现代地质 ›› 2022, Vol. 36 ›› Issue (01): 68-76.DOI: 10.19657/j.geoscience.1000-8527.2021.162
收稿日期:
2021-09-20
修回日期:
2021-11-20
出版日期:
2022-02-10
发布日期:
2022-03-08
通讯作者:
胡克
作者简介:
胡 克,男,教授,博士生导师,1957年出生,海洋科学专业,主要从事海岸带国土开发与资源环境方面的研究。Email: huke@cugb.edu.cn。基金资助:
SUN Shuang1(), HU Ke1(
), LI Yan1, YANG Junpeng2
Received:
2021-09-20
Revised:
2021-11-20
Online:
2022-02-10
Published:
2022-03-08
Contact:
HU Ke
摘要:
近年来许多研究发现山溪性小河流具有瞬时大通量、受极端气候事件控制、沉积物快速输运等特性,但是由于缺乏充足的监测数据和系统总结,其对全球沉积物输运的影响被低估,导致对于这个不同于大河流域的河海交互和风化传输系统的研究是不充分的。揭示不同气候带山溪性河流在自然变化与人类活动共同影响下的沉积物输运特征有助于深入理解地球表生过程和全球海陆相互作用机制。总结了全球土壤有机碳含量,中国南北方温带和热带的山溪性河流的泥沙等气象水文数据和黏土矿物等矿物学数据,结果表明:(1)全球山溪性河流流域的土壤有机碳含量较高。在中国,热带山溪性河流流域初级生产力高于温带流域,所以其土壤有机碳含量高于温带流域;在热带各流域中,台湾岛上的河流地形坡降比最高,所以其是中国土壤有机碳高含量地区。山溪性河流将沉积物快速输运到河口和海岸带地区,大大提高了有机碳的埋藏效率,因此其是研究全球有机碳源汇过程不容忽视的组分。(2)在中国,无论温带还是热带,山溪性河流均对极端气候事件响应强烈,而且流域面积越小、地形越陡峭的河流对极端气候事件的响应越强烈。(3)无论构造活动是否强烈,中国山溪性河流沉积物的矿物学特征都可以精确地指示物源信息,构造稳定带和流域坡降比较低的山溪性河流,其沉积物能够更精确地记录古气候特征。(4)山溪性河流沉积物对人类活动非常敏感,现有的人类活动对其改造要远低于大河流域。
中图分类号:
孙爽, 胡克, 李琰, 杨俊鹏. 我国沿海不同气候带山溪性河流沉积物输运特征[J]. 现代地质, 2022, 36(01): 68-76.
SUN Shuang, HU Ke, LI Yan, YANG Junpeng. Sediment Transport Characteristics of Mountainous Rivers in Different Climatic Zones of Coastal China[J]. Geoscience, 2022, 36(01): 68-76.
河流 | 国家 | 流域面 积/km2 | 海拔梯 度/m | 输沙量/Mt | 径流量/(m3·s-1) | 沉积物浓度/ (g·L-1) | 事件 | 参考文献 | |||
---|---|---|---|---|---|---|---|---|---|---|---|
A | B | A | B | A | B | ||||||
Cowlitz | 美国 | — | — | 10 | 140 | — | — | — | — | 火山爆发 | [ |
Alsea | 美国 | 00 865 | — | — | — | 42 | 00 800 | — | — | 洪水 | [ |
大凌河 | 中国 | 23 200 | 1 097 | 21 | 96 | 145 | 12 000 | — | — | 洪水 | [ |
台湾岛河流 | 中国 | 03 076 | 3 997 | 0.5~40 | >200 | 10~50 | 1 000~10 000 | 10 | 200 | 台风/地震 | [ |
表1 典型山溪性河流在极端气候和构造活动发生前后水文数据变化特征
Table 1 Characteristics of hydrological data around extreme climatic events and tectonic activities of typical mountainous rivers
河流 | 国家 | 流域面 积/km2 | 海拔梯 度/m | 输沙量/Mt | 径流量/(m3·s-1) | 沉积物浓度/ (g·L-1) | 事件 | 参考文献 | |||
---|---|---|---|---|---|---|---|---|---|---|---|
A | B | A | B | A | B | ||||||
Cowlitz | 美国 | — | — | 10 | 140 | — | — | — | — | 火山爆发 | [ |
Alsea | 美国 | 00 865 | — | — | — | 42 | 00 800 | — | — | 洪水 | [ |
大凌河 | 中国 | 23 200 | 1 097 | 21 | 96 | 145 | 12 000 | — | — | 洪水 | [ |
台湾岛河流 | 中国 | 03 076 | 3 997 | 0.5~40 | >200 | 10~50 | 1 000~10 000 | 10 | 200 | 台风/地震 | [ |
图1 全球土壤有机碳含量(数据来自HydroSHEDS[22];橘色曲线为独流入海的山溪性河流,其流域面积<2.4×104 km2,最高海拔>1 000 m)
Fig.1 Global soil organic carbon content (data from HydroSHEDS [22];orange shades showing the mountainous rivers that flow into the sea, with drainage area < 2.4×104 km2 and highest relief >1,000 m)
图3 中国南北方大-中-小河流输沙量和黏土矿物特征(改自文献[49,53-54])
Fig.3 Map showing the sediment flux and clay mineral characteristics of large, medium, and small rivers in South and North China (modified from refs.[49,53-54])
河流 | 汇入 海区 | 长度/km | 面积/ 104 km2 | 最高 海拔/m | 径流量/ (108m3·a-1) | 输沙量/ (106 t·a-1) | 沉积物浓度/ (g·L-1) | 温度/℃ | 降水/ (mm·a-1) | 岩性 | 气候带 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
辽河 | 渤海 | 1 345[ | 22.96[ | 1 490[ | 31.9[ | 15.4[ | 4.8 | 4~9 | 300~950[ | Cen S/M[ | TCM | |
大凌河 | 渤海 | 435[ | 2.32[ | 1 097 | 20.6[ | 17.7[ | 17.0[ | 7.2~8.9[ | 450~610[ | PreMes[ | ||
小凌河 | 渤海 | 206[ | 0.55[ | 454.2[ | 4.0[ | 2.24 | 5.6 | 8.4[ | 543[ | — | ||
滦河 | 渤海 | 877[ | 4.49[ | 1 000.0 | 19.8[ | 10.8[ | 5.5 | 1~11 | 400~800 | PreMes[ | WTCM | |
复州河 | 渤海 | 134[ | 0.16[ | 848[ | 1.4[ | 0.17[ | 1.2 | 8.3~10.3[ | 675.4[ | — | TCM | |
大清河 | 渤海 | 98.9[ | 0.15[ | 1 033.6[ | 3.5[ | — | — | — | 670~760[ | — | ||
六股河 | 渤海 | 163[ | 0.31[ | 1 092[ | 6.8[ | 0.98[ | 1.4 | 8~9[ | 587[ | — | ||
黄河 | 渤海 | 5 465[ | 75.20[ | 4 852 | 289.0[ | 659.1[ | 19.0[ | 5.3~14.5[ | 477.8[ | PreMes[ | ||
大洋河 | 黄海 | 179.7[ | 0.62[ | 928.9[ | 31.0[ | — | — | 7.5~8.0[ | — | — | ||
长江 | 东海 | 6 300[ | 1 800[ | 5 042 | 8 912.0[ | 369.7[ | 0.5[ | 15.2~17[ | 1 100[ | PreMes | STM | |
钱塘江 | 东海 | 490[ | 4.20[ | 1 000[ | 310.0[ | 4.4[ | 0.1 | 16.2~17.3[ | 1 200~ 2 200[ | — | ||
瓯江 | 东海 | 338[ | 1.78[ | — | 150.0[ | 2.7[ | 0.2 | 18[ | 1 100~ 2 200[ | — | STMM | |
闽江 | 东海 | 580[ | 6.10[ | 1 016.9 | 580.0[ | 7.7[ | 0.1 | 19.6[ | 1 498[ | Mes I[ | ||
九龙江 | 东海 | 263[ | 1.36[ | — | 620.0[ | — | — | 21[ | 1 700[ | — | ||
浊水溪 | 东海 | 190[ | 0.31[ | 3 400[ | 61.0[ | 38[ | 6.2[ | 22[ | 2 200[ | PreMes- Cen S/M[ | ||
双溪 | 冲绳 海槽 | 26.81 | 132 | — | — | 1.2[ | — | 22[ | 3 000[ | |||
兰阳溪 | 太平洋 | 73[ | 0.098[ | 3 500[ | 28.0[ | 6.5[ | 2.3 | 22[ | 3 200[ | |||
全球 | 0.5[ |
表2 中国沿海南北方山溪性河流与大河流流域的地质、水文、气象与气候数据统计
Table 2 Geological, hydrometeorological and climatic data of mountainous and mega rivers in North and South China
河流 | 汇入 海区 | 长度/km | 面积/ 104 km2 | 最高 海拔/m | 径流量/ (108m3·a-1) | 输沙量/ (106 t·a-1) | 沉积物浓度/ (g·L-1) | 温度/℃ | 降水/ (mm·a-1) | 岩性 | 气候带 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
辽河 | 渤海 | 1 345[ | 22.96[ | 1 490[ | 31.9[ | 15.4[ | 4.8 | 4~9 | 300~950[ | Cen S/M[ | TCM | |
大凌河 | 渤海 | 435[ | 2.32[ | 1 097 | 20.6[ | 17.7[ | 17.0[ | 7.2~8.9[ | 450~610[ | PreMes[ | ||
小凌河 | 渤海 | 206[ | 0.55[ | 454.2[ | 4.0[ | 2.24 | 5.6 | 8.4[ | 543[ | — | ||
滦河 | 渤海 | 877[ | 4.49[ | 1 000.0 | 19.8[ | 10.8[ | 5.5 | 1~11 | 400~800 | PreMes[ | WTCM | |
复州河 | 渤海 | 134[ | 0.16[ | 848[ | 1.4[ | 0.17[ | 1.2 | 8.3~10.3[ | 675.4[ | — | TCM | |
大清河 | 渤海 | 98.9[ | 0.15[ | 1 033.6[ | 3.5[ | — | — | — | 670~760[ | — | ||
六股河 | 渤海 | 163[ | 0.31[ | 1 092[ | 6.8[ | 0.98[ | 1.4 | 8~9[ | 587[ | — | ||
黄河 | 渤海 | 5 465[ | 75.20[ | 4 852 | 289.0[ | 659.1[ | 19.0[ | 5.3~14.5[ | 477.8[ | PreMes[ | ||
大洋河 | 黄海 | 179.7[ | 0.62[ | 928.9[ | 31.0[ | — | — | 7.5~8.0[ | — | — | ||
长江 | 东海 | 6 300[ | 1 800[ | 5 042 | 8 912.0[ | 369.7[ | 0.5[ | 15.2~17[ | 1 100[ | PreMes | STM | |
钱塘江 | 东海 | 490[ | 4.20[ | 1 000[ | 310.0[ | 4.4[ | 0.1 | 16.2~17.3[ | 1 200~ 2 200[ | — | ||
瓯江 | 东海 | 338[ | 1.78[ | — | 150.0[ | 2.7[ | 0.2 | 18[ | 1 100~ 2 200[ | — | STMM | |
闽江 | 东海 | 580[ | 6.10[ | 1 016.9 | 580.0[ | 7.7[ | 0.1 | 19.6[ | 1 498[ | Mes I[ | ||
九龙江 | 东海 | 263[ | 1.36[ | — | 620.0[ | — | — | 21[ | 1 700[ | — | ||
浊水溪 | 东海 | 190[ | 0.31[ | 3 400[ | 61.0[ | 38[ | 6.2[ | 22[ | 2 200[ | PreMes- Cen S/M[ | ||
双溪 | 冲绳 海槽 | 26.81 | 132 | — | — | 1.2[ | — | 22[ | 3 000[ | |||
兰阳溪 | 太平洋 | 73[ | 0.098[ | 3 500[ | 28.0[ | 6.5[ | 2.3 | 22[ | 3 200[ | |||
全球 | 0.5[ |
图4 滦河、大凌河和黄河降雨量(P)、径流量(Q)和输沙量(Qs)分布图(滦河数据据文献[55],大凌河数据据文献[18,21,61],黄河数据据文献[44,62])
Fig.4 Diagram of precipitation (P) and water discharge (Q), sediment flux (Qs), and of the Luanhe River, Daling River, and Yellow River (data source: Luanhe River from ref. [55]; Daling River from refs.[18,21,61]; Yellow River from refs.[44,62])
[1] |
LI Y. Denudation of Taiwan Island since the Pliocene epoch[J]. Geology, 1976, 4(2):105-107.
DOI URL |
[2] |
KAO S J, MILLIMAN J D. Water and sediment discharge from small mountainous rivers, Taiwan: the roles of lithology, episodic events, and human activities[J]. The Journal of Geology, 2008, 116(5):431-448.
DOI URL |
[3] |
MILLIMAN J D, MEADE R H. World-wide delivery of river se-diment to the oceans[J]. The Journal of Geology, 1983, 91(1):1-21.
DOI URL |
[4] |
MILLIMAN J D. Sediment discharge to the ocean from small mountainous rivers: The New Guinea example[J]. Geo-Marine Letters, 1995, 15:127-133.
DOI URL |
[5] |
LYONS W B, NEZAT C A, CAREY A E, et al. Organic carbon fluxes to the ocean from high-standing islands[J]. Geology, 2002, 30(5):443-446.
DOI URL |
[6] |
MILLIMAN J D, SYVITSKI J P M. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers[J]. The Journal of Geology, 1992, 100(5):525-544.
DOI URL |
[7] | MILLIMAN J D, FARNSWORTH K L. River Discharge to the Coastal Ocean: A Global Synthesis[M]. Cambridge: Cambridge University Press, 2011: 1-393. |
[8] |
ROMANS B W, CASTELLTORT S, COVAULT J A, et al. Environmental signal propagation in sedimentary systems across timescales[J]. Earth-Science Reviews, 2016, 153:7-29.
DOI URL |
[9] | XU K, MILLIMAN J D, YANG Z, et al. Climatic and Anthropogenic Impacts on Water and Sediment Discharges from the Yangtze River (Changjiang), 1950-2005, Large Rivers: Geomorphology and Management[M]. New Jersey: John Wiley & Sons Inc, 2008: 609-626. |
[10] |
QIAO S, SHI X, SAITO Y, et al. Sedimentary records of natural and artificial Huanghe (Yellow River) channel shifts during the Holocene in the southern Bohai Sea[J]. Continental Shelf Research, 2011, 31(13):1336-1342.
DOI URL |
[11] |
WANG S, FU B, PIAO S, et al. Reduced sediment transport in the Yellow River due to anthropogenic changes[J]. Nature Geoscience, 2016, 9(1):38-41.
DOI URL |
[12] |
MUNOZ S E, GIOSAN L, THERRELL M D, et al. Climatic control of Mississippi River flood hazard amplified by river engineering[J]. Nature, 2018, 556:95-98.
DOI URL |
[13] |
ZHANG J, WAN S, CLIFT P D, et al. History of Yellow River and Yangtze River delivering sediment to the Yellow Sea since 3.5 Ma: Tectonic or climate forcing?[J]. Quaternary Science Reviews, 2019, 216:74-88.
DOI URL |
[14] | WU Z, ZHAO D, SYVITSKI J P M, et al. Anthropogenic impacts on the decreasing sediment loads of nine major rivers in China, 1954-2015 [J]. Science of the Total Environment, 2020, 739:1-21. |
[15] | 杨守业, 印萍. 自然环境变化与人类活动影响下的中小河流沉积物源汇过程[J]. 海洋地质与第四纪地质, 2018, 38(1):1-10. |
[16] |
WHEATCROFT R A, GOÑI M A, HATTEN J A, et al. The role of effective discharge in the ocean delivery of particulate organic carbon by small, mountainous river systems[J]. Limnology and Oceanography, 2010, 55(1):161-171.
DOI URL |
[17] | 吕永岩, 白煜章. 惊涛托举的永恒--大凌河“7·13”水难记实[J]. 青年文学, 1994, 11(26):14-39. |
[18] | 刘和平, 王秀颖, 梁凤国. 大凌河流域径流演变驱动因素研究[R]. 沈阳: 辽宁省水利学会, 2014. |
[19] | SMITH L C A, DOUGLAS E. Control on sediment and organic carbon delivery to the Arctic Ocean revealed with space-borne synthetic aperture radar: Ob' River, Siberia[J]. The Journal of Geology, 1998, 26(5):395-398. |
[20] |
BI L, YANG S, LI C, et al. Geochemistry of river-borne clays entering the East China Sea indicates two contrasting types of weathering and sediment transport processes[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(9):3034-3052.
DOI URL |
[21] | 吴俊秀, 张晓红, 车延路. 综合治理对大凌河流域泥沙影响分析[J]. 东北水利水电, 2005, 23(2):31-32. |
[22] | HENGL T, DE JESUS J M, MACMILLAN R A, et al. SoilGrids1km-global soil information based on automated mapping[J]. PLOS ONE, 2014, 9(8):1-17. |
[23] |
BERNER R A. Burial of organic carbon and pyrite sulfur in the modern ocean: its geochemical and environmental significance[J]. American Journal of Science, 1982, 282:451-473.
DOI URL |
[24] | 李克让, 王绍强, 曹明奎. 中国植被和土壤碳贮量[J]. 中国科学(D辑), 2003, 33(1):72-80. |
[25] | 姜伟, 侯青叶, 杨忠芳, 等. 黑龙江省乌裕尔河流域有机碳迁移与沉积通量[J]. 现代地质, 2011, 25(2):384-392. |
[26] | 郭月峰, 姚云峰, 秦富仓, 等. 地形因子对老哈河流域土壤有机碳的影响[J]. 干旱区资源与环境, 2014(2):156-161. |
[27] |
ROBINSON N, REGETZ J, GURALNICK R P. EarthEnv-DEM90: A nearly-global, void-free, multi-scale smoothed, 90m digital elevation model from fused ASTER and SRTM data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 87:57-67.
DOI URL |
[28] | 周莉, 李保国, 周广胜. 土壤有机碳的主导影响因子及其研究进展[J]. 地球科学进展, 2005, 20(1):99-105. |
[29] |
MILLIMAN J D, LIN S W, KAO S J, et al. Short-term changes in seafloor character due to flood-derived hyperpycnal discharge: Typhoon Mindulle, Taiwan, July 2004 [J]. Geology, 2007, 35(9):779-782.
DOI URL |
[30] |
LIU J P, LIU C S, XU K H, et al. Flux and fate of small mountainous rivers derived sediments into the Taiwan Strait[J]. Marine Geology, 2008, 256(1):65-76.
DOI URL |
[31] | LEAH MAY B VER, MACKENZTE F T, ABRAHAM LERMAN. Carbon cycle in the coastal zone: effects of global perturbations and change in the past three centuries[J]. Chemical Geo-logy, 1999, 159(1/4):283-304. |
[32] |
HERNES P J, DYDA R Y, MCDOWELL W H. Connecting tropical river DOM and POM to the landscape with lignin[J]. Geochimica et Cosmochimica Acta, 2017, 219:143-159.
DOI URL |
[33] |
COYNEL A, ETCHEBER H, ABRIL G, et al. Contribution of small mountainous rivers to particulate organic carbon input in the Bay of Biscay[J]. Biogeochemistry, 2005, 74(2):151-171.
DOI URL |
[34] |
LI C, YANG S, ZHAO J, et al. The time scale of river sediment source-to-sink processes in East Asia[J]. Chemical Geology, 2016, 446:138-146.
DOI URL |
[35] |
SYVITSKI J P M, MILLIMAN J D. Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean[J]. The Journal of Geology, 2007, 115:1-19.
DOI URL |
[36] | ZHOU Y, LI D, LU J, et al. Distinguishing the multiple controls on the decreased sediment flux in the Jialing River basin of the Yangtze River, Southwestern China[J]. Catena, 2020, 193:1-11. |
[37] | VE N D, DAIDU F, VAN VUONG B, et al. Sediment budget and morphological change in the Red River Delta under increasing human interferences[J]. Marine Geology, 2021, 431:1-19. |
[38] | KUEHL S, YANG S, YU F, et al. Asia’s mega rivers: common source, diverse fates[J]. Eos, 2020, 101:1-8. |
[39] |
SYVITSKI J P M, VÖRÖSMARTY C J, GREEN A J K P. Impact of humans on the flux of terrestrial sediment to the global coastal ocean[J]. Science, 2005, 308:376-380.
DOI URL |
[40] | 郭晓英, 陈兴伟, 陈莹, 等. 气候变化与人类活动对闽江流域径流变化的影响[J]. 中国水土保持科学, 2016, 14(2):88-94. |
[41] | JIAN X, ZHANG W, YANG S, et al. Climate-dependent sediment composition and transport of mountainous rivers in tectonically stable, Subtropical East Asia[J]. Geophysical Research Letters, 2020, 47(3):1-11. |
[42] | PHILLIPS J D, SLATTERY M C. Sediment storage, sea level, and sediment delivery to the ocean by coastal plain rivers[J]. Progress in Physical Geography, 2006, 30(4):513-530. |
[43] |
LU X X, RAN L S, LIU S, et al. Sediment loads response to climate change: A preliminary study of eight large Chinese rivers[J]. International Journal of Sediment Research, 2013, 28(1):1-14.
DOI URL |
[44] | WU X, WANG H, BI N, et al. Climate and human battle for dominance over the Yellow River's sediment discharge: From the Mid-Holocene to the Anthropocene[J]. Marine Geology, 2020, 425:1-9. |
[45] |
ZHANG Z, CHEN X, XU C Y, et al. Evaluating the non-stationary relationship between precipitation and streamflow in nine major basins of China during the past 50 years[J]. Journal of Hydrology, 2011, 409(1):81-93.
DOI URL |
[46] |
LI D, LU X X, YANG X, et al. Sediment load responses to climate variation and cascade reservoirs in the Yangtze River: A case study of the Jinsha River[J]. Geomorphology, 2018, 322:41-52.
DOI URL |
[47] | MILLIMAN J D, FARNSWORTH K L. Runoff, Erosion, and Delivery to the Coastal Ocean,River Discharge to the Coastal Ocean[M]. London: Cambridge University Press, 2011: 13-69. |
[48] | 印萍. 海陆沧桑一带连--我国海岸带探索[J]. 国土资源科普与文化, 2015, 2(10):14-23. |
[49] |
DOU Y, LI J, ZHAO J, et al. Clay mineral distributions in surface sediments of the Liaodong Bay, Bohai Sea and surrounding river sediments: Sources and transport patterns[J]. Continental Shelf Research, 2014, 73:72-82.
DOI URL |
[50] | 符文侠, 李光天, 何宝林, 等. 辽东湾潮滩及滨下动力地貌特征[J]. 海洋学报, 1993, 15(1):71-83. |
[51] | 何磊, 薛春汀, 叶思源, 等. 大凌河河口地区晚更新世晚期以来的沉积环境演化[J]. 海洋学报, 2016, 38(5):108-123. |
[52] | 刘大为. 辽河-大凌河三角洲四百年来的演化研究.[D]. 北京: 中国地质大学(北京), 2019. |
[53] | 梁小龙, 杨守业, 印萍, 等. 黄海与东海周边河流及泥质区沉积物黏土矿物的分布特征和控制因素[J]. 海洋地质与第四纪地质, 2015, 35(6):1-15. |
[54] | 刘大为, 刘兴宝, 胡克, 等. 大凌河与辽河入海口沉积物黏土矿物组成研究[J]. 海洋学报, 2019, 41(2):75-84. |
[55] |
黎刚, 殷勇. 滦河下游河道及三角洲地貌的近期演化[J]. 地理研究, 2010, 29(9):1606-1615.
DOI |
[56] | 黄霄. 北方典型多沙大凌河水沙演变特征及其影响因素分析[J]. 水电能源科学, 2019, 27(1):40-44. |
[57] | 王利波, 李军, 赵京涛, 等. 辽东湾周边河流沉积物碎屑矿物组成及其物源意义[J]. 沉积学报, 2013, 31(4):663-671. |
[58] | 郭若舜, 何磊, 叶思源, 等. 辽河三角洲大凌河河口湿地沉积物晚更新世以来的矿物特征及其物源、气候意义[J]. 现代地质, 2020, 34(1):154-165. |
[59] | 曹珂, 李梅娜, 刘金庆. 滦河三角洲表层沉积物黏土矿物特征[J]. 海洋地质与第四纪地质, 2016, 36(6):7-11. |
[60] |
ALIZAI A, HILLIER S, CLIFT P D, et al. Clay mineral variations in Holocene terrestrial sediments from the Indus Basin[J]. Quaternary Research, 2017, 77(3):368-381.
DOI URL |
[61] | 于国宝. 大凌河流域水沙特性及变化趋势分析[J]. 水利规划与设计, 2017, 2(3):41-43. |
[62] |
WANG H, YANG Z, SAITO Y, et al. Interannual and seasonal variation of the Huanghe (Yellow River) water discharge over the past 50 years: Connections to impacts from ENSO events and dams[J]. Global and Planetary Change, 2006, 50(3):212-225.
DOI URL |
[63] |
MILLIMAN J D, LEE T Y, HUANG J C, et al. Impact of catastrophic events on small mountainous rivers: Temporal and spatial variations in suspended-and dissolved-solid fluxes along the Choshui River, central western Taiwan, during typhoon Mindulle, July 2-6, 2004[J]. Geochimica et Cosmochimica Acta, 2017, 205:272-294.
DOI URL |
[64] | 陈静生, 王忠. 海南岛雨水、河水、地下水氢氧稳定同位素特征及其关系[J]. 地理科学, 1993, 13(3):273-278. |
[65] | 刘金庆, 印萍, 高飞, 等. 南渡江河口水体氢氧同位素特征及对台风“海鸥”的响应[J]. 海洋地质与第四纪地质, 2017, 38(1):170-177. |
[66] |
DENG J, WOODROFFE C D, ROGERS K, et al. Morphogenetic modelling of coastal and estuarine evolution[J]. Earth-Science Reviews, 2017, 171:254-271.
DOI URL |
[67] |
LI C, SHI X, KAO S, et al. Clay mineral composition and their sources for the fluvial sediments of Taiwanese rivers[J]. Chinese Science Bulletin, 2011, 57(6):673-681.
DOI URL |
[68] | 程捷, 唐德翔, 张绪教, 等. 粘土矿物在黄河源区古气候研究中的应用[J]. 现代地质, 2003, 17(1):47-51. |
[69] | 《中国河湖大典》编纂委员会. 中国河湖大典黑龙江、辽河卷[M]. 北京: 中国水利水电出版社, 2014: 1-399. |
[1] | 尚卫, 苏新, 白辰阳, 崔鸿鹏. 东太平洋水合物海岭沉积物中黏土矿物与水合物饱和度相关性研究[J]. 现代地质, 2022, 36(01): 159-171. |
[2] | 曹凯君, 任晋珂, 李潇濛, 吴怀春, 陈芳, 余少华, 时美楠, 甘华阳. 珠江口伶仃洋ZK1钻孔的磁性地层学研究[J]. 现代地质, 2022, 36(01): 58-67. |
[3] | 王雪木, 瞿洪宝, 熊元凯, 吕琳, 胡克. 海南昌化江入海口底表沉积物粒度特征及输运趋势[J]. 现代地质, 2022, 36(01): 88-95. |
[4] | 魏定邦, 杨强, 夏建新. 深海沉积物贯入阻力影响因素及其变化规律[J]. 现代地质, 2021, 35(06): 1871-1879. |
[5] | 罗松英, 全晓文, 陈碧珊, 邱锦坤, 梁家新, 邓子艺. 湛江湾红树林湿地沉积柱粒度特征及沉积动力分析[J]. 现代地质, 2021, 35(03): 647-656. |
[6] | 陈碧珊, 陈诗敏, 何炽鹏. 雷州半岛红树林湿地表层沉积物粒度分布特征[J]. 现代地质, 2019, 33(01): 198-205. |
[7] | 苏新,陈芳,张勇,王媛媛,焦露,蒋宏忱,董海良. 海洋天然气水合物勘查和识别新技术:地质微生物技术[J]. 现代地质, 2010, 24(3): 409-423. |
[8] | 罗祎, 苏新, 陈芳, 黄永样. 南海北部DSH-1C柱状样晚更新世以来沉积物磁性特征及其环境意义[J]. 现代地质, 2010, 24(3): 521-527. |
[9] | 吴庐山, 杨胜雄, 梁金强, 苏新, 杨涛, 张欣, 程思海, 陆红锋. 南海北部琼东南海域HQ-48PC站位地球化学特征及对天然气水合物的指示意义[J]. 现代地质, 2010, 24(3): 534-544. |
[10] | 胡高伟, 业渝光, 刁少波, 张剑, 刘昌岭. 时域反射技术测量海洋沉积物含水量的研究[J]. 现代地质, 2010, 24(3): 622-626. |
[11] | 栾锡武 彭学超 邱燕. 南海北部陆坡高速堆积体的构造成因[J]. 现代地质, 2009, 23(2): 183-199. |
[12] | 张志攀,祝有海,苏新. 羌塘盆地沉积物热释光特征及潜在意义[J]. 现代地质, 2008, 22(3): 452-456. |
[13] | 赵宏樵,赵建如. 富钴结壳中贵金属元素的特征[J]. 现代地质, 2007, 21(4): 654-658. |
[14] | 王宏斌,黄永样,梁劲,刘学伟,梁金强,李灿苹等. 南海北部陆坡坳隆断裂带中水合物赋存的温压场环境[J]. 现代地质, 2006, 20(1): 103-108. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||