Geoscience ›› 2024, Vol. 38 ›› Issue (05): 1354-1369.DOI: 10.19657/j.geoscience.1000-8527.2023.116
• Oil and Gas Exploration in Sedimentary Basin and Key Techniques • Previous Articles Next Articles
DENG Shuo1,2(), LI Sumei1,2(
), CAO Jingtao3, HUANG Taiming3, LIU Jia1,2, ZHANG Jianmiao1,2, SHI Qianqian1,2
Online:
2024-10-10
Published:
2024-11-13
Contact:
LI Sumei
CLC Number:
DENG Shuo, LI Sumei, CAO Jingtao, HUANG Taiming, LIU Jia, ZHANG Jianmiao, SHI Qianqian. High-Resolution Mass Spectrum Characteristics and Formation Mechanism of Low Maturity Oil in the Liaohe Western Depression[J]. Geoscience, 2024, 38(05): 1354-1369.
井号 | 油田 | 层位 | 深度 (m) | 降解 程度 | 密度 (g/cm3) | 黏度 (mPa·s) | 凝固点 (℃) | 含蜡量 (%) | 含硫量 (%) | 饱和烃 (%) | 芳烃 (%) | 非烃 (%) | 沥青质 (%) | 非烃+ 沥青质(%) | 饱/芳 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Z17-23 | 高升 | Es4中 | 1753.00 | 未 | 0.89 | 414 | 31 | 11.45 | 0.48 | 35.90 | 20.70 | 28.60 | 14.90 | 43.50 | 1.58 |
G1-5-13 | 高升 | Es4中 | 1337.00 | 轻微 | 0.90 | 1935 | 26 | 10.00 | 0.63 | 37.80 | 18.50 | 26.80 | 16.90 | 43.70 | 2.04 |
G3-6-25 | 高升 | Es3下 | 1788.00 | 中等 | 0.94 | 3524 | 6 | 5.10 | 0.53 | 27.50 | 21.10 | 29.30 | 22.10 | 51.40 | 1.31 |
G3-6-0151 | 高升 | Es3下 | 1641.95 | 中等 | 0.93 | 2585 | 9 | 6.68 | 0.51 | 24.00 | 19.60 | 30.90 | 25.50 | 56.40 | 1.23 |
T37-29 | 牛心坨 | Es4下 | 1909.55 | 未 | 0.88 | 1178 | 39 | 13.43 | 0.40 | 37.80 | 17.20 | 24.80 | 20.20 | 45.00 | 2.20 |
T35-29 | 牛心坨 | 潜山 | 2170.00 | 未 | - | - | - | - | - | 37.25 | 9.02 | 40.39 | 13.33 | 53.73 | 4.13 |
Table 1 Physical properties and group composition of oils from Gaosheng and Niuxintuo[7]
井号 | 油田 | 层位 | 深度 (m) | 降解 程度 | 密度 (g/cm3) | 黏度 (mPa·s) | 凝固点 (℃) | 含蜡量 (%) | 含硫量 (%) | 饱和烃 (%) | 芳烃 (%) | 非烃 (%) | 沥青质 (%) | 非烃+ 沥青质(%) | 饱/芳 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Z17-23 | 高升 | Es4中 | 1753.00 | 未 | 0.89 | 414 | 31 | 11.45 | 0.48 | 35.90 | 20.70 | 28.60 | 14.90 | 43.50 | 1.58 |
G1-5-13 | 高升 | Es4中 | 1337.00 | 轻微 | 0.90 | 1935 | 26 | 10.00 | 0.63 | 37.80 | 18.50 | 26.80 | 16.90 | 43.70 | 2.04 |
G3-6-25 | 高升 | Es3下 | 1788.00 | 中等 | 0.94 | 3524 | 6 | 5.10 | 0.53 | 27.50 | 21.10 | 29.30 | 22.10 | 51.40 | 1.31 |
G3-6-0151 | 高升 | Es3下 | 1641.95 | 中等 | 0.93 | 2585 | 9 | 6.68 | 0.51 | 24.00 | 19.60 | 30.90 | 25.50 | 56.40 | 1.23 |
T37-29 | 牛心坨 | Es4下 | 1909.55 | 未 | 0.88 | 1178 | 39 | 13.43 | 0.40 | 37.80 | 17.20 | 24.80 | 20.20 | 45.00 | 2.20 |
T35-29 | 牛心坨 | 潜山 | 2170.00 | 未 | - | - | - | - | - | 37.25 | 9.02 | 40.39 | 13.33 | 53.73 | 4.13 |
井号 | 深度 (m) | Pr/ Ph | Pr/ C17 | Ph/ C18 | CPI | OEP | C27 (%) | C28 (%) | C29 (%) | C27/C29 规则 甾烷 | 4-甲基 甾烷/ C29规 则甾烷 | 伽马蜡 烷/C30 藿烷 | 甾烷/ 藿烷 | C29甾烷 20S/ (S+R) | C29甾烷 αββ/ (ααα+ αββ) | C21+22/ C29 甾烷 | 三环萜 烷/五环 萜烷 | DBT/ P |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Z17-23 | 1753.00 | 0.68 | 1.00 | 2.35 | 2.28 | 1.21 | 21.86 | 35.49 | 42.65 | 0.51 | 0.46 | 0.41 | 0.62 | 0.22 | 0.22 | 0.01 | 0.03 | 0.13 |
G1-5-13 | 1337.00 | 0.52 | 0.77 | 2.47 | - | - | 22.06 | 37.19 | 40.75 | 0.54 | 0.30 | 0.38 | 0.40 | 0.24 | 0.23 | 0.01 | 0.02 | 0.10 |
G3-6-25 | 1788.00 | 0.50 | 5.22 | 24.29 | - | - | 22.98 | 36.80 | 40.22 | 0.57 | 0.31 | 0.25 | 0.32 | 0.31 | 0.27 | 0.03 | 0.02 | 0.06 |
G3-6-0151 | 1641.95 | 0.50 | 5.22 | 18.77 | - | - | 22.90 | 36.64 | 40.46 | 0.57 | 0.31 | 0.25 | 0.34 | 0.29 | 0.28 | 0.02 | 0.02 | 0.06 |
T37-29 | 1909.55 | 0.78 | 1.22 | 1.98 | 2.43 | 1.34 | 33.60 | 29.89 | 36.51 | 0.92 | 0.47 | 0.18 | 0.68 | 0.23 | 0.21 | 0.01 | 0.02 | 0.13 |
T35-29 | 2170.00 | 0.71 | 1.24 | 2.17 | 2.36 | 1.31 | 28.65 | 35.90 | 35.45 | 0.81 | 0.44 | 0.22 | 0.86 | 0.24 | 0.22 | 0.01 | 0.02 | 0.16 |
Table 2 Basic geochemical parameters of oils from Gaosheng and Niuxintuo
井号 | 深度 (m) | Pr/ Ph | Pr/ C17 | Ph/ C18 | CPI | OEP | C27 (%) | C28 (%) | C29 (%) | C27/C29 规则 甾烷 | 4-甲基 甾烷/ C29规 则甾烷 | 伽马蜡 烷/C30 藿烷 | 甾烷/ 藿烷 | C29甾烷 20S/ (S+R) | C29甾烷 αββ/ (ααα+ αββ) | C21+22/ C29 甾烷 | 三环萜 烷/五环 萜烷 | DBT/ P |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Z17-23 | 1753.00 | 0.68 | 1.00 | 2.35 | 2.28 | 1.21 | 21.86 | 35.49 | 42.65 | 0.51 | 0.46 | 0.41 | 0.62 | 0.22 | 0.22 | 0.01 | 0.03 | 0.13 |
G1-5-13 | 1337.00 | 0.52 | 0.77 | 2.47 | - | - | 22.06 | 37.19 | 40.75 | 0.54 | 0.30 | 0.38 | 0.40 | 0.24 | 0.23 | 0.01 | 0.02 | 0.10 |
G3-6-25 | 1788.00 | 0.50 | 5.22 | 24.29 | - | - | 22.98 | 36.80 | 40.22 | 0.57 | 0.31 | 0.25 | 0.32 | 0.31 | 0.27 | 0.03 | 0.02 | 0.06 |
G3-6-0151 | 1641.95 | 0.50 | 5.22 | 18.77 | - | - | 22.90 | 36.64 | 40.46 | 0.57 | 0.31 | 0.25 | 0.34 | 0.29 | 0.28 | 0.02 | 0.02 | 0.06 |
T37-29 | 1909.55 | 0.78 | 1.22 | 1.98 | 2.43 | 1.34 | 33.60 | 29.89 | 36.51 | 0.92 | 0.47 | 0.18 | 0.68 | 0.23 | 0.21 | 0.01 | 0.02 | 0.13 |
T35-29 | 2170.00 | 0.71 | 1.24 | 2.17 | 2.36 | 1.31 | 28.65 | 35.90 | 35.45 | 0.81 | 0.44 | 0.22 | 0.86 | 0.24 | 0.22 | 0.01 | 0.02 | 0.16 |
井号 | N1 (%) | N1O1 (%) | N1O2 (%) | O1 (%) | O2 (%) | O3 (%) | O4 (%) | N1 (%) | O1 (%) | O2 (%) | A | B | C | D | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DBE9 | DBE12 | DBE15 | DBE4 | DBE5 | DBE1 | DBE5 | DBE6 | ||||||||||||||
Z17-23 | 40.86 | 6.99 | 5.82 | 25.79 | 19.83 | 0.00 | 0.71 | 22.34 | 14.19 | 5.25 | 37.20 | 20.61 | 34.20 | 15.34 | 11.64 | 1.38 | 1.04 | 0.24 | 0.75 | ||
G1-5-13 | 36.07 | 3.60 | 3.72 | 21.78 | 27.87 | 6.29 | 0.67 | 19.80 | 12.15 | 4.77 | 44.21 | 19.07 | 22.15 | 17.73 | 14.41 | 0.73 | 1.08 | 0.32 | 0.93 | ||
G3-6-25 | 54.22 | 5.76 | 2.23 | 23.11 | 14.12 | 0.00 | 0.55 | 17.50 | 12.62 | 5.84 | 34.36 | 19.36 | 19.80 | 17.27 | 14.21 | 0.73 | 1.35 | 0.33 | 0.90 | ||
G3-6-0151 | 50.46 | 4.42 | 1.49 | 22.45 | 20.06 | 0.00 | 1.12 | 17.73 | 12.64 | 5.70 | 36.74 | 19.43 | 34.24 | 14.50 | 11.24 | 1.45 | 1.52 | 0.51 | 1.04 | ||
T37-29 | 23.32 | 6.72 | 7.04 | 18.98 | 35.79 | 6.17 | 1.99 | 28.23 | 14.84 | 4.66 | 46.67 | 18.40 | 48.21 | 21.75 | 7.34 | 1.75 | 0.70 | 0.50 | 1.76 | ||
T35-29 | 17.62 | 1.15 | 0.45 | 16.01 | 63.92 | 0.71 | 0.14 | 30.69 | 12.45 | 3.49 | 61.03 | 18.07 | 85.16 | 3.38 | 2.75 | 13.41 | 0.80 | 1.08 | 1.86 |
Table 3 Basic parameters of Gaosheng and Niuxintuo crude oil analyzed by negative-ion ESI FT-ICR MS
井号 | N1 (%) | N1O1 (%) | N1O2 (%) | O1 (%) | O2 (%) | O3 (%) | O4 (%) | N1 (%) | O1 (%) | O2 (%) | A | B | C | D | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DBE9 | DBE12 | DBE15 | DBE4 | DBE5 | DBE1 | DBE5 | DBE6 | ||||||||||||||
Z17-23 | 40.86 | 6.99 | 5.82 | 25.79 | 19.83 | 0.00 | 0.71 | 22.34 | 14.19 | 5.25 | 37.20 | 20.61 | 34.20 | 15.34 | 11.64 | 1.38 | 1.04 | 0.24 | 0.75 | ||
G1-5-13 | 36.07 | 3.60 | 3.72 | 21.78 | 27.87 | 6.29 | 0.67 | 19.80 | 12.15 | 4.77 | 44.21 | 19.07 | 22.15 | 17.73 | 14.41 | 0.73 | 1.08 | 0.32 | 0.93 | ||
G3-6-25 | 54.22 | 5.76 | 2.23 | 23.11 | 14.12 | 0.00 | 0.55 | 17.50 | 12.62 | 5.84 | 34.36 | 19.36 | 19.80 | 17.27 | 14.21 | 0.73 | 1.35 | 0.33 | 0.90 | ||
G3-6-0151 | 50.46 | 4.42 | 1.49 | 22.45 | 20.06 | 0.00 | 1.12 | 17.73 | 12.64 | 5.70 | 36.74 | 19.43 | 34.24 | 14.50 | 11.24 | 1.45 | 1.52 | 0.51 | 1.04 | ||
T37-29 | 23.32 | 6.72 | 7.04 | 18.98 | 35.79 | 6.17 | 1.99 | 28.23 | 14.84 | 4.66 | 46.67 | 18.40 | 48.21 | 21.75 | 7.34 | 1.75 | 0.70 | 0.50 | 1.76 | ||
T35-29 | 17.62 | 1.15 | 0.45 | 16.01 | 63.92 | 0.71 | 0.14 | 30.69 | 12.45 | 3.49 | 61.03 | 18.07 | 85.16 | 3.38 | 2.75 | 13.41 | 0.80 | 1.08 | 1.86 |
Fig.7 Plots of DBE versus carbon number for N1 class species for the selected oils (left), and carbon curve of N1 class species with DBE=9, 12 and 15 in the selected oils (right)
Fig.8 Plots of DBE versus carbon number for O1 class species in the selected oils (left), and carbon curve of O1 class species with DBE=4 and 5 in the selected oils (right)
Fig.9 Plots of DBE versus carbon number for O2 class species in the selected oils (left), and carbon curve of O2 class species with DBE=1, 5 and 6 in the selected oils (right)
[1] | 李素梅, 庞雄奇, 金之钧, 等. 未熟-低熟油研究现状与存在的问题[J]. 地质论评, 2003, 49(3): 298-304. |
[2] | 毛光周, 刘池洋, 高丽华. 中国未熟-低熟油的基本特征及成因[J]. 山东科技大学学报(自然科学版), 2012, 31(6): 76-85. |
[3] | 王铁冠, 钟宁宁, 候读杰, 等. 中国低熟油的几种成因机制[J]. 沉积学报, 1997(2): 75-83. |
[4] |
黄第藩, 李晋超. 陆相沉积中的未熟石油及其意义[J]. 石油学报, 1987, 8(1): 1-9.
DOI |
[5] | 葛海霞, 张枝焕, 闵伟, 等. 济阳坳陷青东凹陷低熟油生烃机理研究[J]. 现代地质, 2016, 30(5): 1105-1114. |
[6] | 史建南, 邹华耀, 郝芳. 辽河坳陷西部凹陷低熟油成藏机理[J]. 油气地质与采收率, 2007, 14(1): 36-39. |
[7] | 李素梅, 庞雄奇, 高先志, 等. 辽河西部凹陷稠油成因机制[J]. 中国科学(地球科学), 2008, 38(增): 138-49. |
[8] | LI S M, PANG X Q, SHI Q, et al. Geochemical characteristics of crude oils from the Tarim Basin by Fourier transform ion cyclotron resonance mass spectrometry[J]. Energy Exploration & Exploitation, 2011, 29(6): 711-741. |
[9] | 李素梅, 孟祥兵, 张宝收, 等. 傅里叶变换离子回旋共振质谱的地球化学意义及其在油气勘探中的应用前景[J]. 现代地质, 2013, 27(1): 124-132. |
[10] | 李素梅, 徐田武, 史权, 等. 东濮凹陷盐湖相原油氮/氧化合物分布特征及其应用[J]. 现代地质, 2019, 33(6): 1137-1150. |
[11] | 李素梅, 张宝收, 张海祖, 等. 塔中原油超高二苯并噻吩硫特征及其控制因素[J]. 现代地质, 2011, 25(6): 1108-1120. |
[12] | 朱芳冰. 辽河盆地西部凹陷源岩特征及低熟油分布规律研究[J]. 地球科学, 2002, 27(1): 25-29. |
[13] | 史权, 张亚和, 徐春明, 等. 石油组分高分辨质谱分析进展与展望[J]. 中国科学(化学), 2014, 44(5): 694-700. |
[14] | 漆家福, 邓荣敬, 周心怀, 等. 渤海海域新生代盆地中的郯庐断裂带构造[J]. 中国科学(地球科学), 2008, 38(增): 19-29. |
[15] | 漆家福, 李晓光, 于福生, 等. 辽河西部凹陷新生代构造变形及“郯庐断裂带” 的表现[J]. 中国科学(地球科学), 2013, 43(8): 1324-1337. |
[16] | 李明刚, 漆家福, 童亨茂, 等. 辽河西部凹陷新生代断裂构造特征与油气成藏[J]. 石油勘探与开发, 2010, 37(3): 281-288. |
[17] | 冷济高, 庞雄奇, 李晓光, 等. 辽河断陷西部凹陷油气成藏主控因素[J]. 古地理学报, 2008, 10(5): 473-480. |
[18] | 胡英杰, 王延山, 黄双泉, 等. 辽河坳陷石油地质条件、资源潜力及勘探方向[J]. 海相油气地质, 2019, 24(2): 43-54. |
[19] |
王延山, 胡英杰, 黄双泉, 等. 渤海湾盆地辽河坳陷天然气地质条件、资源潜力及勘探方向[J]. 天然气地球科学, 2018, 29(10): 1422-1432.
DOI |
[20] | 惠沙沙, 庞雄奇, 柳广弟, 等. 辽河西部凹陷沙河街组烃源岩特征及油源精细对比[J]. 地球科学, 2023, 48(8): 3081-3098. |
[21] | 周晓龙. 辽河西部凹陷雷家—高升地区原油物性特征及影响因素[J]. 石油地质与工程, 2017, 31(1): 22-25. |
[22] | 李秀娟. 国内外稠油资源的分类评价方法[J]. 内蒙古石油化工, 2008, 34(21): 61-62. |
[23] | PETERS K E, WALTERS CC, MOLDOWAN J M. The Biomarker Guide[M]. Cambridge: Cambridge University Press, 2004. |
[24] |
SINNINGHE DAMSTE J S, KENIG F, KOOPMANS M P, et al. Evidence for gammacerane as an indicator of water column stratification[J]. Geochimica et Cosmochimica Acta, 1995, 59(9): 1895-1900.
PMID |
[25] | CONNAN J, CASSOU A M. Properties of gases and petroleum liquids derived from terrestrial kerogen at various maturation levels[J]. Geochimica et Cosmochimica Acta, 1980, 44(1): 1-23. |
[26] | HUGHES W B, HOLBA A G, DZOU L I P. The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks[J]. Geochimica et Cosmochimica Acta, 1995, 59(17): 3581-3598. |
[27] | HUANG W Y, MEINSCHEIN W G. Sterols as ecological indicators[J]. Geochimica et Cosmochimica Acta, 1979, 43(5): 739-745. |
[28] | HUGHEY C A, RODGERS R P, MARSHALL A G, et al. Identification of acidic NSO compounds in crude oils of different geochemical origins by negative ion electrospray Fourier transform ion cyclotron resonance mass spectrometry[J]. Organic Geochemistry, 2002, 33(7): 743-759. |
[29] | HUGHEY C A, RODGERS R P, MARSHALL A G, et al. Acidic and neutral polar NSO compounds in Smackover oils of different thermal maturity revealed by electrospray high field Fourier transform ion cyclotron resonance mass spectrometry[J]. Organic Geochemistry, 2004, 35(7): 863-880. |
[30] | QIAN K N, ROBBINS W K, HUGHEY C A, et al. Resolution and identification of elemental compositions for more than 3000 crude acids in heavy petroleum by negative-ion microelectrospray high-field Fourier transform ion cyclotron resonance mass spectrometry[J]. Energy & Fuels, 2001, 15(6): 1505-1511. |
[31] | JI H, LI S M, GREENWOOD P, et al. Geochemical characteristics and significance of heteroatom compounds in lacustrine oils of the Dongpu Depression (Bohai Bay Basin, China) by negative-ion Fourier transform ion cyclotron resonance mass spectrometry[J]. Marine and Petroleum Geology, 2018, 97: 568-591. |
[32] | CLEGG H, WILKES H, HORSFIELD B. Carbazole distributions in carbonate and clastic source rocks[J]. Geochimica et Cosmochimica Acta, 1997, 61(24): 5335-5345. |
[33] |
张宝, 包建平. 有机含氮化合物研究新进展[J]. 天然气地球科学, 2004, 15(2): 182-186.
DOI |
[34] | 李素梅, 王铁冠, 张爱云, 等. 原油中吡咯类化合物的地球化学特征及其意义[J]. 沉积学报, 1999, 17(2): 312. |
[35] | WAN Z H, LI S M, PANG X Q, et al. Characteristics and geochemical significance of heteroatom compounds in terrestrial oils by negative-ion electrospray Fourier transform ion cyclotron resonance mass spectrometry[J]. Organic Geochemistry, 2017, 111: 34-55. |
[36] | KIM S, STANFORD L A, RODGERS R P, et al. Microbial alteration of the acidic and neutral polar NSO compounds revealed by Fourier transform ion cyclotron resonance mass spectrometry[J]. Organic Geochemistry, 2005, 36(8): 1117-1134. |
[37] | LIAO Y H, SHI Q, HSU C S, et al. Distribution of acids and nitrogen-containing compounds in biodegraded oils of the Liaohe Basin by negative ion ESI FT-ICR MS[J]. Organic Geoche-mistry, 2012, 47: 51-65. |
[38] | LIU Y, WAN Y Y, ZHU Y J, et al. Impact of biodegradation on polar compounds in crude oil: Comparative simulation of biodegradation from two aerobic bacteria using ultrahigh-resolution mass spectrometry[J]. Energy & Fuels, 2020, 34(5): 5553-5565. |
[39] | BAKR M M Y, WILKES H. The influence of facies and depositional environment on the occurrence and distribution of carbazoles and benzocarbazoles in crude oils: A case study from the Gulf of Suez, Egypt[J]. Organic Geochemistry, 2002, 33(5): 561-580. |
[40] | ZHANG C M, ZHANG Y Q, ZHANG M, et al. Carbazole distributions in rocks from non-marine depositional environments[J]. Organic Geochemistry, 2008, 39(7): 868-878. |
[41] | SCHIMMELMANN A, WINTSCH R, LEWAN M. From mo-dern chitin to thermally mature kerogen: Lessons from nitrogen isotope ratios[M]// Proceedings of the Abstracts of Papers of the American Chemical Society. Washington: Amer Chemical Soc,20036. |
[42] | LI M W, FOWLER M G, OBERMAJER M, et al. Geochemical characterisation of Middle Devonian oils in NW Alberta, Canada: Possible source and maturity effect on pyrrolic nitrogen compounds[J]. Organic Geochemistry, 1999, 30(9): 1039-1057. |
[43] | LI M W, LARTER S R, STODDART D, et al. Fractionation of pyrrolic nitrogen compounds in petroleum during migration: Deri-vation of migration-related geochemical parameters[J]. Geological Society, London, Special Publications, 1995, 86(1): 103-123. |
[44] | SNYDER L R. Distribution of benzcarbazole isomers in petro-leum as evidence for their biogenic origin[J]. Nature, 1965, 205: 277. |
[45] | BENNETT B, CHEN M, BRINCAT D, et al. Fractionation of benzocarbazoles between source rocks and petroleums[J]. Organic Geochemistry, 2002, 33(5): 545-559. |
[46] | SHI Q, HOU D J, CHUNG K H, et al. Characterization of heteroatom compounds in a crude oil and its saturates, aroma-tics, resins, and asphaltenes (SARA) and non-basic nitrogen fractions analyzed by negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry[J]. Energy & Fuels, 2010, 24(4): 2545-2553. |
[47] | SHI Q, ZHAO S Q, XU Z M, et al. Distribution of acids and neutral nitrogen compounds in a Chinese crude oil and its fractions: Characterized by negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry[J]. Energy & Fuels, 2010, 24(7): 4005-4011. |
[48] | POETZ S, HORSFIELD B, WILKES H. Maturity-driven generation and transformation of acidic compounds in the organic-richposidonia shale as revealed by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry[J]. Energy & Fuels, 2014, 28(8): 4877-4888. |
[49] | KAMGA A W, BEHAR F, HATCHER P G. Quantitative ana-lysis of long chain fatty acids present in a type I kerogen using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry: Compared with BF3/MeOH methylation/GC-FID[J]. Journal of the American Society for Mass Spectrometry, 2014, 25(5): 880-890. |
[50] | AMRANI A, AIZENSHTAT Z. Photosensitized oxidation of naturally occurring isoprenoid allyl alcohols as a possible pathway for their transformation to thiophenes in sulfur rich depositional environments[J]. Organic Geochemistry, 2004, 35(6): 693-712. |
[51] | ROJAS-RUIZ F A, ORREGO-RUIZ J A. Distribution of oxygen-containing compounds and its significance on total organic acid content in crude oils by ESI negative ion FT-ICR MS[J]. Energy & Fuels, 2016, 30(10): 8185-8191. |
[52] | LIU W M, LIAO Y H, PAN Y H, et al. Use of ESI FT-ICR MS to investigate molecular transformation in simulated aerobic biodegradation of a sulfur-rich crude oil[J]. Organic Geochemistry, 2018, 123: 17-26. |
[53] | HEADLEY J V, PERU K M, BARROW M P. Advances in mass spectrometric characterization of naphthenic acids fraction compounds in oil sands environmental samples and crude oil—a review[J]. Mass Spectrometry Reviews, 2016, 35(2): 311-328. |
[54] | 段毅, 周世新, 孟自芳. 塔里木盆地群5井和曲1井原油的油源研究——脂肪酸及烷基环己烷系列化合物提供的新证据[J]. 石油实验地质, 2001(4): 433-447. |
[55] | PAN Y H, LIAO Y H, SHI Q, et al. Acidic and neutral polar NSO compounds in heavily biodegraded oils characterized by negative-ion ESI FT-ICR MS[J]. Energy & Fuels, 2013, 27(6): 2960-2973. |
[56] | MARTINS L L, PUDENZI M A, DA CRUZ G F, et al. Asses-sing biodegradation of Brazilian crude oils via characteristic profiles of O1 and O2 compound classes: Petroleomics by negative-ion mode electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry[J]. Energy & Fuels, 2017, 31(7): 6649-6657. |
[57] | BOON A R, DUINEVELD G C A. Phytopigments and fatty acids as molecular markers for the quality of near-bottom particulate organic matter in the North Sea[J]. Journal of Sea Research, 1996, 35(4): 279-291. |
[58] | VOLKMAN J K, BARRETT S M, BLACKBURN S I, et al. Microalgal biomarkers: A review of recent research developments[J]. Organic Geochemistry, 1998, 29(5/6/7): 1163-1179. |
[59] | MEYERS P A. Organic geochemical proxies of paleoceanogra-phic, paleolimnologic, and paleoclimatic processes[J]. Organic Geochemistry, 1997, 27(5/6): 213-250. |
[60] | SINNINGHE DAMSTÉ J S, VERSCHUREN D, OSSEBAAR J, et al. A 25,000-year record of climate-induced changes in lowland vegetation of eastern equatorial Africa revealed by the stable carbon-isotopic composition of fossil plant leaf waxes[J]. Earth and Planetary Science Letters, 2011, 302(1/2): 236-246. |
[61] | TIERNEY J E, RUSSELL J M, SINNINGHE DAMSTÉ J S, et al. Late Quaternary behavior of the East African monsoon and the importance of the Congo Air Boundary[J]. Quaternary Science Reviews, 2011, 30(7/8): 798-807. |
[62] | OLDENBURG T B P, BROWN M, BENNETT B, et al. The impact of thermal maturity level on the composition of crude oils, assessed using ultra-high resolution mass spectrometry[J]. Organic Geochemistry, 2014, 75: 151-168. |
[63] | HOSSEINI S H, HORSFIELD B, POETZ S, et al. Role of maturity in controlling the composition of solid bitumens in veins and vugs from SE Turkey as revealed by conventional and advanced geochemical tools[J]. Energy & Fuels, 2017, 31(3): 2398-2413. |
[64] | FARRIMOND P, GRIFFITHS T, EVDOKIADIS E. Hopanoic acids in Mesozoic sedimentary rocks[J]. Organic Geochemistry, 2002, 33(8): 965-977. |
[65] | 任平. 高升—雷家地区未熟油藏形成条件分析[J]. 石油地质与工程, 2015, 29(2): 38-41. |
[66] | 曲彦胜, 钟宁宁, 刘岩, 等. 辽河西部凹陷富有机质沉积识别及控制因素探讨[J]. 长江大学学报(自然科学版), 2014, 11(5): 18-22. |
[67] | WATSON J S, JONES D M, SWANNELL R P J, et al. Formation of carboxylic acids during aerobic biodegradation of crude oil and evidence of microbial oxidation of hopanes[J]. Organic Geochemistry, 2002, 33(10): 1153-1169. |
[68] | 黄第藩, 张大江, 张林晔. 中国未成熟石油成因机制和成藏条件[M]. 北京: 石油工业出版社, 2003. |
[69] | LUCACH S O, BOWLER B F J, FREWIN N, et al. Variation in alkylphenol distributions in a homogenous oil suite from the Dhahaban petroleum system of Oman[J]. Organic Geochemistry, 2002, 33(5): 581-594. |
[70] | 史继扬, 向明菊, 屈定创. 未熟-低熟烃源岩中脂肪酸的热模拟实验及演化[J]. 科学通报, 2001, 46(18): 1567-1572. |
[71] | 张松林, 崔明中, 李振西, 等. 盐湖相低熟油脂肪酸的组成与分布特征[J]. 沉积学报, 1999, 17(1): 130-135. |
[72] | SHI J Y, XIANG M J, QU D C. Simulation experiments for evolution of fatty acids in immature source rocks[J]. Chinese Science Bulletin, 2001, 46(24): 2092-2096. |
[73] | TISSOT B P, WELTE D H. Petroleum Formation and Occurrence[M]. Berlin, Heidelberg: Springer,1984. |
[74] | WILSON H H. The case for early generation and accumulation of oil[J]. Journal of Petroleum Geology, 1990, 13(2): 127-156. |
[75] | 屈定创, 史继扬, 向明菊. 一类新的藿烯化合物的发现及其在地质藿类成因上的意义[J]. 中国科学(B辑), 1995, 25(6): 665-72. |
[76] | NASCIMENTO L R, REBOUÇAS L M C, KOIKE L, et al. Acidic biomarkers from albacora oils, Campos Basin, Brazil[J]. Organic Geochemistry, 1999, 30(9): 1175-1191. |
[77] | INNES H E, BISHOP A N, HEAD I M, et al. Preservation and diagenesis of hopanoids in recent lacustrine sediments of Priest Pot, England[J]. Organic Geochemistry, 1997, 26(9/10): 565-576. |
[78] | WATSON D F, FARRIMOND P. Novel polyfunctionalised geohopanoids in a recent lacustrine sediment (Priest Pot, UK)[J]. Organic Geochemistry, 2000, 31(11): 1247-1252. |
[79] | 管红香, 吴能友, 茅晟懿, 等. 南海北部冷泉碳酸盐岩中系列藿烷酸的检出及意义[J]. 地球科学, 2013, 38(5): 1014-1022. |
[80] | 王广源, 周心怀, 王昕, 等. 蓬莱19-3/25-6油田未熟-低熟油特征与成因[J]. 石油实验地质, 2014, 36(2): 230-237. |
[81] | LIU H, LIU W G. N-Alkane distributions and concentrations in algae, submerged plants and terrestrial plants from the Qinghai-Tibetan Plateau[J]. Organic Geochemistry, 2016, 99: 10-22. |
[1] | YU Jingwei, DING Wei, ZHANG Xin, QI Liqi, HUANG Shuya, ZHANG Zhiyue, ZHANG Yile. Genesis of Carbonate Cement and Influence on Reservoir Quality of the Badaowan Formation in AH5 Well Block of Junggar Basin [J]. Geoscience, 2023, 37(05): 1336-1344. |
[2] | ZHOU Hongfu, FANG Tian, XIA Chenhao, RAN Tao, XU Ruge, ZHANG Jinghua. Reactivation Characteristics and Mechanism of Engineering Disturbed Dumi Landslide in Western Sichuan Province, China [J]. Geoscience, 2023, 37(04): 1044-1053. |
[3] | ZHANG Yintao, CHEN Shi, LIU Qiang, FENG Guang, XIE Zhou, LIANG Xinxin, LI Ting, SONG Xingguo, KANG Pengfei, PENG Zijun. Development Characteristics and Evolution Model of FⅠ19 Fault in Fuman Oilfield, Tarim Basin [J]. Geoscience, 2023, 37(02): 283-295. |
[4] | TIAN Anqi, CHEN Shi, YU Yixin, XIU Jinlei, JIN Feng. Layered Deformation Characteristics, Formation Mechanism of Strike-slip Faults on the Western Margin of Mosuowan Uplift,Junggar Basin [J]. Geoscience, 2023, 37(02): 296-306. |
[5] | CHEN Huaxing, KANG Zhihong, KANG Zhijiang. Stratified Structure and Formation Mechanism of Paleokarst Cave in Carbonate Reservoir of Tahe Oilfield [J]. Geoscience, 2022, 36(02): 695-708. |
[6] | HUANG Shaoying, SONG Xingguo, LUO Caiming, NENG Yuan, MA Xiaodan, QI Jiafu, CHEN Shi. Formation Mechanism of the Conjugate Strike-slip Faults in Tabei Uplift [J]. Geoscience, 2021, 35(06): 1797-1808. |
[7] | KUANG Anpeng, YU Yixin, ZHU Xiuxiang, CHEN Shi, JIN Feng, LIANG Xinxin, YU Lang. Deformation and Activity Characteristics of the No.11 Strike-slip Fault Zone in the Shunbei Area, Tarim Basin [J]. Geoscience, 2021, 35(06): 1809-1817. |
[8] | LI Jiehao, HOU Dujie, CAO Lanzhu, WU Piao, ZHAO Zhe, MA Xiaoxiao. Geochemical Characteristics and Source Correlation of Low-mature Oil from the Tengeer Formation (2nd Member) in the Saihantala Sag, Erlian Basin [J]. Geoscience, 2021, 35(02): 315-325. |
[9] | LI Xue, GUO Changbao, YANG Zhihua, LIAO Wei, WU Ruian, JIN Jijun, HE Yuanxiao. Development Characteristics and Formation Mechanism of the Xiongba Giant Ancient Landslide in the Jinshajiang Tectonic Zone [J]. Geoscience, 2021, 35(01): 47-55. |
[10] | HUO Xin. Development Characteristics of Chada Debris Flow in Southeast Tibet and Its Influence on the Proposed Station [J]. Geoscience, 2021, 35(01): 83-91. |
[11] | GUO Changbao, REN Sanshao, LI Xue, ZHANG Yongshuang, YANG Zhihua, WU Ruian, JIN Jijun. Development Characteristics and Reactivation Mechanism of the Jiangdingya Ancient Landslide in the Nanyu Town, Zhouqu County, Gansu Province [J]. Geoscience, 2019, 33(01): 206-217. |
[12] | ZHANG Zhenguo, HE Jiangtao, WANG Lei, PENG Cong. Hydrochemical Characteristics and Evolution Processes of Deep Groundwater in Hengshui Area [J]. Geoscience, 2018, 32(03): 565-573. |
[13] | REN Sanshao, GUO Changbao, ZHANG Yongshuang, ZHOU Nengjuan, DU Guoliang. Development Characteristics and Formation Mechanism of Chashushan Landslide in Batang, Western Sichuan [J]. Geoscience, 2017, 31(05): 978-989. |
[14] | WANG Wenxiang, HE Jin, ZHANG Mengnan, AN Yonghui, LI Wenpeng, WU Xi, GONG Lei, WANG Xiaoyan. High-fluorine Groundwater Formation in Longshoushan Piedmont in Zhangye Basin [J]. Geoscience, 2017, 31(02): 415-420. |
[15] | LI Xide,YI Chao,GAO Hewei,CHEN Xinlu,ZHANG Kang,WANG Mingtai. Study on Formation Mechanism of Epigenetic Altered Zone in Zhiluo Formation, Northeastern Ordos Basin, North China [J]. Geoscience, 2016, 30(4): 739-747. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||