现代地质 ›› 2022, Vol. 36 ›› Issue (01): 159-171.DOI: 10.19657/j.geoscience.1000-8527.2021.175
尚卫1,2(), 苏新1,2(
), 白辰阳1,2, 崔鸿鹏1,2
收稿日期:
2021-11-10
修回日期:
2021-12-26
出版日期:
2022-02-10
发布日期:
2022-03-08
通讯作者:
苏新
作者简介:
苏 新,女,教授,博士生导师,1957年出生,地层古生物和海洋地质专业,主要从事微体古生物、海洋地质和天然气水合物等研究。Email: xsu@cugb.edu.cn。基金资助:
SHANG Wei1,2(), SU Xin1,2(
), BAI Chenyang1,2, CUI Hongpeng1,2
Received:
2021-11-10
Revised:
2021-12-26
Online:
2022-02-10
Published:
2022-03-08
Contact:
SU Xin
摘要:
为了探讨水合物储层中不同黏土矿物与水合物饱和度的关系,选取位于东太平洋水合物海岭国际大洋钻探计划204航次中的3个钻孔(1245B孔、1244C孔和1251B),开展储层沉积物黏土矿物的测试和综合分析。结果表明,蒙脱石、伊利石、绿泥石为主要黏土矿物(平均含量分别为40.3%、33.4%、21.4%);高岭石为次要黏土矿物(平均4.9%)。伊利石、绿泥石、高岭石三种矿物含量的垂向变化规律相似,但它们与蒙脱石的垂向变化趋势相反。该区水合物饱和度与蒙脱石含量呈正相关,且正相关程度在“细粒岩性”层段较高(R=0.55~0.97);水合物饱和度与伊利石、绿泥石、高岭石则显示负相关。3个钻孔中水合物储层厚度、水合物饱和度在各钻孔中分布的差异性表明水合物饱和度的受控因素复杂,首先是气源和流体迁移与供给,其次为沉积物岩性;而“细粒岩性”层段较高含量蒙脱石与水合物饱和度正相关关系可能代表了更次一级的沉积影响因素。为检验其它海区是否也存在黏土矿物对水合物饱和度的影响,将上述3个钻孔与印度外海Krishna-Godavari盆地17-07P钻孔记录进行对比。结果显示,17-07P孔的砂含量高,在粗砂层蒙脱石含量与水合物饱和度呈正相关,反映两个海域岩性对水合物饱和度控制机理不同。上述“细粒岩性”层段蒙脱石含量和伊利石、绿泥石、高岭石3种黏土矿物含量与水合物饱和度之间相关性的差异,可能因为蒙脱石具有特殊层状结构和表面化学性质(层间表面带负电荷、具有可交换的层间水合阳离子等),有利于促进水合物的形成和富集,因而表现为正相关;而伊利石、绿泥石、高岭石自身属性与蒙脱石不同(吸水膨胀能力、对甲烷的吸附能力较蒙脱石弱),不利于水合物的聚集,表现为负相关。
中图分类号:
尚卫, 苏新, 白辰阳, 崔鸿鹏. 东太平洋水合物海岭沉积物中黏土矿物与水合物饱和度相关性研究[J]. 现代地质, 2022, 36(01): 159-171.
SHANG Wei, SU Xin, BAI Chenyang, CUI Hongpeng. Correlation of Clay Minerals and Gas Hydrate Saturation in Sediments from the Hydrate Ridge, Eastern Pacific Ocean[J]. Geoscience, 2022, 36(01): 159-171.
图1 ODP 204航次钻探区构造位置及站位分布(红点标识本研究的三个钻孔;据文献[16]修改) (a)钻区板块构造位置;(b)水合物海岭位置;(c)钻孔分布
Fig.1 Structural and site locations of ODP Leg 204 (the studied three drillholes shown in red dots;modified after ref.[16])
ODP钻孔 | 位置(水深/m) | 储层深度/mbsf | 岩性单元 | 储层岩性 | |
---|---|---|---|---|---|
顶部 | 底部 | ||||
1245B | 44.586° N, 125.148° W (870.0) | 50.75 | 76.00 | II | 深绿灰色含硅藻黏土和粉砂质黏土,与细砂互层 |
76.00 | 129.59 | IIIA | 深绿灰色富含超微化石、富硅藻黏土及粉砂质黏土,与薄层砂质粉砂、粉砂互层 | ||
1244C | 44.586° N, 125.119° W (890.0) | 48.30 | 69.00 | I | 深绿色灰色黏土夹粉砂质黏土、细粉砂薄层 |
69.00 | 125.80 | II | 深绿灰色粉砂质黏土夹细砂、粗粉砂薄层 | ||
1251B | 44.570° N, 125.074° W (1216.0) | 89.85 | 130.00 | IC | 黏土和粉砂质黏土互层组成,含丰富的硅藻、有孔虫等微体化石 |
130.00 | 186.95 | IIA | 粉砂质黏土 |
表1 ODP 204航次3个钻孔位置信息和水合物储层深度范围的主要岩性(据文献[22⇓-24])
Table 1 Information of three ODP Leg 204 drillholes and main lithology of gas hydrate reservoir strata (from refs. [22⇓-24])
ODP钻孔 | 位置(水深/m) | 储层深度/mbsf | 岩性单元 | 储层岩性 | |
---|---|---|---|---|---|
顶部 | 底部 | ||||
1245B | 44.586° N, 125.148° W (870.0) | 50.75 | 76.00 | II | 深绿灰色含硅藻黏土和粉砂质黏土,与细砂互层 |
76.00 | 129.59 | IIIA | 深绿灰色富含超微化石、富硅藻黏土及粉砂质黏土,与薄层砂质粉砂、粉砂互层 | ||
1244C | 44.586° N, 125.119° W (890.0) | 48.30 | 69.00 | I | 深绿色灰色黏土夹粉砂质黏土、细粉砂薄层 |
69.00 | 125.80 | II | 深绿灰色粉砂质黏土夹细砂、粗粉砂薄层 | ||
1251B | 44.570° N, 125.074° W (1216.0) | 89.85 | 130.00 | IC | 黏土和粉砂质黏土互层组成,含丰富的硅藻、有孔虫等微体化石 |
130.00 | 186.95 | IIA | 粉砂质黏土 |
图2 1245B孔水合物储层岩性(砂、粉砂和黏土)、黏土矿物含量及水合物饱和度对比图(浅黄色标识黏土组分变化小的深度区间;水合物饱和度数据引自文献[23];1 mbsf示海底面以下1 m,下文同)
Fig.2 Comparison of lithologic components (sand, silt and clay), clay mineral contents and gas hydrate saturation in the hydrate reservoir sequences in drillhole 1245B (hydrate saturation data from ref. [23])
图3 1244C孔水合物储层岩性(砂、粉砂和黏土)、黏土矿物含量及水合物饱和度对比图(浅黄色标识黏土组分变化小的深度区间;水合物饱和度数据引自文献[22])
Fig.3 Comparison of lithologic components (sand, silt and clay), clay mineral contents and gas hydrate saturation in the hydrate reservoir sequences in drillhole 1244C (hydrate saturation data from ref. [22])
图4 1251B孔水合物储层岩性(砂、粉砂和黏土)、黏土矿物含量及水合物饱和度对比图(浅黄色标识黏土组分变化小的深度区间;水合物饱和度数据引自文献[24])
Fig.4 Comparison of lithologic components (sand, silt and clay), clay mineral contents and gas hydrate saturation in the hydrate reservoir sequences in drillhole 1251B (hydrate saturation data from ref. [24])
图5 储层全序列黏土矿物含量与水合物饱和度Pearson相关性分析
Fig.5 Pearson correlation analysis of clay mineral content and hydrate saturation of all samples in drillholes 1244C, 1244C (no hydrate saturation data at 56.44 mbsf depth), 1245B, and 1251B
钻孔 | 蒙脱石含量 和水合物饱 和度(R) | 伊利石含量 和水合物饱 和度(R) | 绿泥石含量 和水合物饱 和度(R) | 高岭石含量 和水合物饱 和度(R) |
---|---|---|---|---|
1245B | 0.60 | -0.53 | -0.53 | -0.52 |
1244C | 0.55 | -0.68 | 0.03 | -0.87 |
1251B | 0.97 | -0.99 | -0.99 | -0.60 |
表2 所研究三个钻孔部分“细粒岩性段”中黏土矿物与水合物饱和度的Pearson相关性分析
Table 2 Pearson correlation analysis of clay mineral content and hydrate saturation in the fine-grained lithologic intervals of the studied drillholes
钻孔 | 蒙脱石含量 和水合物饱 和度(R) | 伊利石含量 和水合物饱 和度(R) | 绿泥石含量 和水合物饱 和度(R) | 高岭石含量 和水合物饱 和度(R) |
---|---|---|---|---|
1245B | 0.60 | -0.53 | -0.53 | -0.52 |
1244C | 0.55 | -0.68 | 0.03 | -0.87 |
1251B | 0.97 | -0.99 | -0.99 | -0.60 |
印度水 合物钻区 | 钻孔 | 深度/mbsf | 储层沉积粒度组分含量 (平均值) | 蒙脱石/% (平均含量) | 水合物 饱和度/% | 蒙脱石含量与水 合物饱和度关系 |
---|---|---|---|---|---|---|
K-G盆地 | 17-07P | 282.10~282.30 | 砂23.6%,粉砂63.3%,黏土13.1% | 0.4~1.0(0.7) | 20~60 | 正相关 |
282.95~283.20 | 砂7.9%,粉砂76.1%,黏土16.0% | 2.6~3.7(3.1) | 20~50 | 负相关 |
表3 印度K-G盆地17-07P孔砂高含量和低含量储层段中水合物饱和度与蒙脱石含量对比(据文献[7]整理)
Table 3 Comparison of gas hydrate saturation and montmorillonite contents in reservoir sequence with high and low sand content from drillhole 17-07P in the K-G Basin, offshore India (from ref. [7])
印度水 合物钻区 | 钻孔 | 深度/mbsf | 储层沉积粒度组分含量 (平均值) | 蒙脱石/% (平均含量) | 水合物 饱和度/% | 蒙脱石含量与水 合物饱和度关系 |
---|---|---|---|---|---|---|
K-G盆地 | 17-07P | 282.10~282.30 | 砂23.6%,粉砂63.3%,黏土13.1% | 0.4~1.0(0.7) | 20~60 | 正相关 |
282.95~283.20 | 砂7.9%,粉砂76.1%,黏土16.0% | 2.6~3.7(3.1) | 20~50 | 负相关 |
[1] |
MILKOV A V, SASSEN R. Preliminary assessment of resources and economic potential of individual gas hydrate accumulations in the Gulf of Mexico continental slope[J]. Marine and Petroleum Geology, 2003, 20: 111-128.
DOI URL |
[2] | 杨胜雄, 梁金强, 陆敬安, 等. 南海北部神狐海域天然气水合物成藏特征及主控因素新认识[J]. 地学前缘, 2017, 24(4): 1-14. |
[3] |
MINSHULL T A, MARÍN-MORENO H, BETLEM P, et al. Hydrate occurrence in Europe: A review of available evidence[J]. Marine and Petroleum Geology, 2020, 111: 735-764.
DOI URL |
[4] |
BAHK J J, KIM D H, CHUN J H, et al. Gas hydrate occurrences and their relation to host sediment properties: Results from Second Ulleung Basin Gas Hydrate Drilling Expedition, East Sea[J]. Marine and Petroleum Geology, 2013, 47: 21-29.
DOI URL |
[5] |
EGAWA K, NISHIMURA O, IZUMI S, et al. Bulk sediment mineralogy of gas hydrate reservoir at the East Nankai offshore production test site[J]. Marine and Petroleum Geology, 2015, 66: 379-387.
DOI URL |
[6] |
ITO T, KOMATSU Y, FUJII T, et al. Lithological features of hydrate-bearing sediments and their relationship with gas hydrate saturation in the eastern Nankai Trough, Japan[J]. Marine and Petroleum Geology, 2015, 66: 368-378.
DOI URL |
[7] |
OSHIMA M, SUZUKI K, YONEDA J, et al. Lithological properties of natural gas hydrate-bearing sediments in pressure-cores recovered from the Krishna-Godavari Basin[J]. Marine and Petroleum Geology, 2019, 108: 439-470.
DOI URL |
[8] |
SU M, LUO K W, FANG Y X, et al. Grain-size characteristics of fine-grained sediments and association with gas hydrate saturation in Shenhu Area, northern South China Sea[J]. Ore Geology Reviews, 2021, 129. [2021-12-22]. doi.org/10.1016/j.oregeorev.2020.103889.
DOI |
[9] | BOSWELL R, MORIDIS G, REAGAN M, et al. Gas hydrate accumulation types and their application to numerical simulation[M]// 7th International Conference on Gas Hydrates (ICGH 2011). New York: Curran Associates, Inc., 2016: 1157-1168. |
[10] | ZHANG H Q, YANG S X, WU N Y, et al. Successful and surprising results for China’s first gas hydrate drilling expedition[J]. Fire in the Ice, 2007, 7(3): 6-9. |
[11] | YANG S X, ZHANG M, LIANG J Q, et al. Preliminary results of China’s third gas hydrate drilling expedition: a critical step from discovery to development in the south china sea[J]. Fire in the Ice, 2015, 15(2): 1-5. |
[12] | 陈芳, 苏新, 陆红锋, 等. 南海神狐海域有孔虫与高饱和度水合物的储存关系[J]. 地球科学, 2013, 38(5): 907-915. |
[13] |
WU Z R, LI Y H, SUN X, et al. Experimental study on the effect of methane hydrate decomposition on gas phase permeability of clayey sediments[J]. Applied Energy, 2018, 230: 1304-1310.
DOI URL |
[14] |
WU Z R, LIU W G, ZHENG J N, et al. Effect of methane hydrate dissociation and reformation on the permeability of clayey sediments[J]. Applied Energy, 2020, 261. [2021-12-22]. doi.org/10.1016/j.apenergy.2019.114479.
DOI |
[15] |
BELLO P A, ALMENNINGEN S, FOTLAND P, et al. Experimental and numerical analysis of the effects of clay content on CH4 hydrate formation in sand[J]. Energy and Fuels, 2021, 35: 9836-9846.
DOI URL |
[16] | Shipboard Scientific Party. Leg 204 summary[M]//TRÉHU A M, BOHRMANN G, RACK F R, et al. Proceedings of ODP 204, Initial Reports. College Station: Ocean Drilling Program, 2003: 1-75. |
[17] | 苏新. 海洋天然气水合物分布与“气-水-沉积物”动态体系: 大洋钻探204航次调查初步结果的启示[J]. 中国科学(D辑: 地球科学), 2004, 34(12): 1091-1099. |
[18] | 苏新, 宋成兵, 方念乔. 东太平洋水合物海岭BSR以上沉积物粒度变化与气体水合物分布[J]. 地学前缘, 2005, 12(1): 234-242. |
[19] | SU X, SONG C B, FANG N Q. Relationship between sediment granulometry and the presence of gas hydrate on Hydrate Ridge[J]. Proceedings of the Ocean Drilling Program Scientific Results, 2006, 204: 1-30. |
[20] |
TRÉHU A M, TORRES M E, MOORE G F, et al. Temporal and spatial evolution of gas hydrate-bearing accretionary ridge on the Oregon[J]. Geology, 1999, 27(10): 939-939.
DOI URL |
[21] | TRÉHU A M, TORRES M E, BOHRMANN G, et al. Leg 204 synthesis: gas hydrate distribution and dynamics in the central Cascadia accretionary complex[J]. Proceedings of the Ocean Drilling Program Scientific Results, 2006, 204: 31-40. |
[22] | Shipboard Scientific Party. Site 1244[M]//TRÉHU A M, BOHRMANN G, RACK F R, et al. Proceedings of ODP 204, Initial Reports. College Station: Ocean Drilling Program, 2003: 1-132. |
[23] | Shipboard Scientific Party. Site 1245[M]//TRÉHU A M, BOHRMANN G, RACK F R, et al. Proceedings of ODP 204, Initial Reports. College Station: Ocean Drilling Program, 2003: 1-131. |
[24] | Shipboard Scientific Party. Site 1251[M]//TRÉHU A M, BOHRMANN G, RACK F R, et al. Proceedings of ODP 204, Initial Reports. College Station: Ocean Drilling Program, 2003: 1-119. |
[25] | 李琰. 28ka以来莱州湾南岸的沉积学记录及环境意义[D]. 北京: 中国地质大学(北京), 2014. |
[26] |
BISCAYE P E. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans[J]. Geological Society of America Bulletin, 1965, 76(7), 803-832.
DOI URL |
[27] |
MILKOV A V, CLAYPOOL G E, LEE Y J, et al. In situ methane concentrations at Hydrate Ridge, offshore oregon: New constraints on the global gas hydrate inventory from an active margin[J]. Geology, 2003, 31(10): 833-836.
DOI URL |
[28] |
MILKOV A V, DICKENS G R, CLAYPOOL G E, et al. Co-existence of gas hydrate, free gas, and brine within the regional gas hydrate stability zone at Hydrate Ridge (Oregon margin): evidence from prolonged degassing of a pressurized core[J]. Earth and Planetary Science Letters, 2004, 222: 829-843.
DOI URL |
[29] |
TRÉHU A M, LONG P E, TORRES M E, et al. Three-dimensional distribution of gas hydrate beneath southern Hydrate Ridge: Constraints from ODP Leg 204[J]. Earth and Planetary Science Letters, 2004, 222: 845-862.
DOI URL |
[30] |
TORRES M E, WALLMANN K, TRÉHU A M, et al. Gas hydrate growth, methane transport and chloride enrichment at the southern summit of Hydrate Ridge, Cascadia Margin off Oregon[J]. Earth and Planetary Science Letters, 2004, 226: 225-241.
DOI URL |
[31] |
GARDNER K H, ARIAS M S. Clay swelling and formation permeability reductions induced by a nonionic surfactant[J]. Environmental Science and Technology, 2000, 34(1): 160-166.
DOI URL |
[32] |
WU Z R, LI Y H, SUN X, et al. Experimental study on the gas phase permeability of montmorillonite sediments in the presence of hydrates[J]. Marine and Petroleum Geology, 2018, 91: 373-380.
DOI URL |
[33] |
CHA S B, OUAR H, WILDEMAN T R, et al. A third-surface effect on hydrate formation[J]. The Journal of Physical Chemistry, 1988, 92(23): 6492-6494.
DOI URL |
[34] |
GUGGENHEIM S, GROOS A F. New gas-hydrate phase: Synthesis and stability of clay-methane hydrate intercalate[J]. Geology, 2003, 31(7): 653-656.
DOI URL |
[35] |
KUMARI A, BALOMAJUMDER C, ARORA A, et al. Physio-chemical and mineralogical characteristics of gas hydrate-bearing sediments of the Kerala-Konkan, Krishna-Godavari, and Mahanadi basins[J]. Journal of Marine Science and Engineering, 2021, 9. [2021-12-22]. doi.org/10.3390/jmse9080808.
DOI |
[36] | 周金虹. 粘土矿物孔道表面与流体相互作用的分子模拟[D]. 南京: 南京大学, 2019. |
[37] | 高翔. 黏土矿物学[M]. 北京: 化学工业出版社, 2017: 1-71. |
[38] | 周青, 陆现彩, 朱建喜, 等. 钠蒙脱石层间域内甲烷水合物稳定性影响因素的分子动力学模拟[J]. 矿物学报, 2010, 30(增): 33-34. |
[39] |
陈浩, 徐则林, 颜克凤, 等. 含盐蒙脱石中甲烷水合物的生成/分解特性及离子分布研究[J/OL]. 过程工程学报, 2021. [2021-12-22]. doi: 10.12034/j.issn.1009-606X.221044.
DOI |
[40] |
JI L M, ZHANG T W, MILLIKEN K, et al. Experimental investigation of main controls to methane adsorption in clay-rich rocks[J]. Applied Geochemistry, 2012, 27: 2533-2545.
DOI URL |
[41] | 吉利明, 马向贤, 夏燕青, 等. 黏土矿物甲烷吸附性能与微孔隙体积关系[J]. 天然气地球科学, 2014, 25(2): 141-152. |
[42] |
HEESCHEN K U, SCHICKS J M, OELTZSCHNER G. The promoting effect of natural sand on methane hydrate formation: Grain sizes and mineral composition[J]. Fuel, 2016, 181: 139-147.
DOI URL |
[43] | 王冠, 李桂臣, 孙元田, 等. 伊利石水化机理及膨胀特性的分子模拟研究[J]. 煤炭科技, 2017(3): 16-22. |
[44] |
TUNEGA D, BENCO L, HABERHAUER G, et al. Ab initio molecular dynamics study of adsorption sites on the (001) surfaces of 1∶1 dioctahedral clay minerals[J]. The Journal of Physical Chemistry B, 2002, 106: 11515-11525.
DOI URL |
[45] |
TUNEGA D, HABERHAUER G, GERZABEK M H, et al. Theo-retical study of adsorption sites on the (001) surfaces of 1:1 clay minerals[J]. Langmuir, 2002, 18: 139-147.
DOI URL |
[46] | BERGAYA F, THENG B, LAGALY G. Handbook of Clay Science[M]. Amsterdam: Elsevier, 2006: 44-47. |
[1] | 郭若舜, 何磊, 叶思源, 赵俐红. 辽河三角洲大凌河河口湿地沉积物晚更新世以来的矿物特征及其物源、气候意义[J]. 现代地质, 2020, 34(01): 154-165. |
[2] | 任大忠,孙卫,卢涛,李跃刚,张茜,周楷. 致密砂岩气藏可动流体赋存特征的微观地质因素: 以苏里格气田东部盒8段储层为例[J]. 现代地质, 2015, 29(6): 1409-1417. |
[3] | 龚建明,张敏,陈建文,李谨,陈立英,成海燕. 天然气水合物发现区和潜在区气源成因[J]. 现代地质, 2008, 22(3): 415-419. |
[4] | 龚建明. 张莉. 陈建文. Young-Joo LEE. 王红霞. 闫桂京. ODP204航次天然气水合物的可能有利储层——浊积层[J]. 现代地质, 2005, 19(1): 21-25. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||