现代地质 ›› 2023, Vol. 37 ›› Issue (06): 1644-1654.DOI: 10.19657/j.geoscience.1000-8527.2023.062
刘永林1,2(), 赵家宇1,2, 刘怡1,2, 吴梅1,2, 肖慧娴1,2, 刘丁慧1,2, 田兴磊3(
)
收稿日期:
2022-09-22
修回日期:
2023-06-03
出版日期:
2023-12-10
发布日期:
2024-01-24
通讯作者:
田兴磊,男,博士,高级工程师,1987年出生,环境科学专业,主要从事健康地质研究。Email: xinglei_tian@163.com。
作者简介:
刘永林,男,博士,副教授,1983年出生,环境科学专业,主要从事环境地球化学与健康研究。Email: liu3986130@163.com。
基金资助:
LIU Yonglin1,2(), ZHAO Jiayu1,2, LIU Yi1,2, WU Mei1,2, XIAO Huixian1,2, LIU Dinghui1,2, TIAN Xinglei3(
)
Received:
2022-09-22
Revised:
2023-06-03
Online:
2023-12-10
Published:
2024-01-24
摘要:
相似地质背景区、相同成土母岩下土壤硒的空间分异特征的研究相对薄弱,长期制约着对土壤硒素分异机制的全面认识。本文以同处四川中生代前陆盆地且成土母岩同为侏罗纪陆相红色碎屑岩的重庆市江津区和石柱县为研究区,通过野外采样、室内分析和数理统计等方法,探讨土壤硒及其生物有效性的分异特征,对揭示土壤硒富集机制提供新的参考。结果表明,江津区表层土壤总硒(TSe)含量(0.32×10-6)显著高于石柱县(0.21×10-6);江津区富硒等级土壤占比46%,而石柱县为21%。江津区表土磷酸盐提取态硒(ASe)含量(0.03×10-6)和ASe/TSe(11.2%),均显著高于石柱县(0.02×10-6和9.9%)。与石柱县相比,江津区表土TSe、ASe与土壤有机质(SOM)的相关程度较强。研究认为,即使同发育在四川中生代前陆盆地侏罗纪陆相红色碎屑岩上的土壤,土壤硒含量及其生物有效性也具有显著性差异,而这种差异可能是由于土壤有机质含量等土壤理化性质差异影响了土壤硒的迁移和富集所致。
中图分类号:
刘永林, 赵家宇, 刘怡, 吴梅, 肖慧娴, 刘丁慧, 田兴磊. 重庆侏罗纪地层区土壤硒含量分异:以江津和石柱地区为例[J]. 现代地质, 2023, 37(06): 1644-1654.
LIU Yonglin, ZHAO Jiayu, LIU Yi, WU Mei, XIAO Huixian, LIU Dinghui, TIAN Xinglei. Differentiation Mechanism of Se Concentration in Soil Covering the Jurassic Strata in Chongqing: Case Studies from Jiangjin and Shizhu Regions[J]. Geoscience, 2023, 37(06): 1644-1654.
图1 四川盆地及邻区大地构造图(a)和重庆市江津区和石柱县地理位置(b)
Fig.1 Topographic map showing tectonic units of the Sichuan Basin and its adjacent regions (a) and geographic map of Jiangjin district and Shizhu County in Chongqing (b)
图2 江津区和石柱县构造简图(a)(c)及其对应的采样点分布(b)(d) K1w.下白垩统窝头山组;J3p.上侏罗统蓬莱镇组;J3sn.上侏罗统遂宁组;J2s.中侏罗统沙溪庙组;J1-2Z-xt.中—下侏罗统自流井群与新田沟组并层;J1Z.下侏罗统自流井群;T3xj.上三叠统须家河组;T2l.中三叠统雷口坡组;T1j.下三叠统嘉陵江组;T1d-j.下三叠统嘉陵江组与大冶组并层;T1f.下三叠统飞仙关组;P3w.上二叠统吴家坪组;P2-3q-w.中—上二叠统栖霞组、茅口组和吴家坪组并层;P1-2l-m.中—下二叠统梁山组、栖霞组和茅口组并层;D2yt.中泥盆统云台观组;S2-3l-hx.中—上志留统罗惹坪组与回星组并层;S1x-m.下志留统新滩组与马脚组并层;OS.奥陶系与志留系并层;O2g-b.中奥陶统牯牛潭组与宝塔组并层;O1n-dw.下奥陶统南津关组与大湾组并层;∈O.寒武系与奥陶系并层;∈2g-p.中寒武统高台组与平井组并层;∈1.下寒武统;Z.震旦系
Fig.2 Structural sketches (a) (c) and related sampling location (b) (d) of Jiangjin district and Shizhu County
地区 | 数据类型 | pH | SOM | TSe | ASe | ASe/TSe | Al2O3 | CaO | Fe2O3 | K2O | MgO | Na2O | P | Ti | BA |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
江津区 | 最小值 | 4.10 | 0.7 | 0.07 | 0.003 | 1.13 | 4.07 | 0.07 | 1.30 | 0.51 | 0.42 | 0.14 | 109 | 1183 | 0.19 |
最大值 | 7.68 | 45.5 | 1.50 | 0.100 | 33.28 | 23.66 | 6.79 | 6.96 | 3.61 | 3.44 | 3.27 | 1855 | 5777 | 1.33 | |
平均值 | 6.00 | 14.5 | 0.32 | 0.033 | 11.18 | 12.60 | 1.14 | 4.34 | 2.18 | 1.56 | 1.52 | 614 | 3488 | 0.51 | |
中位值 | 6.10 | 15.0 | 0.28 | 0.031 | 11.32 | 12.52 | 0.91 | 4.31 | 2.21 | 1.59 | 1.58 | 570 | 3377 | 0.51 | |
标准差 | 0.66 | 6.51 | 0.19 | 0.020 | 4.73 | 1.89 | 0.99 | 0.72 | 0.46 | 0.45 | 0.66 | 272 | 582 | 0.13 | |
石柱县 | 最小值 | 4.33 | 4.05 | 0.07 | 0.002 | 3.20 | 11.51 | 0.04 | 3.38 | 1.48 | 0.67 | 0.28 | 171 | 3531 | 0.20 |
最大值 | 8.76 | 66.5 | 0.62 | 0.090 | 27.44 | 21.07 | 6.23 | 7.07 | 3.65 | 2.62 | 5.31 | 1331 | 5715 | 0.90 | |
平均值 | 6.58 | 22.4 | 0.21 | 0.020 | 9.91 | 14.41 | 1.09 | 4.96 | 2.59 | 1.64 | 1.76 | 605 | 4215 | 0.49 | |
中位值 | 6.44 | 20.6 | 0.22 | 0.019 | 8.76 | 14.27 | 0.94 | 4.93 | 2.67 | 1.70 | 1.82 | 586 | 4176 | 0.50 | |
标准差 | 1.09 | 1.12 | 0.12 | 0.010 | 4.25 | 1.39 | 0.85 | 0.67 | 0.46 | 0.45 | 0.84 | 230 | 345 | 0.10 |
表1 江津区和石柱县表土化学参数统计特征
Table 1 Statistics of soil chemical parameters in Jiangjin district and Shizhu County
地区 | 数据类型 | pH | SOM | TSe | ASe | ASe/TSe | Al2O3 | CaO | Fe2O3 | K2O | MgO | Na2O | P | Ti | BA |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
江津区 | 最小值 | 4.10 | 0.7 | 0.07 | 0.003 | 1.13 | 4.07 | 0.07 | 1.30 | 0.51 | 0.42 | 0.14 | 109 | 1183 | 0.19 |
最大值 | 7.68 | 45.5 | 1.50 | 0.100 | 33.28 | 23.66 | 6.79 | 6.96 | 3.61 | 3.44 | 3.27 | 1855 | 5777 | 1.33 | |
平均值 | 6.00 | 14.5 | 0.32 | 0.033 | 11.18 | 12.60 | 1.14 | 4.34 | 2.18 | 1.56 | 1.52 | 614 | 3488 | 0.51 | |
中位值 | 6.10 | 15.0 | 0.28 | 0.031 | 11.32 | 12.52 | 0.91 | 4.31 | 2.21 | 1.59 | 1.58 | 570 | 3377 | 0.51 | |
标准差 | 0.66 | 6.51 | 0.19 | 0.020 | 4.73 | 1.89 | 0.99 | 0.72 | 0.46 | 0.45 | 0.66 | 272 | 582 | 0.13 | |
石柱县 | 最小值 | 4.33 | 4.05 | 0.07 | 0.002 | 3.20 | 11.51 | 0.04 | 3.38 | 1.48 | 0.67 | 0.28 | 171 | 3531 | 0.20 |
最大值 | 8.76 | 66.5 | 0.62 | 0.090 | 27.44 | 21.07 | 6.23 | 7.07 | 3.65 | 2.62 | 5.31 | 1331 | 5715 | 0.90 | |
平均值 | 6.58 | 22.4 | 0.21 | 0.020 | 9.91 | 14.41 | 1.09 | 4.96 | 2.59 | 1.64 | 1.76 | 605 | 4215 | 0.49 | |
中位值 | 6.44 | 20.6 | 0.22 | 0.019 | 8.76 | 14.27 | 0.94 | 4.93 | 2.67 | 1.70 | 1.82 | 586 | 4176 | 0.50 | |
标准差 | 1.09 | 1.12 | 0.12 | 0.010 | 4.25 | 1.39 | 0.85 | 0.67 | 0.46 | 0.45 | 0.84 | 230 | 345 | 0.10 |
图3 江津区和石柱县表土总硒箱型图(a)与不同硒含量占比(b)
Fig.3 Box plot of total Se content (a) in soils and proportion of Se level (b) between Jiangjin district and Shizhu County
图5 江津区和石柱县表土硒与土壤理化性质相关系数矩阵(*指P<0.05;**指P<0.01) TSe.表土总硒;ASe.磷酸盐提取态硒;ASe/TSe.磷酸盐提取态硒占总硒比;BA.土壤风化淋溶系数[27]
Fig.5 Correlation coefficient matrix of selenium in topsoil and soil physicochemical properties in Jiangjin and Shizhu areas
图6 江津区(a)(c)(e)和石柱县(b)(d)(f)侏罗纪地层出露区表土硒含量分布特征 TSe.表土总硒;ASe.磷酸盐提取态硒;ASe/TSe.磷酸盐提取态硒占总硒比例
Fig.6 Distributions of topsoil Se content in the Jurassic strata in Jiangjin (a)(c)(e) and Shizhu (b)(d)(f) areas
[1] |
ZHANG S X, LI B, LUO K L, et al. Differences of selenium and other trace elements abundances between the Kaschin-Beck disease area and nearby non-Kaschin-Beck disease area, Shaanxi Province, China[J]. Food Chemistry, 2022, 373: 131481.
DOI URL |
[2] |
DINH Q T, CUI Z W, HUANG J, et al. Selenium distribution in the Chinese environment and its relationship with human health: A review[J]. Environment International, 2018, 112: 294-309.
DOI PMID |
[3] |
LONG Z D, YUAN L X, HOU Y Z, et al. Spatial variations in soil selenium and residential dietary selenium intake in a selenium-rich county, Shitai, Anhui, China[J]. Journal of Trace Elements in Medicine and Biology, 2018, 50: 111-116.
DOI PMID |
[4] |
ERIKSSON J, DAHLIN A S, SOHLENIUS G, et al. Spatial patterns of essential trace element concentrations in Swedish soils and crops[J]. Geoderma Regional, 2017, 10: 163-174.
DOI URL |
[5] |
TAN J A, ZHU W Y, WANG W Y, et al. Selenium in soil and endemic diseases in China[J]. Science of the Total Environment, 2002, 284 (1/2/3): 227-235.
DOI URL |
[6] |
李海蓉, 杨林生, 谭见安, 等. 我国地理环境硒缺乏与健康研究进展[J]. 生物技术进展, 2017, 7(5): 381-386.
DOI |
[7] |
ZHU J M, WANG N, LI S H, et al. Distribution and transport of selenium in Yutangba, China: impact of human activities[J]. Science of the Total Environment, 2008, 392(2/3): 252-61.
DOI URL |
[8] |
LUO K L, XU L R, TAN J A, et al. Selenium source in the selenosis area of the Daba region, south Qinling Mountain, China[J]. Environmental Geology, 2004, 45(3): 426-432.
DOI URL |
[9] |
YANG H, YANG X F, NING Z P, et al. The beneficial and hazardous effects of selenium on the health of the soil-plant-human system: An overview[J]. Journal of Hazardous Materials, 2022, 422: 126876.
DOI URL |
[10] |
NATASHA, SHAHID M, NIAZI N K, et al. A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health[J]. Environmental Pollution, 2018, 234: 915-934.
DOI PMID |
[11] |
XU Y F, LI Y H, LI H R, et al. Effects of topography and soil properties on soil selenium distribution and bioavailability (phosphate extraction): A case study in Yongjia County, China[J]. Science of the Total Environment, 2018, 633: 240-248.
DOI URL |
[12] |
WANG J, LI H R, YANG L S, et al. Distribution and translocation of selenium from soil to highland barley in the Tibetan Plateau Kashin-Beck disease area[J]. Environmental Geochemistry and Health, 2017, 39(1): 221-229.
DOI PMID |
[13] | 周菲, 彭琴, 王敏, 等. 土壤-植物体系中硒生物有效性评价研究进展[J]. 科学通报, 2022, 67(6): 461-472. |
[14] | 王晓丽, 张泽洲, 王张民, 等. 江西宜春市明月山地区土壤和多种作物中硒的含量及形态分布特征[J]. 科学通报, 2022, 67(6): 511-519. |
[15] |
FORDYCE F. Selenium geochemistry and health[J]. AMBIO: A Journal of the Human Environment, 2007, 36(1): 94-97.
DOI URL |
[16] |
LIU H L, WANG X Q, ZHANG B M, et al. Concentration and distribution of selenium in soils of mainland China, and implications for human health[J]. Journal of Geochemical Exploration, 2021, 220: 106654.
DOI URL |
[17] |
XIAO K C, LU L F, TANG J J, et al. Parent material modulates land use effects on soil selenium bioavailability in a selenium-enriched region of southwest China[J]. Geoderma, 2020, 376: 114554.
DOI URL |
[18] |
XIAO K C, TANG J J, CHEN H, et al. Impact of land use/land cover change on the topsoil selenium concentration and its potential bioavailability in a karst area of southwest China[J]. Science of the Total Environment, 2020, 708: 135201.
DOI URL |
[19] |
SHAO Y, CAI C F, ZHANG H T, et al. Controlling factors of soil selenium distribution in a watershed in Se-enriched and longevity region of South China[J]. Environmental Science and Pollution Research, 2018, 25(20): 20048-20056.
DOI |
[20] |
NI R X, LUO K L, TIAN X L, et al. Distribution and geological sources of selenium in environmental materials in Taoyuan County, Hunan Province, China[J]. Environmental Geochemistry and Health, 2016, 38(3): 927-938.
DOI PMID |
[21] |
CHANG C Y, YIN R S, WANG X, et al. Selenium translocation in the soil-rice system in the Enshi seleniferous area, Central China[J]. Science of the Total Environment, 2019, 669: 83-90.
DOI URL |
[22] | 刘才泽, 王永华, 曾琴琴, 等. 成渝典型地区土壤硒地球化学特征及其成因分析[J]. 物探与化探, 2018, 42(6): 1289-1295. |
[23] |
YU T, YANG Z F, LV Y Y, et al. The origin and geochemical cycle of soil selenium in a Se-rich area of China[J]. Journal of Geochemical Exploration, 2014, 139: 97-108.
DOI URL |
[24] | 程强, 寇小兵, 黄绍槟, 等. 中国红层的分布及地质环境特征[J]. 工程地质学报, 2004, 12(1): 34-40. |
[25] | 谢君, 周爽, 杨梦平. 重庆市克山病病区与非病区人群内、外环境硒水平及相关因素调查[J]. 中华地方病学杂志, 2021, 40(8): 679-680. |
[26] | 谭超, 朱凯薇, 陈兴书, 等. 长寿之乡和非长寿之乡人群高血压患病率差异研究[J]. 重庆医学, 2020, 49(17): 2877-2881. |
[27] |
LIU Y L, TIAN X L, LIU R, et al. Key driving factors of selenium-enriched soil in the low-Se geological belt: A case study in Red Beds of Sichuan Basin, China[J]. CATENA, 2021, 196: 104926.
DOI URL |
[28] | 中华人民共和国自然资源部. 天然富硒土地划定与标识: DZ/T 0380—2021[S]. 北京: 自然资源部中国地质调查局, 2019. |
[29] |
CHEN X, XU R K, ZHENG Y Y, et al. Identifying potential Au-Pb-Ag mineralization in SE Shuangkoushan, North Qaidam, Western China: Combined log-ratio approach and singularity mapping[J]. Journal of Geochemical Exploration, 2018, 189:109-121.
DOI URL |
[30] | 刘永林, 吴梅, 刘睿, 等. 地质高背景区成土母岩对表土硒含量及其生物有效性的影响[J]. 土壤, 2022, 54(4): 834-840. |
[31] | 王美华. 浙西典型石煤矿山周边耕地富硒土壤地球化学特征及影响因素[J]. 现代地质, 2022, 36(3): 941-952. |
[32] |
王学求, 柳青青, 刘汉粮, 等. 关键元素与生命健康:中国耕地缺硒吗?[J]. 地学前缘, 2021, 28(3): 412-423.
DOI |
[33] | 鲍丽然, 龚媛媛, 严明书, 等. 渝西经济区土壤地球化学基准值与背景值及元素分布特征[J]. 地球与环境, 2015, 43(1): 31-40. |
[34] | 王永栋, 付碧宏, 谢小平, 等. 四川盆地陆相三叠系与侏罗系[M]. 合肥: 中国科学技术大学出版社, 2010: 40-50. |
[35] |
WANG D, XUE M Y, WANG Y K, et al. Effects of straw amendment on selenium aging in soils: Mechanism and influential factors[J]. Science of the Total Environment, 2019, 657:871-881.
DOI URL |
[36] |
DINH Q T, WANG M K, TRAN T A T, et al. Bioavailability of selenium in soil-plant system and a regulatory approach[J]. Critical Reviews in Environmental Science and Technology, 2019, 49(6): 443-517.
DOI URL |
[37] | 罗海怡, 罗先熔, 刘攀峰, 等. 广西三江县土壤硒含量分布特征及其影响因素研究[J]. 现代地质, 2022, 36(2):645-654. |
[38] |
GONG R Y, AI C Y, ZHANG B J, et al. Effect of selenite on organic selenium speciation and selenium bioaccessibility in rice grains of two Se-enriched rice cultivars[J]. Food Chemistry, 2018, 264: 443-448.
DOI PMID |
[39] |
MATOS R P, LIMA V M P, WINDMÖLLER C C, et al. Correlation between the natural levels of selenium and soil physicochemical characteristics from the Jequitinhonha Valley (MG), Brazil[J]. Journal of Geochemical Exploration, 2017, 172: 195-202.
DOI URL |
[40] |
WINKEL L H E, VRIENS B, JONES G D, et al. Selenium cycling across soil-plant-atmosphere interfaces: A critical review[J]. Nutrients, 2015, 7(6): 4199-4239.
DOI PMID |
[41] | 李金哲, 龚庆杰, 刘亚轩, 等. 风化过程中硒背景值的定量表征[J]. 现代地质, 2018, 32(5): 1031-1041. |
[42] | 鄢明才, 迟清华, 顾铁新, 等. 中国东部地壳元素丰度与岩石平均化学组成研究[J]. 物探与化探, 1997, 21(6):451-459. |
[43] | 赵振华. 微量元素地球化学原理[M]. 北京: 科学出版社, 1997: 2-15. |
[44] | 尹福光, 孙洁, 任飞, 等. 中国西南区域地质[M]. 武汉: 中国地质大学出版社, 2016: 50-60. |
[1] | 刘阳, 姜冰, 张海瑞, 孙增兵, 王松涛. 山东省青州市表层土壤硒元素地球化学特征[J]. 现代地质, 2022, 36(03): 933-940. |
[2] | 王美华. 浙西典型石煤矿山周边耕地富硒土壤地球化学特征及影响因素[J]. 现代地质, 2022, 36(03): 941-952. |
[3] | 刘健, 汪一凡, 林钟扬, 潘少军. 浙江建德市耕地表层土壤硒分布、来源及生态效应[J]. 现代地质, 2022, 36(03): 953-962. |
[4] | 罗海怡, 罗先熔, 刘攀峰, 马明亮, 卓银义. 广西三江县土壤硒含量分布特征及其影响因素研究[J]. 现代地质, 2022, 36(02): 645-654. |
[5] | 于龙龙, 吴磊, 张志敏, 晁旭, 冯海艳, 杨忠芳. 富硒区土壤养分质量评价:以陕西省紫阳县闹热村为例[J]. 现代地质, 2021, 35(04): 923-930. |
[6] | 蒋天宇, 余涛, 侯青叶, 戚洪彬, 王珏, 马旭东, 杨忠芳. 基于DGT技术对土壤硒生物有效性及其影响因素的分析[J]. 现代地质, 2021, 35(03): 637-646. |
[7] | 成晓梦, 吴超, 孙彬彬, 贺灵, 曾道明. 浙江中部典型黑色岩系分布区土壤-作物富硒特征与重金属风险评价[J]. 现代地质, 2021, 35(02): 425-433. |
[8] | 杨志忠, 周文龙, 罗勇军, 蒲庆隆, 令狐东, 宋小军. 贵州镇远县耕地土壤中硒的分布特征及控制因素[J]. 现代地质, 2021, 35(02): 434-442. |
[9] | 杨帆, 张舜尧, 宋云涛, 王惠艳, 韩伟, 郭志娟, 彭敏, 王成文, 陈子万, 白兵. 云南省盐津县1∶5万土地质量地球化学评价方法研究[J]. 现代地质, 2020, 34(06): 1318-1332. |
[10] | 王保欣, 韦继康, 余晓霞, 胡荣荣. 浙江慈溪粮食主产区富硒土壤评价方法对比研究[J]. 现代地质, 2020, 34(04): 672-679. |
[11] | 黄钊, 陈政, 薛传东, 刀艳, 许胜超, 代达龙, 吴松. 云南省新平县哀牢山地区富硒土壤成因及其影响因素研究[J]. 现代地质, 2020, 34(03): 609-617. |
[12] | 侯佳渝, 杨耀栋, 谢薇, 刘金成, 李国成. 天津市西郊富硒土壤地球化学特征和成因分析[J]. 现代地质, 2020, 34(03): 618-625. |
[13] | 马明, 姚凌阳, 谢淑云, 唐沫岚, 鲍征宇, 陈国光. 江西于都银坑-桥头-马安地区不同富硒农作物地球化学适生模型的建立[J]. 现代地质, 2019, 33(05): 1063-1069. |
[14] | 张立, 刘国栋, 吕石佳, 崔玉军, 王恩宝. 黑龙江省海伦市农耕区土壤硒分布特征及影响因素[J]. 现代地质, 2019, 33(05): 1046-1054. |
[15] | 蒋慧豪, 罗杰, 蔡立梅, 穆桂珍, 唐翠华, 王秋爽, 王硕, 孙蓉蓉. 广东省普宁市土壤硒的分布特征及影响因素研究[J]. 现代地质, 2019, 33(01): 161-168. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||