[1] |
PERON-PINVIDIC G, MANATSCHAL G. The final rifting evolution at deep magma-poor passive margins from Iberia-Newfoundland: a new point of view[J]. International Journal of Earth ences, 2009, 98(7): 1581-1597.
|
[2] |
GEOFFROY L, BUROV E B, WERNER P. Volcanic passive margins:another way to break up continents[J]. Scie.pngic Reports, 2015, 5(1): 1-12.
|
[3] |
MANATSCHAL G, BERNOULLI D. Rifting and early evolution of ancient ocean basins: the record of the Mesozoic Tethys and of the Galicia-Newfoundland margins[J]. Marine Geophysical Researches, 1998, 20(4): 371-381.
|
[4] |
MANATSCHAL G, BERNOULLI D. Architecture and tectonic evolution of nonvolcanic margins: Present-day Galicia and ancient Adria[J]. Tectonics, 1999, 18(6): 1099-1119.
|
[5] |
MOHN G, KARNER G D, MANATSCHAL G, et al. Structural and stratigraphic evolution of the Iberia-Newfoundland hyper-extended rifted margin: a quantitative modeling approach[J]. Geological Society London Special Publications, 2015, 413(1):53-89.
|
[6] |
HAUPERT I, MANATSCHAL G, DECARLIS A, et al. Upper-plate magma-poor rifted margins: Stratigraphic architecture and structural evolution[J]. Marine and Petroleum Geology, 2016, 69: 241-261.
|
[7] |
MANATSCHAL G. New models for evolution of magma-poor rifted margins based on a review of data and concepts from West Iberia and the Alps[J]. International Journal of Earth Sciences, 2004, 93(3): 432-466.
|
[8] |
MASINI E, MANATSCHAL G, MOHN G. The Alpine Tethys rifted margins: Reconciling old and new ideas to understand the stratigraphic architecture of magma-poor rifted margins[J]. Sedimentology, 2013, 60(1): 174-196.
|
[9] |
PERON-PINVIDIC G, HUCHON P, MANATSCHAL G. Ocean-continent transition Foreword[J]. Comptes Rendus Geosciences, 2009, 341(5): 357-362.
|
[10] |
MCKENZIE D. Some remarks on the development of sedimentary basins[J]. Earth and Planetary Science Letters, 1978, 40(1): 25-32.
|
[11] |
WERNICKE B. Low-angle normal faults in the Basin and Range Province: Nappe tectonics in an extending orogen[J]. Nature, 1981, 291: 645-648.
|
[12] |
PERON-PINVIDIC G, MANATSCHAL G, MINSHULL T A, et al. Tectonosedimentary evolution of the deep Iberia-Newfoundland margins: Evidence for a complex breakup history[J]. Tectonics, 2007, 26(2): 1-19.
|
[13] |
PERON-PINVIDIC G, MANATSCHAL G, OSMUNDSEN P T. Structural comparison of archetypal Atlantic rifted margins: A review of observations and concepts[J]. Marine & Petroleum Geology, 2013, 43: 21-47.
|
[14] |
SUTRA E, MANATSCHAL G, MOHN G, et al. Qua.pngication and restoration of extensional deformation along the Western Iberia and Newfoundland rifted margins[J]. Geochemistry Geophysics Geosystems, 2013, 14(8): 2575-2597.
|
[15] |
DAFOE L T, KEEN C E, DICKIE K, et al. Regional stratigraphy and subsidence of Orphan Basin near the time of breakup and implications for rifting processes[J]. Basin Research, 2015, 29: 233-254.
|
[16] |
GEOFFROY L, GUAN H, GERNIGON L, et al. The extent of continental material in oceans: C-Blocks and the Laxmi Basin example[J]. Geophysical Journal International, 2020, 222: 1471-1479.
|
[17] |
AVENDONK H J A V, LAVIER L L, SHILLINGTON D J, et al. Extension of continental crust at the margin of the eastern Grand Banks, Newfoundland[J]. Tectonophysics, 2009, 468(1/2/3/4): 131-148.
|
[18] |
DYKSTERHUIS S, REY P, MÜLLER R D, et al. Effects of initial weakness on rift architecture[J]. Geological Society, London, Special Publications, 2007, 282(1): 443-455.
|
[19] |
MULLER C. Upper mantle seismic anisotropy beneath Antarctica and the Scotia Sea region[J]. Geophysical Journal International, 2001, 147(1): 105-122.
|
[20] |
MÜNTENER O, MANATSCHAL G. High degrees of meltextraction recorded by spinel harzburgite of the Newfoundland margin: The role of inheritance and consequences for the evolution of the southern North Atlantic[J]. Earth & Planetary Science Letters, 2006, 252(3/4): 437-452.
|
[21] |
FALVEY D A. The development ofcontinental margins in plate tectonic theory[J]. Journal of Australian Petroleum Exploration Association, 1974, 14: 95-106.
|
[22] |
XIE X, MÜLLER D R, LI S, et al. Origin of anomalous subsidence along the Northern South China Sea margin and its relationship to dynamic topography[J]. Marine and Petroleum Geology, 2006, 23(7): 745-765.
|
[23] |
XIE X, MÜLLER D R, REN J. Stratigraphic architecture and evolution of the continental slope system in offshore Hainan, northern South China Sea[J]. Marine Geology, 2008, 247(3/4):129-144.
|
[24] |
解习农, 赵帅, 任建业, 等. 南海后扩张期大陆边缘闭合过程及成因机制[J]. 地球科学, 2022, 47(10): 3524-3542.
|
[25] |
BEGLINGER S E, DOUST H, CLOETINGH S. Relating petroleum system and play development to basin evolution: West African South Atlantic basins[J]. Marine & Petroleum Geology, 2012, 30(1): 1-25.
|
[26] |
SOARES D M, ALVES T M, TERRINHA P. The breakup sequence and associated lithospheric breakup surface: Their significance in the context of rifted continental margins (West Iberia and Newfoundland margins, North Atlantic)[J]. Earth & Planetary ScienceLetters, 2012, 355/356: 311-326.
|
[27] |
李洪博, 郑金云, 庞雄, 等. 南海北部陆缘差异拆离作用结构样式与控制因素——以珠江口盆地白云-荔湾深水区为例[J]. 中国海上油气, 2020, 32(4): 24-35.
|
[28] |
BRIAIS A, PATRIAT P, TAPPONNIER P. Updated interpretation of magnetic anomalies and seafloor spreading stages in the south China Sea: Implications for the Tertiary tectonics of Southeast Asia[J]. Geophysics Research: Solid Earth, 1993, 98 (B4): 6299-6328.
|
[29] |
龚再升, 李思田. 南海北部大陆边缘盆地油气成藏动力学研究[M]. 科学出版社, 2004.
|
[30] |
任建业, 庞雄, 雷超, 等. 被动陆缘洋陆转换带和岩石圈伸展破裂过程分析及其对南海陆缘深水盆地研究的启示[J]. 地学前缘, 2015, 22: 102-114.
DOI
|
[31] |
任建业, 庞雄, 于鹏, 等. 南海北部陆缘深水-超深水盆地成因机制分析[J]. 地球物理学报, 2018, 61(12): 4901-4920.
DOI
|
[32] |
孙珍, 李付成, 林间, 等. 被动大陆边缘张-破裂过程与岩浆活动:南海的归属[J]. 地球科学, 2021, 46(3): 770-789
|
[33] |
CLIFT P, LIN J, BARCKHAU SEN U, et al. Evidence of low flexural rigidity and low viscosity lower continental crust during continental break-up in the South China Sea[J]. Marine & Petroleum Geology, 2002, 19 (8): 951-970.
|
[34] |
李文勇, 李东旭. 中国南海不同板块边缘沉积盆地构造特征[J]. 现代地质, 2006, 20(1):19-29.
|
[35] |
NIRRENGARTEN M, MANATSCHAL G, TUGEND J, et al. Kinematic evolution of the southern North Atlantic: implications for the formation of hyper-extended rift systems[J]. Tectonics, 2018, 37(1):89-118.
|
[36] |
田纳新, 吴高奎, 刘静静, 等. 中大西洋被动陆缘盆地结构特征与勘探领域[J]. 石油实验地质, 2023, 45(3):486-496.
|
[37] |
BAUR F, LITTKE R, WIELENS H, et al. Basin modeling meets rift analysis—A numerical modeling study from the Jeanne d’Arc basin, offshore Newfoundland, Canada[J]. Marine and Petroleum Geology, 2010, 27: 585-599.
|
[38] |
WELSINK H, TANKARD A. Extensional tectonics and stratigraphy of the Mesozoic Jeanne d’Arc basin, Grand Banks of Newfoundland[M]//Phanerozoic Rift Systems and Sedimentary Basins. Amsterdam:Elsevier, 2012.
|
[39] |
李淑玲, 孟小红, 郭良辉, 等. 南海重力异常特征及其显著的构造意义[J]. 现代地质, 2012, 26(6):1154-1161.
|
[40] |
柳晨, 李江海, 王志琛. 南中国海形成演化的动力学模式分析[J]. 现代地质, 2023, 37(2):259-269.
|
[41] |
孙珍, 庞雄, 钟志洪, 等. 珠江口盆地白云凹陷新生代构造演化动力学[J]. 地学前缘, 2005, 12(4): 489-498.
|
[42] |
施和生, 于水明, 梅廉夫, 等. 珠江口盆地惠州凹陷古近纪幕式裂陷特征[J]. 天然气工业, 2009, 29(1): 35-37,40,133.
|
[43] |
LEI C, REN J. Hyper-extended rift systems in the Xisha Trough: implications for extreme crustal thinning ahead of a propagating ocean of the South China Sea[J]. Marine and Petroleum Geology, 2016,77: 846-864.
|
[44] |
XIE X, REN J, PANG X, et al. Stratigraphic architectures and associated unconformities of Pearl River Mouth basin during rifting and lithospheric breakup of the South China Sea[J]. Marine Geophysical Research, 2019, 40(2): 129-144.
|
[45] |
LEI C, REN J, PANG X, et al. Continental rifting and sediment infill in the distal part of the northern South China Sea in the Western Pacific region: Challenge on the present-day models for the passive margins[J]. Marine and Petroleum Geology, 2018,93: 166-181.
|
[46] |
CAWOOD A J, FERRILL D A, MORRIS A P, et al. Tectonostratigraphic evolution of the Orphan Basin and Flemish Pass region-Part 2: Regional structural development and lateral variation in rifting style[J]. Marine and Petroleum Geology, 2021, 133:105219.
|
[47] |
PEACE A L, WELFORD J K. Conjugate margins: an oversimplification of the complex southern North Atlantic rift and spreading system?[J]. Interpretation, 2020, 8: SH33-SH49.
|
[48] |
LARSEN H C, MOHN G, NIRRENGARTEN M, et al. Rapid transition from continental breakup to igneous oceanic crust in the South China Sea[J]. Nature Publishing Group, 2018, 11(10): 782-789.
|