欢迎访问现代地质!

现代地质 ›› 2024, Vol. 38 ›› Issue (03): 559-573.DOI: 10.19657/j.geoscience.1000-8527.2024.035

• 表生资源观测模拟与预测评价 • 上一篇    下一篇

1990—2050年黄河中游伊洛河流域不同土地利用类型碳储量时空分异特征

袁江龙1,2,3(), 刘晓煌1(), 李洪宇1, 邢莉圆1, 雒新萍1, 王然1, 王超1, 赵宏慧1   

  1. 1.自然资源部自然资源耦合过程与效应重点实验室,北京 100055
    2.新疆大学地理与遥感科学学院,新疆 乌鲁木齐 830017
    3.中国地质调查局乌鲁木齐自然资源综合调查中心,新疆 乌鲁木齐 830057
  • 出版日期:2024-06-10 发布日期:2024-07-04
  • 作者简介:袁江龙,男,硕士研究生,1999年出生,主要从事地理信息和生态遥感方向研究。Email:792807914@qq.com
    刘晓煌,男,正高级工程师,1972年出生,新疆维进口量尔自治区“天池英才”引进计划人才,主要从事自然资源学、基础地质学和矿床学研究。Email:liuxh19972004@163.com
  • 基金资助:
    中国地质科学院地球物理地球化学勘查研究所中央级公益性科研院所基本科研业务费专项资金资助项目(AS2022P03);中国地质科学院基础科研业务费用专项资金项目“黄河三角洲滨海盐土植被对浅层地下水变化的响应”(JKYQN202362);中国地质调查局地质调查专项“自然资源要素监测与综合观测工程”(DD20230112);“自然资源观测监测一体化技术体系研究”(DD20230514)

Spatial and Temporal Variability of Carbon Stocks in Different Land-use Types in the Yiluo River Basin in the Middle Section of the Yellow River from 1990 to 2050

YUAN Jianglong1,2,3(), LIU Xiaohuang1(), LI Hongyu1, XING Liyuan1, LUO Xinping1, WANG Ran1, WANG Chao1, ZHAO Honghui1   

  1. 1. Key Laboratory of Natural Resource Coupling Process and Effects, Beijing 100055, China
    2. College of Geography and Remote Sensing Science, Xinjiang University, Urumqi, Xinjiang 830017, China
    3. Urumqi Center of Natural Resources Comprehensive Survey, China Geological Survey, Urumqi, Xinjiang 830057, China
  • Online:2024-06-10 Published:2024-07-04

摘要:

土地利用类型变化是区域碳储量变化的主要影响因素,对整个陆地生态系统有着重要的影响。以黄河中段伊洛河流域为例,基于生态系统服务功能与权衡交易综合评价模型(InVEST)碳储量模块评估了1990—2020年碳储量时空分异特征及影响因素,利用耦合PLUS模型预测了2025—2050年土地利用类型及碳储量时空分异特征,使用地理探测器探索区域碳储量驱动力因素。结果表明:(1)伊洛河流域土地利用类型转移为耕地和草地转出,林地、水体和建设用地转入。区域碳储量在1990—2020年间增长1.0×107 t,东部碳储量持续减少,中西部碳储量持续增加。(2)2025—2050年区域整体固碳能力下降。相对于历史时期,东部固碳能力仍旧持续下降,中西部固碳能力由持续上升变总体上升,生态修复情景最有利于区域固碳,耕地保护情景最不利于区域固碳。(3)使用地理探测器可以得出,单因子分析NDVI(归一化植被指数)的q值(解释力)为0.561,解释力最强,交互分析中DEM(数字高程模型)与NDVI交互q值为0.592,两个因子交互解释力最强。建议经济较好、地形平坦的IV12-1区域经济和农业发展应注重自然保护,生态较好、海拔较高的VI22-1和VI22-3区域施行生态修复政策。

关键词: InVEST模型, PLUS模型, 碳储量, 地理探测器, MK检验

Abstract:

The change of land-use type is the key influence factor of regional carbon stocks, which significantly affects the whole terrestrial ecosystem. Taking the Yiluo River Basin in the middle section of the Yellow River as an study case, we assessed the spatial and temporal variations and influence factors of carbon stocks based on the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model during 1990—2020. We predicted the land-use types and carbon stock using the coupled PLUS model for the period of 2025-2050. A geoprobe was used to explore the regional carbon stock driving factor. The results show that (1) the land-use types in the Yiluo River Basin shifted to transferring-out with cropland and grassland, and transferring-in with forest land, water-body, and construction land. The regional carbon stock increased by 1.0×107 t from 1990 to 2020, with a continuous drop of carbon stock in the east and a continuous increase in the central and western areas. (2) The predicted overall regional carbon sequestration capacity decreases from 2025 to 2050. Comparing with the historical period, the carbon sequestration capacity in the east continues to decline and the carbon sequestration capacity in the central and western areas changes from a continuous increasing to a trend of overall increasing. the environmental restoration scenario is the most favorable to regional carbon sequestration, while the cultivated land protection scenario is the most unfavorable. (3) The geoprobe results indicate that the q-value (explanatory power) of Normalized Vegetation Index (NDVI) in the one-way analysis is 0.561, which has the strongest explanatory power. The q-value of Digital Elevation Model interacting with NDVI in the analysis is 0.592, showing a stronger explanatory power. It is recommended that the economic and agricultural development in the regions with a better economy and flat region (IV12-1) should emphasize the protection of nature. The regions with a better ecology and high altitude (VI22-1 and VI22-3) is recommended to mainly implement the ecological restoration strategy.

Key words: InVEST model, PLUS model, carbon stock, GeoDetector, Mann-Kendall’s test

中图分类号: