[1] |
BACKUS G, GILBERT F. Uniqueness in the inversion of inaccurate gross Earth data[J]. Philosophical Transactions of the Royal Society of London (Series A: Mathematical & physical sciences), 1970, 266: 123-192.
|
[2] |
沙志彬, 郑涛, 杨木壮, 等. 基于波阻抗反演的天然气水合物地震检测技术[J]. 现代地质, 2010, 24(3): 481-488.
|
[3] |
李芳, 邓勇, 胡林, 等. 地球物理技术预测莺歌海盆地低孔低渗储层孔隙度[J]. 地质科技通报, 2022, 41(4):84-90.
|
[4] |
SUN M N, JIN S G. Multiparameter elastic full waveform inversion of ocean bottom seismic four-component data based on a modified acoustic-elastic coupled equation[J]. Remote Sensing, 2020, 12(17): 2816.
|
[5] |
YANG H, JIA J X, WU B Y, et al. Mini-batch optimized full waveform inversion with geological constrained gradient filtering[J]. Journal of Applied Geophysics, 2018, 152: 9-16.
|
[6] |
MADIBA G B, MCMECHAN G A. Seismic impedance inversion and interpretation of a gas carbonate reservoir in the Alberta Foothills, Western Canada[J]. Geophysics, 2003, 68(5): 1460-1469.
|
[7] |
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521: 436-444.
|
[8] |
XIONG W, JI X, MA Y, et al. Seismic fault detection with convolutional neural network[J]. Geophysics, 2018, 83(5):97-103.
DOI
|
[9] |
王钰清, 陆文凯, 刘金林, 等. 基于数据增广和CNN的地震随机噪声压制[J]. 地球物理学报, 2019, 62(1): 421-433.
DOI
|
[10] |
WANG Y Q, WANG Q, LU W K, et al. Seismic impedance inversion based on cycle-consistent generative adversarial network[J]. Petroleum Science, 2022, 19(1): 147-161.
|
[11] |
ZHANG Z P, LIN Y Z. Data-driven seismic waveform inversion: A study on the robustness and generalization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(10): 6900-6913.
|
[12] |
WU B Y, MENG D L, WANG L L, et al. Seismic impedance inversion using fully convolutional residual network and transfer learning[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(12): 2140-2144.
|
[13] |
WANG Y Q, GE Q, LU W K, et al. Well-logging constrained seismic inversion based on closed-loop convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(8): 5564-5574.
|
[14] |
PAN W, TORRES-VERDÍN C, PYRCZ M J. Stochastic Pix2pix: A new machine learning method for geophysical and well conditioning of rule-based channel reservoir models[J]. Natural Resources Research, 2021, 30(2): 1319-1345.
|
[15] |
LI S C, LIU B, REN Y X, et al. Deep-learning inversion of seismic data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(3): 2135-2149.
|
[16] |
WANG B F, ZHANG N, LU W K, et al. Deep-learning-based seismic data interpolation: A preliminary result[J]. Geophysics, 2019, 84(1): V11-V20.
DOI
|
[17] |
DAS V, POLLACK A, WOLLNER U, et al. Convolutional neural network for seismic impedance inversion[J]. Geophysics, 2019, 84(6): 869-880.
|
[18] |
HUANG L, POLANCO M, CLEE T E. Initial experiments on improving seismic data inversion with deep learning[M]//2018 New York Scientific Data Summit (NYSDS). New York: IEEE, 2018: 1-3.
|
[19] |
WU B Y, MENG D L, ZHAO H X. Semi-supervised learning for seismic impedance inversion using generative adversarial networks[J]. Remote Sensing, 2021, 13(5): 909.
|
[20] |
GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[EB/OL]. ArXiv, 2014: 1406.2661. http://arxiv.org/abs/1406.2661.
|
[21] |
MIRZA M, OSINDERO S. Conditional generative adversarial nets[EB/OL]. ArXiv, 2014: 1411.1784. http://arxiv.org/abs/1411.1784.
|
[22] |
ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein Gan[EB/OL]. ArXiv, 2017:1701.07875. http://arxiv.org/abs/1701.07875.
|
[23] |
GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANs[EB/OL]. ArXiv, 2017: 1704.00028. http://arxiv.org/abs/1704.00028.
|
[24] |
MARTIN G S, WILEY R, MARFURT K J. Marmousi2: An elastic upgrade for Marmousi[J]. The Leading Edge, 2006, 25(2): 156-166.
|
[25] |
SONG L, YIN X Y, ZONG Z Y, et al. Semi-supervised learning seismic inversion based on spatio-temporal sequence residual modeling neural network[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109549.
|