现代地质 ›› 2025, Vol. 39 ›› Issue (02): 350-360.DOI: 10.19657/j.geoscience.1000-8527.2024.104
黎敬1(), 时国1(
), 楼法生2, 杨玲3, 许梦园1, 于娟3
出版日期:
2025-04-10
发布日期:
2025-05-08
通信作者:
时 国,男,副教授,硕士生导师,1978年出生,古生物地层学专业,主要从事古生物地层学及相关研究工作。Email:sdsg2007@163.com。作者简介:
黎 敬,男,硕士研究生,1998年出生,地理学专业,主要从事古生物学研究工作。Email:352058373@qq.com
基金资助:
LI Jing1(), SHI Guo1(
), LOU Fasheng2, YANG Ling3, XU Mengyuan1, YU Juan3
Published:
2025-04-10
Online:
2025-05-08
摘要: 赣州作为我国最重要的晚白垩世恐龙蛋化石产地,其化石记录对揭示恐龙繁殖行为与古环境演变具有独特价值。本研究通过多尺度分析(偏光显微镜、扫描电镜及沉积学)对章贡地区莲荷组(K2l)新发现恐龙蛋化石展开系统研究。结果表明:(1)蛋体外观呈长条状,长径为165~184 mm(均值174 mm),赤道直径为65~79 mm(均值73 mm),蛋身纹饰呈棱脊状,蛋壳柱状层与锥体层厚度之比在6:1左右,确认为大长形蛋(Elongatoolithus magnus);(2)在扫描电镜下,锥体层整体保存完整、排列整齐,内部较为致密,乳突间隙较小,说明该窝恐龙蛋应处于胚胎孵化的初期;柱状层主要发育垂向微气孔,有利于气体和水分的交换。在柱状层之上有一层孔隙较大的疏松层,可以起到保护蛋壳的作用。蛋壳厚度偏大可能是受晚白垩世末期干旱-半干旱的气候条件影响;(3)根据含恐龙蛋地层岩性及构造,研究区属于冲积扇中-远端辫状河道沉积相,而从蛋窝的保存状态可知该窝蛋化石属于原地埋藏。
中图分类号:
黎敬, 时国, 楼法生, 杨玲, 许梦园, 于娟. 江西省赣州市章贡区晚白垩世莲荷组恐龙蛋化石显微结构及古环境意义[J]. 现代地质, 2025, 39(02): 350-360.
LI Jing, SHI Guo, LOU Fasheng, YANG Ling, XU Mengyuan, YU Juan. Microstructure and Paleoenvironmental Significance of Dinosaur Egg Fossils from the Late Cretaceous Lianhe Formation in Zhanggong District, Ganzhou City, Jiangxi Province[J]. Geoscience, 2025, 39(02): 350-360.
图1 赣州化石发现点位置与地质简图(根据文献[3]修改) (a)化石发掘点在江西省的位置;(b)化石发现点卫星影像图;(c)化石发现点地质简图。其中图(b)和图(c)的空间范围相同
Fig.1 Location and simplified geographical map of the study area(modified after reference [3])
编号/属种 | 长径 | 赤道直径 | 形状指数 | 蛋壳厚度 | 柱状层厚度与 锥体层厚度之比 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
(mm) | (mm) | (mm) | |||||||||
L1 | 165 | 65 | 39 | 0.66~1.70 | 2.9:1~5.8:1 | ||||||
L2 | 178 | 73 | 41 | 0.63~1.59 | 3.8:1~4.9:1 | ||||||
L3 | 175 | 77 | 44 | 0.62~1.56 | 2.7:1~5.5:1 | ||||||
L4 | 184 | 75 | 41 | 0.59~1.63 | 2.3:1~5.1:1 | ||||||
L5 | 172 | 76 | 44 | 0.69~1.68 | 2.6:1~6.6:1 | ||||||
L6 | 181 | 79 | 44 | 0.73~1.65 | 2.7:1~6.1:1 | ||||||
L7 | 166 | 73 | 44 | 0.45~1.57 | 2.2:1~6.5:1 | ||||||
L8 | 173 | 68 | 39 | 0.64~1.59 | 2.6:1~5.6:1 | ||||||
平均值 | 174 | 73 | 42 | 1.08 | |||||||
Elongatoolithus | Elongatoolithus elongatus | 110~149 | 58~61 | 45 | 0.50~1.00 | 5:1 | |||||
Elongatoolithus andrewsi | 135~150 | 63~77 | 48 | 1.10~1.50 | 3:1 | ||||||
Elongatoolithus magnus | 162~172 | 63~82 | 44 | 0.68~0.90 | 6:1 | ||||||
Elongatoolithus taipinghuensis | 170 | 60~70 | 38 | 未知 | 未知 | ||||||
Macroolithus | Macroolithus rugustus | 165~181 | 75~85 | 49 | 1.44~1.70 | 3:1 | |||||
Macroolithus yaotunensis | 190~210 | 70~90 | 40 | 1.40~1.85 | 3:1 | ||||||
Nanhsiungoolithus | Nanhsiungoolithus chuetienensis | 130~145 | 55~75 | 53 | 0.60~1.30 | 未知 | |||||
Undulatoolithus | Undulatoolithus pengi | 194 | 84 | 43 | 0.78~1.46 | 3:1~7:1 |
表1 L1-L8与中国已鉴定的长形蛋科属种的比较
Table 1 Comparison of L1-L8 and known egg genera and species of Elongatoolithidae in China
编号/属种 | 长径 | 赤道直径 | 形状指数 | 蛋壳厚度 | 柱状层厚度与 锥体层厚度之比 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
(mm) | (mm) | (mm) | |||||||||
L1 | 165 | 65 | 39 | 0.66~1.70 | 2.9:1~5.8:1 | ||||||
L2 | 178 | 73 | 41 | 0.63~1.59 | 3.8:1~4.9:1 | ||||||
L3 | 175 | 77 | 44 | 0.62~1.56 | 2.7:1~5.5:1 | ||||||
L4 | 184 | 75 | 41 | 0.59~1.63 | 2.3:1~5.1:1 | ||||||
L5 | 172 | 76 | 44 | 0.69~1.68 | 2.6:1~6.6:1 | ||||||
L6 | 181 | 79 | 44 | 0.73~1.65 | 2.7:1~6.1:1 | ||||||
L7 | 166 | 73 | 44 | 0.45~1.57 | 2.2:1~6.5:1 | ||||||
L8 | 173 | 68 | 39 | 0.64~1.59 | 2.6:1~5.6:1 | ||||||
平均值 | 174 | 73 | 42 | 1.08 | |||||||
Elongatoolithus | Elongatoolithus elongatus | 110~149 | 58~61 | 45 | 0.50~1.00 | 5:1 | |||||
Elongatoolithus andrewsi | 135~150 | 63~77 | 48 | 1.10~1.50 | 3:1 | ||||||
Elongatoolithus magnus | 162~172 | 63~82 | 44 | 0.68~0.90 | 6:1 | ||||||
Elongatoolithus taipinghuensis | 170 | 60~70 | 38 | 未知 | 未知 | ||||||
Macroolithus | Macroolithus rugustus | 165~181 | 75~85 | 49 | 1.44~1.70 | 3:1 | |||||
Macroolithus yaotunensis | 190~210 | 70~90 | 40 | 1.40~1.85 | 3:1 | ||||||
Nanhsiungoolithus | Nanhsiungoolithus chuetienensis | 130~145 | 55~75 | 53 | 0.60~1.30 | 未知 | |||||
Undulatoolithus | Undulatoolithus pengi | 194 | 84 | 43 | 0.78~1.46 | 3:1~7:1 |
图4 偏光显微镜下的蛋壳照片和蛋壳结构素描图(根据文献[25-26]修改)及弦切面 (a)蛋壳径切面;(b)蛋壳径切面细节,红色虚线表示锥体层与柱状层的界线;(c)蛋壳结构素描图;(d)靠近蛋壳内表面的弦切面,箭头指向气孔;(e)靠近蛋壳外表面的弦切面,箭头指向气孔
Fig.4 Eggshell photographs of polarizing microscope and the eggshell structure sketches (modified after references[25-26])
图5 扫描电镜(SEM)下的蛋壳照片 (a)蛋壳径向断裂面;(b)蛋壳锥体层,白色箭头表示板状超微特征;(c)蛋壳柱状层,白色箭头表示块状超微特征;(d)蛋壳柱状层和锥体层;(e)蛋壳柱状层顶部,白色箭头表示棱柱体,白色矩形内表示气孔;(f)柱状层,白色箭头表示微气孔;(g)微气孔细节;(h)蛋壳外表面,白色箭头表示海绵状疏松层
Fig.5 Ultrastructural photographs of eggshell under scanning electron microscope (SEM)
[1] | 何发林, 黄新结, 李晓勇. 江西赣州盆地恐龙化石赋存规律与埋藏特征[J]. 华东地质, 2017, 38(4): 250-254. |
[2] | 何发林, 李晓勇. 江西赣州盆地恐龙化石主要特点及恐龙集群埋藏原因分析[C]// 2016年江西省地质学会论文汇编集III. 2017: 313-318. |
[3] | 于成涛, 凡秀君. 赣州盆地梅林—茅店恐龙蛋化石产地分布及赋存地层特征[J]. 河北地质大学学报, 2022, 45(4):6-12. |
[4] | YANG T R, ENGLER T, LALLENSACK J N, et al. Hatching asynchrony in oviraptorid dinosaurs sheds light on their unique nesting biology[J]. Integrative Organismal Biology, 2019, 1(1): obz030. |
[5] | XING L D, NIU K C, YANG T R, et al. Hadrosauroid eggs and embryos from the Upper Cretaceous (maastrichtian) of Jiangxi Province, China[J]. BMC Ecology and Evolution, 2022, 22(1): 60. |
[6] | 杨钟健. 广东南雄、始兴, 江西赣州的蛋化石[J]. 古脊椎动物与古人类, 1965, 3(2): 141-159, 171-189. |
[7] | 赵资奎, 蔣元凯. 山东莱阳恐龙蛋化石的显微结构研究[J]. 中国科学, 1974, 4(1): 63-77. |
[8] | 赵资奎. 广东南雄恐龙蛋化石的显微结构(一): 兼论恐龙蛋化石的分类问题[J]. 古脊椎动物与古人类, 1975, 13(2): 105-117, 143-145. |
[9] | 赵资奎. 河南内乡新的恐龙蛋类型和恐龙脚印化石的发现及其意义[J]. 古脊椎动物与古人类, 1979, 17(4): 304-309, 353-354. |
[10] | ZHAO Z K. Dinosaur eggs in China: on the structure and evolution of eggshells[M]// Dinosaur Eggs and Babies. Cambridge: Cambridge University Press, 1994: 184-203. |
[11] | LEGENDRE L J, RUBILAR-ROGERS D, MUSSER G M, et al. A giant soft-shelled egg from the Late Cretaceous of Antarctica[J]. Nature, 2020, 583: 411-414. |
[12] | KHOSLA A, LUCAS S G. Indian Late Cretaceous dinosaur nesting sites and their systematic studies[M]// Late Cretaceous Dinosaur Eggs and Eggshells of Peninsular India. Cham: Springer International Publishing, 2020: 117-205. |
[13] | TANAKA K, ZELENITSKY D K, THERRIEN F, et al. Exceptionally small theropod eggs from the lower Cretaceous ohyamashimo formation of tamba, hyogo prefecture, Japan[J]. Cretaceous Research, 2020, 114: 104519. |
[14] | OSER S E, CHIN K, SERTICH J J W, et al. Tiny, ornamented eggs and eggshell from the Upper Cretaceous of Utah represent a new ootaxon with theropod affinities[J]. Scientific Reports, 2021, 11(1): 10021. |
[15] | KUNDRÁT M, CRUICKSHANK A R I. New information on multispherulitic dinosaur eggs: Faveoloolithidae and Dendroolithidae[J]. Historical Biology, 2022, 34(6): 1072-1084. |
[16] | HE Q, CHEN Z L, ZHANG S K, et al. A new oospecies of Shixingoolithus (Shixingoolithus qianshanensis oosp.nov.) from the Qianshan Basin, Anhui Province, East China[J]. Journal of Palaeogeography, 2022, 11(4): 629-639. |
[17] |
BI S D, AMIOT R, PEYRE DE FABRÈGUES C, et al. An oviraptorid preserved atop an embryo-bearing egg clutch sheds light on the reproductive biology of non-avialan theropod dinosaurs[J]. Science Bulletin, 2021, 66(9): 947-954.
DOI PMID |
[18] | 赵资奎, 王强, 中国古脊椎动物志第2卷两栖类、爬行类、鸟类第7册(总第11册)恐龙蛋类[M]. 北京: 科学出版社, 2015: 1-168. |
[19] | 饶家荣, 肖海云, 刘耀荣, 等. 扬子、华夏古板块会聚带在湖南的位置[J]. 地球物理学报, 2012, 55(2): 484-502. |
[20] | 杨明桂, 王光辉, 徐梅桂, 等. 江西省及邻区滨太平洋构造活动的基本特征[J]. 华东地质, 2016, 37(1): 10-18. |
[21] | 吴富江, 毛素斌, 钟千方, 等. 江西新构造运动的基本特征与地震分布规律[J]. 华东地质, 2016, 37(2): 97-105. |
[22] | WANG J, YUAN Y J, ZHANG D X, et al. Detrital zircon geochronology of Late Cretaceous successions in the Ganzhou basin, South China: Evidence of a major tectonic transition[J]. Geological Society, London, Special Publications, 2022, 521(1): 225-236. |
[23] | YU X Q, HU J, LI W, et al. Timing of the initiation and duration of the Cretaceous extensional regime in South-East China: Constraints from growth strata in terrigenous basins[J]. The Depositional Record, 2024, 10(1): 4-32. |
[24] | 江西省地质矿产勘查开发局. 江西省环境地质志[M]. 北京: 地质出版社, 2017: 855-858. |
[25] | 佘德伟. 卵壳的超微结构特征[J]. 动物学报, 1995, 41(3): 243-255, 345-347. |
[26] | 王强. 吉林中部早白垩世泉头组恐龙蛋化石的研究[D]. 长春: 吉林大学, 2006. |
[27] | 杨钟健. 山东莱阳蛋化石[J]. 古生物学报, 1954(4): 371-388, 458-461. |
[28] | ZHU X F, WANG Q, WANG X L. Electron backscatter diffraction (EBSD) study of elongatoolithid eggs from China with microstructural and parataxonomic implications[J]. Paleobiology, 2024, 50(2): 330-345. |
[29] | 赵宏, 赵资奎. 辽宁黑山恐龙蛋: 长形蛋类新分子的发现及其意义[J]. 古脊椎动物学报, 1999, 37(4): 278-284,342. |
[30] | 王强, 汪筱林, 赵资奎, 等. 浙江天台盆地上白垩统赤城山组长形蛋科一新蛋属[J]. 古脊椎动物学报, 2010, 48(2): 111-118. |
[31] | WANG Q, ZHAO Z K, WANG X L, et al. A new form of Elongatoolithidae, Undulatoolithus pengi oogen.et oosp.nov.from Pingxiang, Jiangxi, China[J]. Zootaxa, 2013, 3746: 194-200. |
[32] | 许梦园, 时国, 楼法生, 等. 江西赣州地区恐龙化石资源评价及保护策略[J]. 江西科学, 2023, 41(3): 464-471,506. |
[33] | 曾德敏, 张金鉴. 湖南洞庭盆地西部的恐龙蛋化石[J]. 古脊椎动物与古人类, 1979, 17(2): 131-136, 184-185. |
[34] | 余心起. 皖南恐龙类化石特征及其地层划分意义[J]. 中国区域地质, 1998, 17(3): 278-284, T001. |
[35] | 赵资奎, 叶捷, 李华梅, 等. 广东省南雄盆地白垩系—第三系交界恐龙绝灭问题[J]. 古脊椎动物学报, 1991, 29(1): 1-12. |
[36] | 赵资奎, 毛雪瑛, 柴之芳, 等. 广东省南雄盆地白垩纪-古近纪(K/T)过渡时期地球化学环境变化和恐龙灭绝: 恐龙蛋化石提供的证据[J]. 科学通报, 2009, 54(2): 201-209. |
[37] | ZHAO Z K, MAO X Y, CHAI Z F, et al. A possible causal relationship between extinction of dinosaurs and K/T iridium enrichment in the Nanxiong Basin, South China: Evidence from dinosaur eggshells[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 178(1/2): 1-17. |
[38] | ZHAO Z K. Structure, formation and evolutionary trends of dinosaur eggshells[C]// Structure, formation and evolution of fossil hard tissues. Tokyo: Tokai Univ Press,1993: 195-212. |
[39] | TULLETT S G, LUTZ P L, BOARD R G. The fine structure of the pores in the shell of the hen’s egg[J]. British Poultry Science, 1975, 16(1): 93-95. |
[40] | MIKHAILOV K E. Classification of fossil eggshells of amniotic vertebrates[J]. Acta Palaeontologica Polonica, 1991, 36: 193-238. |
[41] | SOLOMON S E. The eggshell: Strength, structure and function[J]. British Poultry Science, 2010, 51(Suppl 1): 52-59. |
[42] | 安芷生. 华北鸵鸟蛋化石的新发现及其显微结构的初步研究[J]. 古脊椎动物与古人类, 1964, 2(4): 374-386. |
[43] |
RICHARDS P D, RICHARDS P A, LEE M E. Ultrastructural characteristics of ostrich eggshell: Outer shell membrane and the calcified layers[J]. Journal of the South African Veterinary Association, 2000, 71(2): 97-102.
PMID |
[44] | ABDEL-SALAM Z A, ABDOU A M, HARITH M A. Elemental and ultrastructural analysis of the eggshell: Ca, Mg and Na distribution during embryonic developmentvia LIBS and SEM techniques[J]. International Journal of Poultry Science, 2005, 5(1): 35-42. |
[45] |
CHIEN Y C, HINCKE M T, MCKEE M D. Ultrastructure of avian eggshell during resorption following egg fertilization[J]. Journal of Structural Biology, 2009, 168(3): 527-538.
DOI PMID |
[46] | HINCKE M, GAUTRON J, RODRIGUEZ-NAVARRO A B, et al. 8 The eggshell: Structure and protective function[J]. Improving the Safety and Quality of Eggs and Egg Products, 2011, : 151-182. |
[47] |
LIAO B, QIAO H G, ZHAO X Y, et al. Influence of eggshell ultrastructural organization on hatchability[J]. Poultry Science, 2013, 92(8): 2236-2239.
DOI PMID |
[48] | 唐徐华. 鹅蛋壳结构和组分的特性及变化的研究[D]. 扬州: 扬州大学, 2022. |
[49] | DAMAZIAK K, MARZEC A, RIEDEL J, et al. Effect of pearl Guinea fowl eggshell ultrastructure and microstructure on keets hatchability[J]. Poultry Science, 2023, 102(7): 102733. |
[50] |
STEIN K, PRONDVAI E, HUANG T, et al. Structure and evolutionary implications of the earliest (Sinemurian, Early Jurassic) dinosaur eggs and eggshells[J]. Scientific Reports, 2019, 9(1): 4424.
DOI PMID |
[51] | LEGENDRE L J, CLARKE J A. Shifts in eggshell thickness are related to changes in locomotor ecology in dinosaurs[J]. Evolution, 2021, 75(6): 1415-1430. |
[52] | 赵资奎. 晚白垩世恐龙蛋壳变薄及有关问题的探讨[J]. 古脊椎动物与古人类, 1978, 16(4): 213-221. |
[53] | TANAKA K, ZELENITSKY D K, SAEGUSA H, et al. Dinosaur eggshell assemblage from Japan reveals unknown diversity of small theropods[J]. Cretaceous Research, 2016, 57: 350-363. |
[54] | ZELENITSKY D K, THERRIEN F, TANAKA K, et al. Dinosaur eggshells from the santonian milk river formation of Alberta, Canada[J]. Cretaceous Research, 2017, 74: 181-187. |
[55] |
ROQUE L, SOARES M C. Effects of eggshell quality and broiler breeder age on hatchability[J]. Poultry Science, 1994, 73(12): 1838-1845.
PMID |
[56] |
NASRI H, VAN DEN BRAND H, NAJJAR T, et al. Egg storage and breeder age impact on egg quality and embryo development[J]. Journal of Animal Physiology and Animal Nutrition, 2020, 104(1): 257-268.
DOI PMID |
[57] | MEYER R, BAKER R C, SCOTT M L. Effects of hen egg shell and other calcium sources upon egg shell strength and ultrastructure[J]. Poultry Science, 1973, 52(3): 949-955. |
[58] | CARNARIUS K M, CONRAD K M, MAST M G, et al. Relationship of eggshell ultrastructure and shell strength to the soundness of shell eggs[J]. Poultry Science, 1996, 75(5): 656-663. |
[59] | BAIN M M. Recent advances in the assessment of eggshell quality and their future application[J]. World’s Poultry Science Journal, 2005, 61(2): 268-277. |
[60] |
SAUTER E A, PETERSEN C F. The effect of egg shell quality on penetration by various salmonellae[J]. Poultry Science, 1974, 53(6): 2159-2162.
PMID |
[61] | 张一范, 高远, 陈积权, 等. 松辽盆地晚白垩世湖相白云岩碳氧同位素特征及其古环境意义[J]. 现代地质, 2023, 37(5):1243-1253. |
[62] |
IPEK A, SOZCU A. Comparison of hatching egg characteristics, embryo development, yolk absorption, hatch window, and hatchability of Pekin Duck eggs of different weights[J]. Poultry Science, 2017, 96(10): 3593-3599.
DOI PMID |
[63] | GRELLET-TINNER G, CHIAPPE L, NORELL M, et al. Dinosaur eggs and nesting behaviors: A paleobiological investigation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232(2/3/4): 294-321. |
[64] | 张凯. 鸭蛋壳的力学特性及多孔超微结构的渗透特性研究[D]. 武汉: 华中农业大学, 2012. |
[65] | CHIAPPE L M, SCHMITT J G, JACKSON F D, et al. Nest structure for sauropods: Sedimentary criteria for recognition of dinosaur nesting traces[J]. Palaios, 2004, 19(1): 89-95. |
[66] | PAIK I S, KIM H J, HUH M. Dinosaur egg deposits in the Cretaceous gyeongsang supergroup, Korea: Diversity and paleobiological implications[J]. Journal of Asian Earth Sciences, 2012, 56: 135-146. |
[67] | 张蜀康. 湖北郧县晚白垩世树枝蛋类化石研究及恐龙蛋类的系统发育分析[D]. 北京: 中国科学院研究生院, 2012. |
[68] | 于成涛, 凡秀君, 衷亮云. 赣南于都盆地恐龙蛋化石产地分布及赋存地层特征[J]. 华东地质, 2020, 41(4): 396-402. |
[69] | HAN F, WANG Q, WANG H P, et al. Low dinosaur biodiversity in Central China 2 million years prior to the end-Cretaceous mass extinction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(39):e2211234119. |
[70] | 张津宁, 王文洁, 能源, 等. 断陷盆地控山断层对断控潜山发育的控制和改造:以黄骅坳陷港西断层和港北潜山为例[J]. 现代地质, 2024, 38(6):1445-1457. |
[71] | GRIGORESCU D, GARCIA G, CSIKI Z, et al. Uppermost Cretaceous megaloolithid eggs from the Haţeg Basin, Romania, associated with hadrosaur hatchlings: Search for explanation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 293(3/4): 360-374. |
[72] | CHEN L Q, GUO F S, STEEL R J, et al. Petrography and geochemistry of the Late Cretaceous redbeds in the Gan-Hang Belt, southEast China: Implications for provenance, source weathering, and tectonic setting[J]. International Geology Review, 2016, 58(10): 1196-1214. |
[73] | CHEN L Q, STEEL R J, GUO F S, et al. Alluvial fan facies of the yongchong basin: Implications for tectonic and paleoclimatic changes during Late Cretaceous in SE China[J]. Journal of Asian Earth Sciences, 2017, 134: 37-54. |
[1] | 邓科, 王金贵, 董玉杰, 何林武, 袁仁华, 张泽国, 陈守关, 辛堂. 西藏桑耶地区晚白垩世中性侵入岩的成因及对新特提斯板块北向俯冲的指示意义[J]. 现代地质, 2023, 37(02): 375-389. |
[2] | 陈澍民, 缪宇, 廖驾, 贺前平, 成明, 张珍力, 吴绍安, 章志明. 中拉萨地块南缘孔隆晚白垩世火山岩成因及对地壳演化的约束[J]. 现代地质, 2021, 35(06): 1713-1726. |
[3] | 刘邦, 潘校华, 万仑坤, 毛凤军, 刘计国, 吕明胜, 王玉华. 东尼日尔盆地海侵的微体古生物和地球化学证据[J]. 现代地质, 2011, 25(5): 995-1006. |
[4] | 赵海滨 尹志刚 万晓樵 于庆文 牛延宏. 据孢粉分析黑龙江嘉荫地区晚白垩世气候变化对恐龙绝灭的影响[J]. 现代地质, 2006, 20(2): 216-224. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||