现代地质 ›› 2024, Vol. 38 ›› Issue (06): 1594-1606.DOI: 10.19657/j.geoscience.1000-8527.2023.115
王磊1(), 李克文1,2(
), 朱昱昊1, 何继富1, 陈金龙1, 杨路余3,4, 杨国栋3,4
出版日期:
2024-12-10
发布日期:
2024-12-09
通信作者:
李克文,男,博士,教授,1964年出生,主要从事油田地热工程研究。Email:likewen@cugb.edu.cn。作者简介:
王磊,女,博士研究生,1994年出生,主要从事油田地热工程研究。Email:leiwang@email.cugb.edu.cn。
WANG Lei1(), LI Kewen1,2(
), ZHU Yuhao1, HE Jifu1, CHEN Jinlong1, YANG Luyu3,4, YANG Guodong3,4
Published:
2024-12-10
Online:
2024-12-09
摘要:
近年来,随着化石能源引起的环境污染加剧,可持续发展理论的兴起以及我国“双碳”政策的出台和执行,基于热电效应的各种技术在地热勘探开发、传感器供电与热能发电等领域的应用越来越广泛。热电效应主要包括塞贝克效应、帕尔帖效应和汤姆逊效应。关于这三种热电效应的基本原理的文献很多,但是论述其基本原理、相互关系以及应用场景适应性的报道很少。本文系统地阐述了这三种热电效应的基本原理及其相互关系,描述表征这三种热电效应的热电系数之间的关系表达式。在此基础上,概述基于这三种热电效应技术各自的优缺点、不同的应用场景以及适应性。同时,讨论了这些热电技术在多个领域,尤其是在地热能勘探与开发利用等清洁能源领域方面的应用进展。
中图分类号:
王磊, 李克文, 朱昱昊, 何继富, 陈金龙, 杨路余, 杨国栋. 三种热电效应的相互关系研究及应用进展[J]. 现代地质, 2024, 38(06): 1594-1606.
WANG Lei, LI Kewen, ZHU Yuhao, HE Jifu, CHEN Jinlong, YANG Luyu, YANG Guodong. Research on Interconnection Between Three Thermoelectric Effects and Progress in Their Applications[J]. Geoscience, 2024, 38(06): 1594-1606.
图4 帕尔帖效应(制冷、加热)示意图 (a)P型半导体A点为正极、N型半导体B点为负极时,上部连接点处放热、温度升高;(b)P型半导体A点为负极、N型半导体B点为正极,上部连接点处吸热、温度降低
Fig.4 Schematic diagrams of the Peltier effect (cooling and heating)
名称 | 寿命 | 功率范围(W) | 成本 | 主要应用 |
---|---|---|---|---|
化学电池 | 数天 | <103 | 低 | 短期任务 |
燃料电池 | 1~3个月 | 可至1000 | 较高 | 短期任务 |
太阳能电池 | 1~5年 | 可至1000 | 较高 | 近地空间或阳光充足 |
温差发电器 | 10年 | <500 | 高 | 近地空间或阳光充足 |
表1 各类空间电源的性能比较[26]
Table 1 Performance comparison of various space power supplies[26]
名称 | 寿命 | 功率范围(W) | 成本 | 主要应用 |
---|---|---|---|---|
化学电池 | 数天 | <103 | 低 | 短期任务 |
燃料电池 | 1~3个月 | 可至1000 | 较高 | 短期任务 |
太阳能电池 | 1~5年 | 可至1000 | 较高 | 近地空间或阳光充足 |
温差发电器 | 10年 | <500 | 高 | 近地空间或阳光充足 |
图9 在Bottle Rock地热田进行TEG装置现场试验[33] (a) 在Bottle Rock地热田安装的新型TEG装置进行了现场测试;(b)在Bottle Rock地热田的实地测试地点
Fig.9 TEG apparatus and the field test site at the Bottle Rock geothermal field[33]
图15 不同ZT值热伏发电材料的发电效率随热端温度的变化(冷端温度固定为300 K)[50]
Fig.15 Graph depicting the relationship between power generation efficiency and hot end temperature for thermovoltaic materials with varying ZT values (cold end temperature fixed at 300 K)[50]
[1] | JELLO J, BASER T. Utilization of existing hydrocarbon wells for geothermal system development: A review[J]. Applied Energy, 2023, 348: 121456. |
[2] | 李漾, 郑少华, 李伟光. 太阳能温差发电技术的研究现状[J]. 机电工程技术, 2015, 44(2): 74-79. |
[3] | 孟嘉. 工业烟气余热回收利用方案优化研究[D]. 武汉: 华中科技大学, 2008. |
[4] | 孟欣, 杨永平. 中国工业余热利用技术概述[J]. 能源与节能, 2016(7): 76-77. |
[5] | 赵建云, 朱冬生, 周泽广, 等. 温差发电技术的研究进展及现状[J]. 电源技术, 2010, 34(3): 310-313. |
[6] | 国家统计局. 2023年能源统计数据(化石能源消费比例), 2023. |
[7] | ABDEL-MOTALEB I M, QADRI S M. Thermoelectric devices: Principles and future trends[EB/OL]. 2017: arXiv: 1704.07742. http://arxiv.org/abs/1704.07742. |
[8] | 黄震, 张华. 半导体制冷技术的研究现状及发展方向[J]. 有色金属材料与工程, 2017, 38(2): 106-111. |
[9] | CHAMPIER D. Thermoelectric generators: A review of applications[J]. Energy Conversion and Management, 2017, 140: 167-181. |
[10] | ZOUI M A, BENTOUBA S, STOCHOLM J G, et al. A review on thermoelectric generators: Progress and applications[J]. Energies, 2020, 13(14): 3606. |
[11] | FREIRE L O, NAVARRETE L M, CORRALES B P, et al. Efficiency in thermoelectric generators based on Peltier cells[J]. Energy Reports, 2021, 7: 355-361. |
[12] | JOUHARA H, ŻABNIEÉSKA-GÓRA A, KHORDEHGAH N, JOUHARA H, et al. Thermoelectric generator (TEG) technologies and applications[J]. International Journal of Thermofluids, 2021, 9: 100063. |
[13] | 黄昆, 谢希德. 半导体物理学[M]. 北京: 科学出版社, 1958. |
[14] | BLAKMORE J S. Semiconductor Statistics[M]. Oxford: Pergamon, 1962:55-67. |
[15] | 西格. 半导体物理学[M].徐东,钱速业,译. 北京: 人民教育出版社, 1980:112-130. |
[16] | VEDERNIKOV M V, IORDANISHVILI E K.A.F. Ioffe and origin of modern semiconductor thermoelectric energy conversion[M]//Seventeenth International Conference on Thermoelectrics,Proceedings ICT98 (Cat.No.98TH8365). Nagoya: IEEE, 2002: 37-42. |
[17] |
TAN G J, ZHAO L D, KANATZIDIS M G. Rationally designing high-performance bulk thermoelectric materials[J]. Chemical Reviews, 2016, 116(19): 12123-12149.
PMID |
[18] | BYEON D, SOBOTA R, DELIME-CODRIN K, et al. Discovery of colossal Seebeck effect in metallic Cu2Se[J]. Nature Communications, 2019, 10: 72. |
[19] | 屈健. 低温差下半导体温差发电器设计与性能研究[D]. 上海: 同济大学, 2006. |
[20] | LOU Y, LIU G, ROMAGNOLI A, et al. TEG-ORC combined cycle for geothermal source with coaxial casing well[J]. Applied Thermal Engineering, 2023, 226: 120223. |
[21] | MENG J H, LIU Y, ZHU X H, et al. Performance enhancement for exhaust thermoelectric power generation system by using porous pin fins based on a fully automatic optimization method[J]. Energy Conversion and Management, 2022, 273: 116404. |
[22] | STELLA P M, DAVIS G L, MUELLER R L, et al. The performance of advanced solar cells for interplanetary missions[M]//Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference-2000 (Cat.No.00CH37036). Anchorage: IEEE, 2002: 1354-1357. |
[23] | PISZCZOR M F, BENSON S W, SCHEIMAN D A, et al. Advanced solar cell and array technology for NASA deep space missions[M]//2008 33rd IEEE Photovoltaic Specialists Conference. San Diego: IEEE, 2008: 1-5. |
[24] | WU J F, YUAN X Z, MARTIN JJ, et al. A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies[J]. Journal of Power Sources, 2008, 184(1): 104-119. |
[25] | 邓炜. 基于有限元分析方法的同位素温差电池设计优化和实验研究[D]. 兰州: 兰州大学, 2020. |
[26] | 张建中, 任保国, 王泽深. 空间应用放射性同位素温差发电器的发展趋势[J]. 电源技术, 2006, 30(7): 525-530. |
[27] | JAZIRI N, BOUGHAMOURA A, MÜLLER J, et al. A comprehensive review of Thermoelectric Generators: Technologies and common applications[J]. Energy Reports, 2020, 6: 264-287. |
[28] | NASA. Curiosity rover powered by thermoelectric generators, 2013. Petrieved from https://mars.nasa.gov. |
[29] | MANEEWAN S, CHINDARUKSA S. Thermoelectric power ge-neration system using waste heat from biomass drying[J]. Journal of Electronic Materials, 2009, 38(7): 974-980. |
[30] | LIU C W, CHEN P Y, LI K W. A 500W low-temperature thermoelectric generator: Design and experimental study[J]. International Journal of Hydrogen Energy, 2014, 39(28): 15497-15505. |
[31] | BØRSET M T, WILHELMSEN Ø, KJELSTRUP S, et al. Exploring the potential for waste heat recovery during metal casting with thermoelectric generators: On-site experiments and mathematical modeling[J]. Energy, 2017, 118: 865-875. |
[32] | NOUR EDDINE A, SARA H, CHALET D, et al. Modeling and simulation of a thermoelectric generator using bismuth telluride for waste heat recovery in automotive diesel engines[J]. Journal of Electronic Materials, 2019, 48(4): 2036-2045. |
[33] | LI K W, GARRISON G, MOORE M, et al. An expandable thermoelectric power generator and the experimental studies on poweroutput[J]. International Journal of Heat and Mass Transfer, 2020, 160: 120205. |
[34] | 李克文. 一种井下换热发电管道及井下发电系统:CN202310588574.4[P].CN116707353A[2024-07-20]. |
[35] | XI H X, LUO L G, FRAISSE G. Development and applications of solar-based thermoelectric technologies[J]. Renewable and Sustainable Energy Reviews, 2007, 11(5): 923-936. |
[36] | KRAEMER D, MCENANEY K, CHIESA M, et al. Modeling and optimization of solar thermoelectric generators for terrestrial applications[J]. Solar Energy, 2012, 86(5): 1338-1350. |
[37] | LAMBA R, KAUSHIK S C. Solar driven concentrated photovoltaic-thermoelectric hybrid system: Numerical analysis and optimization[J]. Energy Conversion and Management, 2018, 170: 34-49. |
[38] | KHANMOHAMMADI S, SAADAT-TARGHI M. Performance enhancement of an integrated system with solar flat plate collector for hydrogen production using waste heat recovery[J]. Energy, 2019, 171: 1066-1076. |
[39] | 颜军. 太阳能温差发电的研究[D]. 成都: 电子科技大学, 2011. |
[40] | 李克文. 一种多功能热伏制冷冰箱:CN202120617886.X[P].CN214665470U[2024-07-20]. |
[41] | 职更辰, 王瑞. 热电制冷技术的进展及应用[J]. 制冷, 2012, 31(4): 42-48. |
[42] | 祝薇, 陈新, 祝志祥, 等. 基于热电效应的新型制冷器件研究[J]. 智能电网, 2015, 3(9): 823-828. |
[43] | 王小群, 杜善义. 热电制冷技术在航空航天领域的应用[J]. 中国航天, 2006(10): 22-24. |
[44] | POPA-SIMIL L. The evolution of nuclear power generation for Mars[M]//BADESCU V.Mars. Berlin, Heidelberg: Springer, 2009: 175-211. |
[45] | ISHAK M. Review of safety evaluation of thermal wearable power harvesting device[J]. International Journal of Integrated Engineering, 2017, 9: 76-84. |
[46] | GROSS B. Thermovoltaic effect in gamma-irradiated borosilicate glass[J]. Physical Review, 1958, 110(2): 337-338. |
[47] | ONG T P, BURGER D, LEWIS C R, et al. Calculated performance of InAs thermovoltaic cells[M]//Conference Record of the Twenty Third IEEE Photovoltaic Specialists Conference-1993 (Cat.No.93CH3283-9). Louisville: IEEE, 1993:705-707. |
[48] | WU T K. Infrared filters for high-efficiency thermovoltaic devices[J]. Microwave and Optical Technology Letters, 1997, 15(1): 9-12. |
[49] | 谢和平, 昂然, 李碧雄, 等. 基于热伏材料中低温地热发电原理与技术构想[J]. 工程科学与技术, 2018, 50(2): 1-12. |
[50] | KISHITA Y, OHISHI Y, UWASU M, et al. Evaluating the life cycle CO2 emissions and costs of thermoelectric generators for passenger automobiles: A scenario analysis[J]. Journal of Cleaner Production, 2016, 126: 607-619. |
[1] | 杨露梅, 邝荣禧, 郭慧, 左丽琼, 苟富刚, 许书刚, 张硕. 苏南现代化建设示范区现今地温场特征及影响因素[J]. 现代地质, 2023, 37(04): 954-962. |
[2] | 张成亚,骆银光,李建洪. 云南地热资源开发钻井技术问题探讨[J]. 现代地质, 2007, 21(Suppl): 186-189. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||