physics of the Earth & Planetary Interiors, 2005, 152(4):305-313. |
[6] |
TAYLOR C A, STEFAN H G. Shallow groundwater temperature response to climate change and urbanization[J]. Journal of Hydrology, 2009, 375(3/4):601-612.
DOI URL |
[7] |
MISRA A K. Impact of urbanization on the hydrology of Ganga Basin (India)[J]. Water Resources Management, 2011, 25(2):705-719.
DOI URL |
[8] | 张曦. 城市化进程对地下水系统的影响[D]. 成都: 成都理工大学, 2009:1-40. |
[9] | 于开宁. 城市化对地下水补给的影响——以石家庄市为例[J]. 地球学报, 2001, 22(2):175-178. |
[10] | 李博. 上海高度城市化地区土地利用变化对雨水径流影响的研究[D]. 武汉: 华东师范大学, 2008:1-88. |
[11] | 王静, 苏根成, 匡文慧, 等. 特大城市不透水地表时空格局分析——以北京市为例[J]. 测绘通报, 2014(4):90-94. |
[12] | 贺国平, 郝晨东, 慕星, 等. 北京城市化进程中地下水水化学特征识别[J]. 人民黄河, 2015, 37(11):73-76. |
[13] | 周剑, 程国栋, 王根绪, 等. 综合遥感和地下水数值模拟分析黑河中游三水转化及其对土地利用的响应[J]. 自然科学进展, 2009, 19(12):1343-1354. |
[14] |
JAT M K, KHARE D, GARG P K. Urbanization and its impact on groundwater: a remote sensing and GIS-based assessment approach[J]. Environmentalist, 2009, 29(1):17-32.
DOI URL |
[15] |
PAUL M J. Impact of land-use patterns on distributed groundwater recharge and discharge—a case study of Western Jilin, China[J]. Chinese Geographical Science, 2006, 16(3):229-235.
DOI URL |
[16] |
TILAHUN K, MERKEL B J. Estimation of groundwater recharge using a GIS-based distributed water balance model in Dire Dawa, Ethiopia[J]. Hydrogeology Journal, 2009, 17(6):1443-1457.
DOI URL |
[17] | 朱琳, 刘畅, 李小娟, 等. 城市扩张下的北京平原区降雨入渗补给量变化[J]. 地球科学——中国地质大学学报, 2013, 38(5):1065-1072. |
[18] | 王根绪, 杨玲媛, 陈玲, 等. 黑河流域土地利用变化对地下水资源的影响[J]. 地理学报, 2005, 60(3):456-466. |
[19] | 张新, 李静, 沈振锋, 等. 灌区渠道衬砌对地下水位的影响[J]. 河南水利与南水北调, 2012(5):32-34. |
[20] | 韩再生. 秦皇岛市洋河、戴河滨海平原海水入侵的控制与治理[J]. 现代地质, 1990, 14(2):105-115. |
[21] | JR J M S, GARCIAFRESCA B, PIERCE S A. Increased groundwater recharge rates as a result of urbanization[J]. Hydrological Science & Technology, 2004, 20:119-127. |
[22] | 马君, 于秀娟. 呼和浩特市地下水现状与发展[J]. 内蒙古科技与经济, 2008, 20(23):32-34. |
[23] | 杨亮平, 姜振蛟, 赵宜婷, 等. 呼和浩特市地下水水位动态变化及趋势预测研究[J]. 水文地质工程地质, 2009, 36(4):51-54. |
[24] | 张翼龙. 呼和浩特盆地开采胁迫下的地下水系统响应及适应性对策研究[D]. 北京: 中国地质科学院, 2012:1-70. |
[25] | 邵景力, 徐映雪, 崔亚莉, 等. 变异条件下内蒙古呼包平原地下水演化趋势[J]. 现代地质, 2006, 20(3):480-485. |
[26] | 曹文庚, 张翼龙, 李政红, 等. 呼和浩特市大青山山前倾斜平原地质环境问题形成机理研究[J]. 现代地质, 2013, 27(2):468-474. |
[27] | 余楚, 张翼龙, 王文中, 等. 呼和浩特市浅层地下水超采情势分析[M]//中国地质学会水文地质专业委员会.2012年年会暨气候变化与地下水环境学术研讨会专辑. 北京: 中国地质学会水文地质专业委员会, 2012:1-5. |
[28] | 《中国城市经济社会年鉴》理事会. 中国城市经济社会年鉴:1988年[M]. 北京: 中国城市经济社会出版社, 1988:1-101. |
[29] | 中国城镇供水协会. 城市供水统计年鉴[M]. 北京: 中国城镇供水协会, 1999:1-95. |
[1] | ZHANG Zhuo, CHEN Sheming, LIU Futian, GAO Zhipeng, NIU Xiaotong. Enrichment Mechanism of Deep Groundwater with High Fluoride in Coastal Plains: A Case Study of the Luanhe Delta [J]. Geoscience, 2023, 37(04): 925-932. |
[2] | PENG Hongming, WANG Zhanwei, LUO Yinfei, YUAN Youjin, WANG Wanping. Evaluation of Exploitable Groundwater Resources in the Buha River Basin Based on Groundwater Numerical Simulation [J]. Geoscience, 2023, 37(04): 943-953. |
[3] | YAN Baizhong, SUN Jian, CHEN Jiaqi, SUN Fengbo, LI Xiaomeng, FU Qingjie. Suitability Zoning for Groundwater Source Heat Pump Based on Adaptive BPNN-GIS Method [J]. Geoscience, 2023, 37(04): 963-971. |
[4] | WANG Ruifeng, ZHAI Yanliang, ZHANG Baojun, SHEN Guoqiang, ZENG Yifan. Evaluation of Geological Disaster in Chengde Area Based on GIS and AHP Coupling Technology [J]. Geoscience, 2023, 37(04): 1023-1032. |
[5] | LI Xin, XUE Guicheng, XIA Nan, LIU Changzhu, YANG Yongpeng, MA Bo. Geological Hazard Susceptibility Evaluation Based on CF,CF-LR and CF-AHP Models in National Tropical Rain Forest Park:Taking Baoting County, Hainan Province as An Example [J]. Geoscience, 2023, 37(04): 1033-1043. |
[6] | ZHANG Li, LIU Fei, YUAN Huiqing, LIANG Kaixuan. Research Progress and Prospect of Groundwater Pump and Treat Technology [J]. Geoscience, 2023, 37(04): 977-985. |
[7] | HU Xinyu, SHEN Yuanyuan, CHU Tingwen, HE Wei, WEI Wei, SHEN Xiaopeng. Variation Regularity of Groundwater Level in the Yongding River Basin Under Ecological Replenishment [J]. Geoscience, 2023, 37(04): 986-993. |
[8] | LI Zeyan, CAO Wengeng, WANG Zhuoran, LI Jincheng, REN Yu. Hydrochemical Characterization and Irrigation Suitability Analysis of Shallow Groundwater in Hetao Irrigation District, Inner Mongolia [J]. Geoscience, 2022, 36(02): 418-426. |
[9] | WU Fuxian, LI Wei, LI Shuiyun, CHEN Xiaodan, XIE Linshen, CHENG Gong, CHANG Xu, CHEN Chunxing, HAN Long. Experimental Study on Oyster Shell Modification and Combined Oxygen Release Composite Materials for Remediation of Ammonia Nitrogen Pollution in Groundwater [J]. Geoscience, 2022, 36(02): 583-590. |
[10] | NAN Tian, CAO Wengeng, WANG Zhuoran, ZHANG Juanjuan, ZHANG Dong. Optimized Groundwater Numerical Simulation Model with Trending Parameter Field [J]. Geoscience, 2022, 36(02): 591-601. |
[11] | LI Bo, WU Xuan, ZHANG Yifei, XU Congcong, LIU Chunwei, GUAN Qin, LUO Fei. Hydrogeological Features and Groundwater Enrichment Model of Paleogene Zhujiagou Formation in Lower Chaiwen River Valley, Shandong Province [J]. Geoscience, 2021, 35(03): 675-681. |
[12] | LI Haixue, CHENG Xuxue, MA Yuekun, LIU Weipo, ZHOU Bin. Characteristics and Formation Mechanism of Strontium-rich Groundwater in Malian River Drainage Basin, Southern Ordos Basin [J]. Geoscience, 2021, 35(03): 682-692. |
[13] | HUANG Xiangui, PING Jianhua, YU Yan, ZHU Yaqiang, ZHANG Min. Groundwater Renewability Study Based on Tritium (3H) in the Middle and Lower Watershed of Anyang River [J]. Geoscience, 2021, 35(03): 693-702. |
[14] | HOU Ying, XU Jinming, LI Ping, MAO Junyan, ZHANG Yuanhao, SU Junjie, CHEN Nan, HU Weiwu. Fe/Ag Catalytic Ozonation for the Degradation of Phenol [J]. Geoscience, 2021, 35(03): 711-719. |
[15] | SUN Zhibin, HU Zhenguo, LIU Fei, YANG Xinmin, ZHAO Bei, JIANG Guoliang. Analysis of Pollution Distribution Characteristics of Soil and Groundwater Around A Chemical Device [J]. Geoscience, 2020, 34(06): 1333-1340. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||