欢迎访问现代地质!

现代地质 ›› 2024, Vol. 38 ›› Issue (04): 865-872.DOI: 10.19657/j.geoscience.1000-8527.2024.086

• 构造物理化学理论和方法 • 上一篇    下一篇

构造成矿作用的地应力分析:研究现状与思考

范桃园1(), 吕承训2, 吕古贤3   

  1. 1.中国地质科学院,北京 100037
    2.中国地质调查局发展研究中心,北京 100037
    3.中国地质科学院地质力学研究所,北京 100081
  • 出版日期:2024-08-10 发布日期:2024-10-16
  • 作者简介:范桃园,男,正高级工程师,1971年出生,主要从事地球动力学的研究。Email:fan3ty@qq.com
  • 基金资助:
    国家自然科学基金项目(42174068);国家自然科学基金项目(41574090)

Analysis of Crustal Stress in Tectonic Ore-forming Processes: Research Status and Thought

FAN Taoyuan1(), LÜ Chengxun2, LÜ Guxian3   

  1. 1. Chinese Academy of Geological Science, Beijing 100037, China
    2. Development and Research Center of China Geological Survey, Beijing 100037, China
    3. Institute of Geomechanics, Chinese Academy of Geological Science, Beijing 100081, China
  • Published:2024-08-10 Online:2024-10-16

摘要:

地下岩石的 “静岩压力”模型认为,地下岩石的静岩压力主要源于上覆岩石的重力。该模型要求岩石质量在内部是静态的,不存在剪切应力。“静岩压力”模型的前提是岩石在相对稳定的环境下长期存在。然而,地球是一个非稳态的动态系统,不同的构造环境控制着岩石的形成和演化,受到各种动态机制的影响。“静岩压力”模型的应用在不同程度上受到限制,特别是在压缩构造环境中,水平构造应力可能导致“静岩压力”的偏差。地下岩石的压力由两部分组成:重力应力和构造应力。深部地下岩石矿物的形成和演化受到形成环境的温度和压力的控制。构造动力学是控制固体岩石矿物内部压力的主要因素,同时也受到固体岩石的塑性、黏性强度以及岩石内部孔隙和裂缝中流体压力的影响。矿床形成过程受到构造环境的影响,并受到温度和压力条件的限制,矿床形成过程需要结合具体的构造环境进行分析。岩石内部孔隙流体随着构造作用的演化而发生相应的变化。当岩石孔隙裂缝在构造作用演化过程中的渗透性受阻时,就会形成一定程度的孔隙流体超压。不同构造环境下相同深度的孔隙流体超压和差应力是不同的,压缩性构造环境中的流体超压高于伸展性构造环境。“构造附加静岩压力”在地壳深部构造研究、构造控制岩石和矿石规律以及深部工程地质等方面的研究中具有重要的参考价值。

关键词: 构造成矿, 岩压力模型, 构造应力复合重力的地应力, 构造附加静岩压力, 有效应力

Abstract:

The “lithostatic pressure” model of underground rocks posits that the primary source of lithostatic stress in underground rocks is the gravitational force exerted by the overlying rocks.This model assumes that the rock mass is internally static and that no shear stress is present.The premise of the “lithostatic pressure” model is that rocks are in a relatively stable environment over a long period.However, the Earth is a dynamic and non-steady system, with different tectonic environments controlling the formation and evolution of rocks and subjecting them to various dynamic mechanisms.The application of the “lithostatic pressure” model is limited, especially in compressional tectonic environments where horizontal tectonic stress can cause deviations from “lithostatic pressure”.The stress in underground rocks can be composed of two parts: gravitational stress and tectonic stress.The formation and evolution of deep underground minerals are controlled by the temperature and pressure of the formation environment.Tectonic dynamics is the main factor controlling the internal pressure of solid minerals, while also being influenced by the plasticity, viscosity, and strength of the solid rocks, as well as the pressure of fluids in the pores and cracks within the rocks.The process of ore formation is influenced by the tectonic environment and constrained by temperature and pressure conditions.Therefore, the ore-forming process needs to be analyzed in conjunction with the specific tectonic environment.The internal pore fluid in the rocks undergoes corresponding changes with the evolution of tectonic activity.When the permeability of the rock pores and cracks is impeded during tectonic the evolution, a certain degree of pore fluid overpressure will develop.The pore fluid overpressure and differential stress at the same depth vary under different tectonic environments, with overpressure in compressive tectonic environments being higher than in extensional environments.“Tectonic additional lithostatic pressure” plays an important role in the study of deep geological structure, the tectonic control of rocks and ores, and deep engineering geology.

Key words: tectonic ore-forming, lithostatic pressure model, tectonic stress combined with gravitational stress, tectonic additional lithostatic pressure, effective stress

中图分类号: