欢迎访问现代地质!

现代地质 ›› 2024, Vol. 38 ›› Issue (03): 674-682.DOI: 10.19657/j.geoscience.1000-8527.2024.066

• 表生资源观测模拟与预测评价 • 上一篇    下一篇

鄂尔多斯区内毛乌素沙地1987—2022年植被覆盖时空演变

尹永会1,2,3(), 孔祥生4(), 吴浩然1,2,3, 刘玖芬3,5, 王凯1, 陈熹卓1, 王寒冰1,2,3, 张晶1, 王小天1   

  1. 1.中国地质调查局烟台海岸带地质调查中心,山东 烟台 264000
    2.自然资源要素耦合过程与效应重点实验室,北京 100055
    3.内蒙古鄂尔多斯自然资源综合利用野外科学观测研究站,内蒙古 鄂尔多斯 017000
    4.鲁东大学,山东 烟台 264025
    5.中国地质调查局自然资源综合调查指挥中心,北京 100055
  • 出版日期:2024-06-10 发布日期:2024-07-04
  • 通讯作者: 孔祥生,男,博士,教授,1969年出生,主要从事遥感科学与技术、地理信息综合集成研究。Email: emails305@163.com。
  • 作者简介:尹永会,男,硕士,高级工程师,1988年出生,主要从事自然资源监测、地理信息系统与遥感技术研究。Email: y2h521@163.com
  • 基金资助:
    中国地质调查局项目“自然资源要素综合观测数据集成与应用服务”(DD20208067);“黄河流域中上游土壤植被资源调查监测与评价”(DD20220884)

Analysis of Vegetation Cover Spatio-temporal Evolution of Mu Us Sand Land of Ordos Region from 1987 to 2022

YIN Yonghui1,2,3(), KONG Xiangsheng4(), WU Haoran1,2,3, LIU Jiufen3,5, WANG Kai1, CHEN Xizhuo1, WANG Hanbing1,2,3, ZHANG Jing1, WANG Xiaotian1   

  1. 1. Yantai Center of Coastal Zone Geological Survey, China Geological Survey, Yantai, Shandong 264000, China
    2. Key Laboratory of Natural Resource Coupling Process and Effects, Beijing 100055,China
    3. Inner Mongolia Ordos Natural Resources Comprehensive Utilization Field Scie.pngic Observation and Research Station, Ordos, Inner Mongolia 017000, China
    4. Lu Dong University, Yantai, Shandong 264025,China
    5. Command Center for Natural Resources Comprehensive Survey, China Geological Survey, Beijing 100055,China
  • Online:2024-06-10 Published:2024-07-04

摘要:

毛乌素沙地作为我国四大沙地之一,是沙漠化和防沙治沙研究的重点区域。遥感已成为地表时空分析的重要手段,但当前毛乌素沙地区域基于长时间序列、中高分辨率影像研究不足。利用Google Earth Engine云平台,结合Landsat-5 TM、Landsat-7 ETM+和Landsat-8 OLI长时序归一化植被指数,采用Sen+Mann-Kendall方法探究鄂尔多斯地区毛乌素沙地1987—2022年近35年植被覆盖时空演变,并结合气象数据进行驱动力分析。结果表明:(1)鄂尔多斯地区毛乌素沙地植被不断改善,植被覆盖整体呈增长趋势, NDVI变化量为+0.0028 a-1,NDVI增势呈先缓-后急-再缓的趋于平稳的阶段式变化特征;(2)植被改善的区域面积占比达98%以上,退化区域面积占比小于0.5%,空间上植被覆盖改善东部优于西部,南北部优于中部;(3)植被覆盖变化与自然水热变化无显著相关性。

关键词: 植被覆盖, 趋势分析, 谷歌地球引擎, 毛乌素沙地

Abstract:

The Mu Us Sand land, as one of the four major sandy areas in China, is a key region for the study and control of dese.pngication. Remote sensing has become an important tool for the analysis of spatiotemporal dynamics on the Earth’s surface. However, the Mu Us region currently lacks long-term time series and medium to high-resolution studies on the spatiotemporal evolution of vegetation cover. Based on the Google Earth Engine cloud platform and using long-term NDVI remote sensing data from Landsat-5 TM, Landsat-7 ETM+, and Landsat-8 OLI, the Sen+Mann-Kendall method was employed to analyze the spatiotemporal evolution of vegetation coverage in the Mu Us sand land in Ordos from 1987 to 2022, spanning nearly 35 years, and combined it with meteorological data for driving force analysis. The results indicate: (1) Vegetation has continuously improved with an overall increasing trend in vegetation cover. The NDVI change rate is +0.0028 per year, and the trend of NDVI increase shows a phased change characteristic of initially slow growth, followed by rapid growth, and then stabilization. (2) The proportion of areas with improved vegetation cover exceeds 98%, while the proportion of degraded areas is less than 0.5%. Spatially, vegetation cover improvement is better in the eastern regions compared to the western regions, and in the northern and southern regions compared to the central region. (3) There is no significant correlation between vegetation cover change in the study area and natural hydrothermal conditions.

Key words: vegetation cover, trend analysis, Google Earth Engine, Mu Us sand land

中图分类号: