现代地质 ›› 2021, Vol. 35 ›› Issue (01): 281-292.DOI: 10.19657/j.geoscience.1000-8527.2021.01.28
王茜1(), 黄永建1(
), 张治锋1, 王长红1, 李祥1, 刘伟2
收稿日期:
2020-07-16
修回日期:
2020-08-25
出版日期:
2021-02-12
发布日期:
2021-03-12
通讯作者:
黄永建
作者简介:
黄永建,男,副教授,1974年出生,地球化学专业,主要从事沉积学、地球化学研究。Email: haungyj@cugb.edu.cn。基金资助:
WANG Qian1(), HUANG Yongjian1(
), ZHANG Zhifeng1, WANG Changhong1, LI Xiang1, LIU Wei2
Received:
2020-07-16
Revised:
2020-08-25
Online:
2021-02-12
Published:
2021-03-12
Contact:
HUANG Yongjian
摘要:
综合化学地层学、层序地层学的理论和方法,利用重庆石柱县六塘露头实测资料及样品分析测试资料,优选出陆源输入强度相关元素组合Al-K-Ti-Rb-Cr-Zr、自生沉淀强度相关元素组合Ca-Mn-Mg-Ba-Zn、有机质吸附及还原强度相关元素组合V-Ni-Mo-U-As作为化学层序地层划分指标体系,将六塘露头五峰组划分为LCW层序,龙马溪组下段自下而上细分为MCL1-1、MCL1-2、MCL1-3、MCL1-4层序。陆源输入强度相关主量、微量元素组合总量在层序界面附近相对较高,而在最大海泛面附近相对较低,具有元素总量减少→增加的旋回性变化特征;而自生沉淀强度相关主量元素组合总量和微量元素组合总量、有机质吸附及还原强度相关微量元素组合总量在层序界面附近一般较低,在最大海泛面附近一般较高,具元素总量增多→减少的旋回性变化特征。这种不同成因意义的元素组合总量旋回性变化是区域海平面变化的响应,具有区域一致性,可作为区域地层对比依据。
中图分类号:
王茜, 黄永建, 张治锋, 王长红, 李祥, 刘伟. 高分辨率化学层序地层学在深水细粒沉积中的应用:以上扬子地区六塘露头五峰组—龙马溪组下段为例[J]. 现代地质, 2021, 35(01): 281-292.
WANG Qian, HUANG Yongjian, ZHANG Zhifeng, WANG Changhong, LI Xiang, LIU Wei. Application of High-resolution Chemical Sequence Stratigraphy to Deep-water Fine-grained Sediments:A Case Study of Wufeng Formation and Lower Member of Longmaxi Formation in Liutang Outcrop, Upper Yangtze Area[J]. Geoscience, 2021, 35(01): 281-292.
图1 研究区区域地质简图及石柱县六塘露头位置 1.城镇;2. 露头位置及名称;3.井位及井名;4.逆冲断裂;5.新生代侵入岩;6.侏罗纪侵入岩;7.三叠纪侵入岩;8.新生界;9.白垩系;10.侏罗系;11.三叠系;12.上古生界;13.下古生界;14.前寒武系。
Fig.1 Regional geological map and location of Liutang outcrop in Shizhu County of Chongqing
图3 六塘露头五峰组—龙马溪组下段化学层序地层分析柱状图 1. 硅质岩;2. 硅质泥岩;3. 泥灰岩;4. 泥岩或页岩;5. 粉砂质泥岩;6. 泥质粉砂岩;7. 三级/四级层序界面(SB);8. 最大海泛面(mfs);9. 变化趋势。
Fig.3 Chemical sequence stratigraphic analysis of Wufeng Formation-lower member of Longmaxi Formation in Liutang outcrop
元素(氧化物) | 石英 | 方解石 | 白云石 | 伊利石 | 微斜长石 | 斜长石 | 黄铁矿 | 绿泥石 |
---|---|---|---|---|---|---|---|---|
SiO2 | 0.841 | -0.766 | -0.997 | -0.480 | -0.240 | -0.116 | -0.192 | -0.407 |
Al2O3 | -0.700 | 0.720 | -0.923 | 0.859 | 0.342 | 0.350 | -0.239 | 0.244 |
Fe2O3 | -0.731 | 0.845 | 0.295 | 0.577 | 0.157 | 0.078 | 0.165 | 0.504 |
CaO | -0.316 | 0.975 | 0.995 | -0.274 | 0.024 | -0.134 | 0.037 | 0.233 |
MgO | -0.731 | 0.405 | 0.998 | 0.267 | 0.200 | -0.028 | -0.212 | 0.552 |
K2O | -0.647 | -0.755 | -0.947 | 0.861 | 0.300 | 0.314 | -0.184 | 0.205 |
Na2O | -0.446 | 0.268 | -0.984 | 0.190 | 0.724 | 0.850 | -0.132 | -0.136 |
MnO | -0.321 | 0.710 | 0.972 | -0.194 | -0.043 | -0.163 | 0.107 | 0.265 |
TiO2 | -0.660 | 0.694 | -0.934 | 0.736 | 0.519 | 0.566 | -0.242 | 0.046 |
P2O5 | -0.265 | 0.878 | 0.873 | 0.037 | 0.172 | 0.253 | 0.438 | -0.035 |
V | 0.448 | -0.583 | -0.129 | -0.285 | -0.377 | -0.345 | 0.118 | -0.151 |
Cr | 0.033 | 0.893 | -0.854 | 0.199 | -0.279 | -0.174 | -0.048 | -0.096 |
Co | -0.001 | -0.461 | 0.741 | -0.204 | 0.257 | 0.093 | 0.334 | 0.089 |
Ni | 0.112 | -0.177 | 0.500 | -0.141 | -0.106 | -0.091 | 0.290 | -0.028 |
Zn | -0.398 | 0.796 | -0.756 | 0.373 | 0.283 | 0.205 | -0.269 | 0.180 |
Cu | 0.373 | 0.135 | 0.999 | -0.313 | -0.439 | -0.380 | 0.707 | -0.035 |
Ba | -0.451 | 0.939 | -0.367 | 0.402 | 0.208 | 0.094 | -0.143 | 0.215 |
La | -0.056 | 0.282 | -0.866 | 0.382 | 0.012 | 0.012 | -0.257 | 0.049 |
Ce | 0.062 | 0.497 | -0.735 | 0.194 | -0.088 | -0.030 | 0.051 | -0.095 |
Zr | -0.207 | 0.348 | -1.000 | 0.103 | 0.611 | 0.664 | -0.372 | -0.347 |
Rb | -0.362 | 0.918 | -0.951 | 0.621 | 0.096 | 0.023 | -0.112 | 0.027 |
As | 0.120 | 0.980 | 0.741 | -0.176 | 0.118 | 0.214 | 0.436 | -0.239 |
Th | -0.193 | 0.696 | -0.866 | 0.330 | 0.012 | 0.085 | -0.064 | 0.053 |
U | 0.163 | -0.333 | 0.010 | -0.076 | -0.104 | -0.085 | 0.262 | 0.029 |
Mo | 0.225 | 0.010 | 0.010 | -0.114 | -0.162 | -0.127 | 0.414 | 0.000 |
表1 六塘露头样品元素与矿物相关系数(R2)
Table 1 Correlation coefficient (R2) between elements and minerals in Liutang outcrop samples
元素(氧化物) | 石英 | 方解石 | 白云石 | 伊利石 | 微斜长石 | 斜长石 | 黄铁矿 | 绿泥石 |
---|---|---|---|---|---|---|---|---|
SiO2 | 0.841 | -0.766 | -0.997 | -0.480 | -0.240 | -0.116 | -0.192 | -0.407 |
Al2O3 | -0.700 | 0.720 | -0.923 | 0.859 | 0.342 | 0.350 | -0.239 | 0.244 |
Fe2O3 | -0.731 | 0.845 | 0.295 | 0.577 | 0.157 | 0.078 | 0.165 | 0.504 |
CaO | -0.316 | 0.975 | 0.995 | -0.274 | 0.024 | -0.134 | 0.037 | 0.233 |
MgO | -0.731 | 0.405 | 0.998 | 0.267 | 0.200 | -0.028 | -0.212 | 0.552 |
K2O | -0.647 | -0.755 | -0.947 | 0.861 | 0.300 | 0.314 | -0.184 | 0.205 |
Na2O | -0.446 | 0.268 | -0.984 | 0.190 | 0.724 | 0.850 | -0.132 | -0.136 |
MnO | -0.321 | 0.710 | 0.972 | -0.194 | -0.043 | -0.163 | 0.107 | 0.265 |
TiO2 | -0.660 | 0.694 | -0.934 | 0.736 | 0.519 | 0.566 | -0.242 | 0.046 |
P2O5 | -0.265 | 0.878 | 0.873 | 0.037 | 0.172 | 0.253 | 0.438 | -0.035 |
V | 0.448 | -0.583 | -0.129 | -0.285 | -0.377 | -0.345 | 0.118 | -0.151 |
Cr | 0.033 | 0.893 | -0.854 | 0.199 | -0.279 | -0.174 | -0.048 | -0.096 |
Co | -0.001 | -0.461 | 0.741 | -0.204 | 0.257 | 0.093 | 0.334 | 0.089 |
Ni | 0.112 | -0.177 | 0.500 | -0.141 | -0.106 | -0.091 | 0.290 | -0.028 |
Zn | -0.398 | 0.796 | -0.756 | 0.373 | 0.283 | 0.205 | -0.269 | 0.180 |
Cu | 0.373 | 0.135 | 0.999 | -0.313 | -0.439 | -0.380 | 0.707 | -0.035 |
Ba | -0.451 | 0.939 | -0.367 | 0.402 | 0.208 | 0.094 | -0.143 | 0.215 |
La | -0.056 | 0.282 | -0.866 | 0.382 | 0.012 | 0.012 | -0.257 | 0.049 |
Ce | 0.062 | 0.497 | -0.735 | 0.194 | -0.088 | -0.030 | 0.051 | -0.095 |
Zr | -0.207 | 0.348 | -1.000 | 0.103 | 0.611 | 0.664 | -0.372 | -0.347 |
Rb | -0.362 | 0.918 | -0.951 | 0.621 | 0.096 | 0.023 | -0.112 | 0.027 |
As | 0.120 | 0.980 | 0.741 | -0.176 | 0.118 | 0.214 | 0.436 | -0.239 |
Th | -0.193 | 0.696 | -0.866 | 0.330 | 0.012 | 0.085 | -0.064 | 0.053 |
U | 0.163 | -0.333 | 0.010 | -0.076 | -0.104 | -0.085 | 0.262 | 0.029 |
Mo | 0.225 | 0.010 | 0.010 | -0.114 | -0.162 | -0.127 | 0.414 | 0.000 |
元素 | 相关矿物 | 主要成因意义 |
---|---|---|
Si | 石英,其他硅酸盐 | 陆源或自生 |
Al、Ga | 主要是黏土矿物,少量与长石有关 | 陆源 |
K、Rb | 钾长石、云母和黏土矿物(特别是伊利石) | 陆源 |
Cs、Sc | 黏土矿物和长石 | 陆源 |
V | 主要是黏土矿物,V在缺氧条件下吸附在黏土矿物上 | 还原 |
Ca | 主要是方解石和白云石,也与石膏和硬石膏有关,少量与蒙脱石和斜长石有关 | 自生为主 |
Mg | 主要是白云石、方解石和/或黏土矿物(尤其是绿泥石) | 自生为主 |
Fe、Mn | 各种黏土和碳酸盐矿物以及黄铁矿 | 陆源或自生 |
Na | 主要是斜长石,但有些钠与石盐和/或黏土矿物(如蒙脱石)有关 | 陆源或自生 |
Ti、Ta、Nb | 钛磁铁矿、磁铁矿、钛铁矿、金红石、锐钛矿和/或闪锌矿 | 陆源 |
Th | 重矿物,特别是独居石、锆石和磷灰石 | 陆源 |
REE | 轻稀土元素在黏土矿物和长石中最为丰富,而重稀土元素存在于重矿物中 | 陆源 |
U | 重矿物和有机物,还原环境 | 陆源或还原 |
Cr | 重矿物,如铬尖晶石 | 陆源 |
Zr、Hf | 锆石 | 陆源 |
P | 生物磷、含磷重矿物(磷灰石和独居石),少量磷与碳酸盐和黏土矿物有关 | 自生 |
Zn、Ni、Mo、Co、Cu | 黄铁矿、氢氧化铁、碳酸盐和/或黏土矿物 | 自生或陆源 |
Ba | 碳酸盐,如重晶石 | 自生 |
Sr | 长石、黏土矿物、碳酸盐 | 陆源或自生 |
表2 元素与矿物的亲缘关系(据Craigie,2018[40];Zhai et al.,2019[26])
Table 2 Genetic relationship between elements and minerals (according to Craigie, 2018 [40]; Zhai et al.,2019 [26])
元素 | 相关矿物 | 主要成因意义 |
---|---|---|
Si | 石英,其他硅酸盐 | 陆源或自生 |
Al、Ga | 主要是黏土矿物,少量与长石有关 | 陆源 |
K、Rb | 钾长石、云母和黏土矿物(特别是伊利石) | 陆源 |
Cs、Sc | 黏土矿物和长石 | 陆源 |
V | 主要是黏土矿物,V在缺氧条件下吸附在黏土矿物上 | 还原 |
Ca | 主要是方解石和白云石,也与石膏和硬石膏有关,少量与蒙脱石和斜长石有关 | 自生为主 |
Mg | 主要是白云石、方解石和/或黏土矿物(尤其是绿泥石) | 自生为主 |
Fe、Mn | 各种黏土和碳酸盐矿物以及黄铁矿 | 陆源或自生 |
Na | 主要是斜长石,但有些钠与石盐和/或黏土矿物(如蒙脱石)有关 | 陆源或自生 |
Ti、Ta、Nb | 钛磁铁矿、磁铁矿、钛铁矿、金红石、锐钛矿和/或闪锌矿 | 陆源 |
Th | 重矿物,特别是独居石、锆石和磷灰石 | 陆源 |
REE | 轻稀土元素在黏土矿物和长石中最为丰富,而重稀土元素存在于重矿物中 | 陆源 |
U | 重矿物和有机物,还原环境 | 陆源或还原 |
Cr | 重矿物,如铬尖晶石 | 陆源 |
Zr、Hf | 锆石 | 陆源 |
P | 生物磷、含磷重矿物(磷灰石和独居石),少量磷与碳酸盐和黏土矿物有关 | 自生 |
Zn、Ni、Mo、Co、Cu | 黄铁矿、氢氧化铁、碳酸盐和/或黏土矿物 | 自生或陆源 |
Ba | 碳酸盐,如重晶石 | 自生 |
Sr | 长石、黏土矿物、碳酸盐 | 陆源或自生 |
元素 (氧化物) | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | K2O | Na2O | MnO | TiO2 | P2O5 | V | Cr | Co | Ni | Zn | Cu | Ba | La | Ce | Zr | Rb | As | Th | U | Mo |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | 1.00 | ||||||||||||||||||||||||
Al2O3 | -0.66 | 1.00 | |||||||||||||||||||||||
Fe2O3 | -0.73 | 0.52 | 1.00 | ||||||||||||||||||||||
CaO | -0.43 | -0.23 | 0.15 | 1.00 | |||||||||||||||||||||
MgO | -0.82 | 0.53 | 0.68 | 0.59 | 1.00 | ||||||||||||||||||||
K2O | -0.64 | 0.96 | 0.44 | -0.24 | 0.44 | 1.00 | |||||||||||||||||||
Na2O | -0.04 | 0.23 | 0.04 | -0.09 | 0.10 | 0.10 | 1.00 | ||||||||||||||||||
MnO | -0.43 | -0.15 | 0.30 | 0.83 | 0.61 | -0.23 | 0.05 | 1.00 | |||||||||||||||||
TiO2 | -0.59 | 0.88 | 0.35 | -0.20 | 0.37 | 0.91 | 0.25 | -0.25 | 1.00 | ||||||||||||||||
P2O5 | -0.30 | 0.01 | 0.39 | 0.14 | 0.17 | -0.04 | 0.37 | 0.27 | 0.07 | 1.00 | |||||||||||||||
V | 0.17 | -0.39 | -0.17 | -0.04 | -0.35 | -0.23 | -0.47 | -0.16 | -0.23 | -0.08 | 1.00 | ||||||||||||||
Cr | -0.33 | 0.49 | 0.20 | -0.19 | 0.16 | 0.54 | -0.19 | -0.24 | 0.52 | -0.07 | 0.16 | 1.00 | |||||||||||||
Co | 0.11 | -0.25 | 0.17 | 0.09 | 0.02 | -0.33 | 0.22 | 0.26 | -0.41 | 0.15 | -0.10 | -0.30 | 1.00 | ||||||||||||
Ni | -0.08 | -0.29 | 0.28 | 0.10 | -0.14 | -0.20 | -0.21 | 0.04 | -0.17 | 0.31 | 0.61 | 0.05 | 0.14 | 1.00 | |||||||||||
Zn | -0.35 | 0.35 | 0.61 | -0.05 | 0.33 | 0.31 | 0.19 | 0.02 | 0.34 | 0.26 | -0.04 | 0.22 | 0.06 | 0.35 | 1.00 | ||||||||||
Cu | 0.07 | -0.23 | -0.02 | 0.04 | -0.12 | -0.22 | -0.38 | 0.03 | -0.24 | 0 | 0.23 | 0.23 | -0.07 | 0.24 | -0.13 | 1.00 | |||||||||
Ba | -0.51 | 0.60 | 0.39 | -0.08 | 0.39 | 0.64 | 0.05 | -0.10 | 0.62 | -0.05 | -0.03 | 0.43 | -0.22 | -0.03 | 0.38 | -0.14 | 1.00 | ||||||||
La | -0.08 | 0.30 | 0.08 | -0.33 | -0.05 | 0.31 | -0.01 | -0.27 | 0.24 | -0.09 | 0.00 | 0.33 | -0.13 | 0.03 | 0.20 | 0 | 0.21 | 1.00 | |||||||
Ce | -0.10 | 0.29 | -0.07 | -0.18 | -0.03 | 0.32 | -0.12 | -0.20 | 0.29 | -0.17 | 0.04 | 0.49 | -0.23 | -0.12 | -0.05 | 0.06 | 0.11 | 0.13 | 1.00 | ||||||
Zr | -0.12 | 0.40 | -0.05 | -0.16 | 0.02 | 0.39 | 0.56 | -0.22 | 0.61 | 0.07 | -0.26 | 0.14 | -0.23 | -0.18 | 0.16 | -0.27 | 0.29 | 0.09 | 0.11 | 1.00 | |||||
Rb | -0.53 | 0.81 | 0.35 | -0.23 | 0.34 | 0.85 | -0.01 | -0.23 | 0.77 | -0.13 | -0.14 | 0.53 | -0.39 | -0.17 | 0.29 | -0.08 | 0.62 | 0.29 | 0.37 | 0.35 | 1.00 | ||||
As | -0.14 | 0.03 | -0.05 | -0.03 | -0.15 | 0.16 | 0.01 | -0.15 | 0.26 | 0.14 | 0.25 | 0.20 | -0.14 | 0.28 | 0.06 | 0.06 | 0.23 | 0.03 | 0.14 | 0.27 | 0.19 | 1.00 | |||
Th | -0.19 | 0.32 | 0.02 | -0.09 | 0.09 | 0.36 | 0.05 | -0.15 | 0.36 | -0.08 | -0.06 | 0.25 | -0.18 | -0.14 | 0.05 | -0.04 | 0.19 | 0.14 | 0.29 | 0.21 | 0.35 | 0.11 | 1.00 | ||
U | 0.01 | -0.23 | 0.03 | -0.06 | -0.25 | -0.13 | -0.19 | -0.07 | -0.14 | 0.16 | 0.56 | 0.00 | 0.03 | 0.57 | 0.04 | 0.14 | -0.02 | 0.05 | -0.06 | -0.09 | -0.01 | 0.24 | -0.04 | 1.00 | |
Mo | 0.14 | -0.39 | -0.19 | -0.02 | -0.37 | -0.28 | -0.28 | -0.06 | -0.31 | -0.06 | 0.59 | -0.13 | 0.04 | 0.41 | -0.17 | 0.13 | -0.17 | 0.02 | 0 | -0.21 | -0.22 | 0.23 | -0.09 | 0.46 | 1.00 |
表3 六塘露头五峰组—龙马溪组元素相关系数数据(R2)
Table 3 Elements correlation coefficient (R2) data of Wufeng Formation-Longmaxi Formation in Liutang outcrop
元素 (氧化物) | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | K2O | Na2O | MnO | TiO2 | P2O5 | V | Cr | Co | Ni | Zn | Cu | Ba | La | Ce | Zr | Rb | As | Th | U | Mo |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | 1.00 | ||||||||||||||||||||||||
Al2O3 | -0.66 | 1.00 | |||||||||||||||||||||||
Fe2O3 | -0.73 | 0.52 | 1.00 | ||||||||||||||||||||||
CaO | -0.43 | -0.23 | 0.15 | 1.00 | |||||||||||||||||||||
MgO | -0.82 | 0.53 | 0.68 | 0.59 | 1.00 | ||||||||||||||||||||
K2O | -0.64 | 0.96 | 0.44 | -0.24 | 0.44 | 1.00 | |||||||||||||||||||
Na2O | -0.04 | 0.23 | 0.04 | -0.09 | 0.10 | 0.10 | 1.00 | ||||||||||||||||||
MnO | -0.43 | -0.15 | 0.30 | 0.83 | 0.61 | -0.23 | 0.05 | 1.00 | |||||||||||||||||
TiO2 | -0.59 | 0.88 | 0.35 | -0.20 | 0.37 | 0.91 | 0.25 | -0.25 | 1.00 | ||||||||||||||||
P2O5 | -0.30 | 0.01 | 0.39 | 0.14 | 0.17 | -0.04 | 0.37 | 0.27 | 0.07 | 1.00 | |||||||||||||||
V | 0.17 | -0.39 | -0.17 | -0.04 | -0.35 | -0.23 | -0.47 | -0.16 | -0.23 | -0.08 | 1.00 | ||||||||||||||
Cr | -0.33 | 0.49 | 0.20 | -0.19 | 0.16 | 0.54 | -0.19 | -0.24 | 0.52 | -0.07 | 0.16 | 1.00 | |||||||||||||
Co | 0.11 | -0.25 | 0.17 | 0.09 | 0.02 | -0.33 | 0.22 | 0.26 | -0.41 | 0.15 | -0.10 | -0.30 | 1.00 | ||||||||||||
Ni | -0.08 | -0.29 | 0.28 | 0.10 | -0.14 | -0.20 | -0.21 | 0.04 | -0.17 | 0.31 | 0.61 | 0.05 | 0.14 | 1.00 | |||||||||||
Zn | -0.35 | 0.35 | 0.61 | -0.05 | 0.33 | 0.31 | 0.19 | 0.02 | 0.34 | 0.26 | -0.04 | 0.22 | 0.06 | 0.35 | 1.00 | ||||||||||
Cu | 0.07 | -0.23 | -0.02 | 0.04 | -0.12 | -0.22 | -0.38 | 0.03 | -0.24 | 0 | 0.23 | 0.23 | -0.07 | 0.24 | -0.13 | 1.00 | |||||||||
Ba | -0.51 | 0.60 | 0.39 | -0.08 | 0.39 | 0.64 | 0.05 | -0.10 | 0.62 | -0.05 | -0.03 | 0.43 | -0.22 | -0.03 | 0.38 | -0.14 | 1.00 | ||||||||
La | -0.08 | 0.30 | 0.08 | -0.33 | -0.05 | 0.31 | -0.01 | -0.27 | 0.24 | -0.09 | 0.00 | 0.33 | -0.13 | 0.03 | 0.20 | 0 | 0.21 | 1.00 | |||||||
Ce | -0.10 | 0.29 | -0.07 | -0.18 | -0.03 | 0.32 | -0.12 | -0.20 | 0.29 | -0.17 | 0.04 | 0.49 | -0.23 | -0.12 | -0.05 | 0.06 | 0.11 | 0.13 | 1.00 | ||||||
Zr | -0.12 | 0.40 | -0.05 | -0.16 | 0.02 | 0.39 | 0.56 | -0.22 | 0.61 | 0.07 | -0.26 | 0.14 | -0.23 | -0.18 | 0.16 | -0.27 | 0.29 | 0.09 | 0.11 | 1.00 | |||||
Rb | -0.53 | 0.81 | 0.35 | -0.23 | 0.34 | 0.85 | -0.01 | -0.23 | 0.77 | -0.13 | -0.14 | 0.53 | -0.39 | -0.17 | 0.29 | -0.08 | 0.62 | 0.29 | 0.37 | 0.35 | 1.00 | ||||
As | -0.14 | 0.03 | -0.05 | -0.03 | -0.15 | 0.16 | 0.01 | -0.15 | 0.26 | 0.14 | 0.25 | 0.20 | -0.14 | 0.28 | 0.06 | 0.06 | 0.23 | 0.03 | 0.14 | 0.27 | 0.19 | 1.00 | |||
Th | -0.19 | 0.32 | 0.02 | -0.09 | 0.09 | 0.36 | 0.05 | -0.15 | 0.36 | -0.08 | -0.06 | 0.25 | -0.18 | -0.14 | 0.05 | -0.04 | 0.19 | 0.14 | 0.29 | 0.21 | 0.35 | 0.11 | 1.00 | ||
U | 0.01 | -0.23 | 0.03 | -0.06 | -0.25 | -0.13 | -0.19 | -0.07 | -0.14 | 0.16 | 0.56 | 0.00 | 0.03 | 0.57 | 0.04 | 0.14 | -0.02 | 0.05 | -0.06 | -0.09 | -0.01 | 0.24 | -0.04 | 1.00 | |
Mo | 0.14 | -0.39 | -0.19 | -0.02 | -0.37 | -0.28 | -0.28 | -0.06 | -0.31 | -0.06 | 0.59 | -0.13 | 0.04 | 0.41 | -0.17 | 0.13 | -0.17 | 0.02 | 0 | -0.21 | -0.22 | 0.23 | -0.09 | 0.46 | 1.00 |
主量元素 (氧化物) | 主成分1 | 主成分2 | 主成分3 | 主成分4 | 主成分5 |
---|---|---|---|---|---|
SiO2 | -0.920 | -0.243 | 0.111 | 0.083 | 0.131 |
Al2O3 | 0.859 | -0.465 | -0.053 | 0.092 | 0.071 |
Fe2O3 | 0.760 | 0.203 | 0.061 | -0.467 | 0.360 |
CaO | 0.205 | 0.877 | -0.195 | 0.247 | -0.215 |
MgO | 0.817 | 0.444 | -0.158 | 0.135 | 0.160 |
K2O | 0.815 | -0.525 | -0.151 | 0.052 | -0.093 |
Na2O | 0.213 | -0.079 | 0.806 | 0.501 | 0.198 |
MnO | 0.261 | 0.899 | -0.014 | 0.168 | 0.042 |
TiO2 | 0.775 | -0.516 | 0.023 | 0.143 | -0.254 |
P2O5 | 0.276 | 0.320 | 0.748 | -0.405 | -0.290 |
表4 六塘露头五峰组—龙马溪组样品主量元素主成分矩阵
Table 4 Principal component matrix of main elements of Wufeng Formation-Longmaxi Formation in Liutang outcrop
主量元素 (氧化物) | 主成分1 | 主成分2 | 主成分3 | 主成分4 | 主成分5 |
---|---|---|---|---|---|
SiO2 | -0.920 | -0.243 | 0.111 | 0.083 | 0.131 |
Al2O3 | 0.859 | -0.465 | -0.053 | 0.092 | 0.071 |
Fe2O3 | 0.760 | 0.203 | 0.061 | -0.467 | 0.360 |
CaO | 0.205 | 0.877 | -0.195 | 0.247 | -0.215 |
MgO | 0.817 | 0.444 | -0.158 | 0.135 | 0.160 |
K2O | 0.815 | -0.525 | -0.151 | 0.052 | -0.093 |
Na2O | 0.213 | -0.079 | 0.806 | 0.501 | 0.198 |
MnO | 0.261 | 0.899 | -0.014 | 0.168 | 0.042 |
TiO2 | 0.775 | -0.516 | 0.023 | 0.143 | -0.254 |
P2O5 | 0.276 | 0.320 | 0.748 | -0.405 | -0.290 |
微量元素 | 主成分1 | 主成分2 | 主成分3 | 主成分4 | 主成分5 |
---|---|---|---|---|---|
V | -0.337 | 0.787 | -0.122 | -0.024 | 0.032 |
Cr | 0.662 | 0.431 | -0.246 | 0.365 | -0.088 |
Co | -0.459 | -0.205 | 0.368 | 0.214 | 0.220 |
Ni | -0.361 | 0.733 | 0.334 | 0.155 | -0.089 |
Zn | 0.310 | 0.213 | 0.707 | 0.359 | -0.063 |
Cu | -0.173 | 0.334 | -0.459 | 0.420 | -0.442 |
Ba | 0.675 | 0.244 | 0.335 | 0.047 | -0.135 |
La | 0.363 | 0.230 | 0.058 | 0.318 | 0.587 |
Ce | 0.458 | 0.205 | -0.516 | 0.005 | 0.159 |
Zr | 0.565 | -0.055 | 0.262 | -0.507 | -0.080 |
Rb | 0.835 | 0.211 | 0.024 | 0.009 | -0.020 |
As | 0.167 | 0.529 | 0.097 | -0.515 | -0.265 |
Th | 0.479 | 0.097 | -0.203 | -0.169 | 0.339 |
U | -0.308 | 0.698 | 0.142 | -0.142 | 0.129 |
Mo | -0.454 | 0.582 | -0.129 | -0.261 | 0.287 |
表5 六塘露头五峰组—龙马溪组样品微量元素主成分矩阵
Table 5 Principal component matrix of trace elements in Wufeng Formation-Longmaxi Formation of Liutang outcrop
微量元素 | 主成分1 | 主成分2 | 主成分3 | 主成分4 | 主成分5 |
---|---|---|---|---|---|
V | -0.337 | 0.787 | -0.122 | -0.024 | 0.032 |
Cr | 0.662 | 0.431 | -0.246 | 0.365 | -0.088 |
Co | -0.459 | -0.205 | 0.368 | 0.214 | 0.220 |
Ni | -0.361 | 0.733 | 0.334 | 0.155 | -0.089 |
Zn | 0.310 | 0.213 | 0.707 | 0.359 | -0.063 |
Cu | -0.173 | 0.334 | -0.459 | 0.420 | -0.442 |
Ba | 0.675 | 0.244 | 0.335 | 0.047 | -0.135 |
La | 0.363 | 0.230 | 0.058 | 0.318 | 0.587 |
Ce | 0.458 | 0.205 | -0.516 | 0.005 | 0.159 |
Zr | 0.565 | -0.055 | 0.262 | -0.507 | -0.080 |
Rb | 0.835 | 0.211 | 0.024 | 0.009 | -0.020 |
As | 0.167 | 0.529 | 0.097 | -0.515 | -0.265 |
Th | 0.479 | 0.097 | -0.203 | -0.169 | 0.339 |
U | -0.308 | 0.698 | 0.142 | -0.142 | 0.129 |
Mo | -0.454 | 0.582 | -0.129 | -0.261 | 0.287 |
层序及关键界面 | 陆源输入指标元素 | 自生沉淀指标元素 | 有机质吸附强度指标元素 | |||||
---|---|---|---|---|---|---|---|---|
Al+K+Ti/ % | Cr+Zr+Rb/ 10-6 | (Ca+Mg+Mn)/Al /% | (Zn+Ba)/Al /10-6 | V+Ni+Mo+U+As /10-6 | EF(V+Ni+Mo+ U+As) | |||
SBL2 | 22.33 | 329.00 | 10 | 9 495 | 155.40 | 3.05 | ||
mfsL1-4 | 17.20 | 260.00 | 16 | 20 632 | 316.67 | 106.33 | ||
SBL1-4 | 19.42 | 343.00 | 14 | 14 203 | 126.83 | 3.56 | ||
MCL1-4(均值) | 21.19 | 342.31 | 16 | 13 182 | 188.90 | 7.43 | ||
mfsL1-3 | 18.01 | 319.00 | 32 | 17 131 | 151.46 | 6.91 | ||
SBL1-3 | 23.49 | 450.00 | 9 | 8 739 | 123.39 | 4.30 | ||
MCL1-3(均值) | 19.08 | 349.20 | 16 | 11 201 | 153.43 | 8.14 | ||
mfsL1-2 | 15.41 | 284.00 | 13 | 13 664 | 255.10 | 8.29 | ||
SBL1-2 | 22.68 | 412.00 | 9 | 10 164 | 122.30 | 3.34 | ||
MCL1-2(均值) | 18.40 | 343.15 | 10 | 11 256 | 190.66 | 22.62 | ||
mfsL1-1 | 8.57 | 146.00 | 23 | 14 356 | 556.60 | 597.51 | ||
SBL1 | 16.41 | 349.00 | 10 | 10 607 | 135.07 | 282.28 | ||
MCL1-1(均值) | 15.64 | 293.33 | 19 | 10 682 | 314.72 | 110.68 | ||
mfsW | 3.71 | 110.00 | 11 | 14 447 | 494.40 | 339.39 | ||
SBW | 22.17 | 359.00 | 10 | 5 790 | 76.70 | 3.53 | ||
LCW(均值) | 11.82 | 219.64 | 35 | 9 383 | 304.26 | 96.08 |
表6 六塘露头五峰组—龙马溪组下段化学层序地层特征数据
Table 6 Data of chemical sequence stratigraphy of Wufeng Formation-lower member of Longmaxi Formation in Liutang outcrop
层序及关键界面 | 陆源输入指标元素 | 自生沉淀指标元素 | 有机质吸附强度指标元素 | |||||
---|---|---|---|---|---|---|---|---|
Al+K+Ti/ % | Cr+Zr+Rb/ 10-6 | (Ca+Mg+Mn)/Al /% | (Zn+Ba)/Al /10-6 | V+Ni+Mo+U+As /10-6 | EF(V+Ni+Mo+ U+As) | |||
SBL2 | 22.33 | 329.00 | 10 | 9 495 | 155.40 | 3.05 | ||
mfsL1-4 | 17.20 | 260.00 | 16 | 20 632 | 316.67 | 106.33 | ||
SBL1-4 | 19.42 | 343.00 | 14 | 14 203 | 126.83 | 3.56 | ||
MCL1-4(均值) | 21.19 | 342.31 | 16 | 13 182 | 188.90 | 7.43 | ||
mfsL1-3 | 18.01 | 319.00 | 32 | 17 131 | 151.46 | 6.91 | ||
SBL1-3 | 23.49 | 450.00 | 9 | 8 739 | 123.39 | 4.30 | ||
MCL1-3(均值) | 19.08 | 349.20 | 16 | 11 201 | 153.43 | 8.14 | ||
mfsL1-2 | 15.41 | 284.00 | 13 | 13 664 | 255.10 | 8.29 | ||
SBL1-2 | 22.68 | 412.00 | 9 | 10 164 | 122.30 | 3.34 | ||
MCL1-2(均值) | 18.40 | 343.15 | 10 | 11 256 | 190.66 | 22.62 | ||
mfsL1-1 | 8.57 | 146.00 | 23 | 14 356 | 556.60 | 597.51 | ||
SBL1 | 16.41 | 349.00 | 10 | 10 607 | 135.07 | 282.28 | ||
MCL1-1(均值) | 15.64 | 293.33 | 19 | 10 682 | 314.72 | 110.68 | ||
mfsW | 3.71 | 110.00 | 11 | 14 447 | 494.40 | 339.39 | ||
SBW | 22.17 | 359.00 | 10 | 5 790 | 76.70 | 3.53 | ||
LCW(均值) | 11.82 | 219.64 | 35 | 9 383 | 304.26 | 96.08 |
[1] | 贾承造. 论非常规油气对经典石油天然气地质学理论的突破及意义[J]. 石油勘探与开发, 2017,44(1):1-11. |
[2] | 焦方正. 非常规油气之“非常规”再认识[J]. 石油勘探与开发, 2019,46(5):803-810. |
[3] | 邱振, 邹才能, 王红岩, 等. 中国南方五峰组—龙马溪组页岩气差异富集特征与控制因素[J]. 天然气地球科学, 2020,31(2):163-175. |
[4] | 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(一)[J]. 石油勘探与开发, 2015,42(6):689-701. |
[5] | QIU Z, ZOU C N. Controlling factors on the formation and distribution of “sweet-spot areas” of marine gas shales in South China and a preliminary discussion on unconventional petroleum sedimentology[J]. Journal of Asian Earth Sciences, 2020,194,103989. https://doi.org/10.1016/j.jseaes.2019.103989. |
[6] | 梁兴, 王高成, 徐政语, 等. 中国南方海相复杂山地页岩气储层甜点综合评价技术——以昭通国家级页岩气示范区为例[J]. 天然气工业, 2016,36(1):33-42. |
[7] | 马新华, 谢军. 川南地区页岩气勘探开发进展及发展前景[J]. 石油勘探与开发, 2018,45(1):161-169. |
[8] | 马永生, 蔡勋育, 赵培荣. 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发, 2018,45(4):561-574. |
[9] | 郭旭升. 上扬子地区五峰组—龙马溪组页岩层序地层及演化模式[J]. 地球科学, 2017,42(7):1069-1082. |
[10] | 陆扬博, 马义权, 王雨轩, 等. 上扬子地区五峰组—龙马溪组主要地质事件及岩相沉积响应[J]. 地球科学, 2017,42(7):1169-1184. |
[11] | 王玉满, 李新景, 董大忠, 等. 上扬子地区五峰组—龙马溪组优质页岩沉积主控因素[J]. 天然气工业, 2017,37(4):9-20. |
[12] | ABOUELRESH M O, SLATT R M. Lithofacies and sequence stratigraphy of the Barnett shale in East-Central Fort Worth Basin, Texas[J]. AAPG Bulletin, 2012,96(1):1-22. |
[13] | HAMMES U, FRÉBOURG G. Haynesville and Bossier mudrocks: A facies and sequence stratigraphic investigation, East Texas and Louisiana, USA[J]. Marine and Petroleum Geology, 2012,31(1):8-26. |
[14] | LASH G G, ENGELDER T. Thickness trends and sequence stratigraphy of the Middle Devonian Marcellu Formation, Appalachian Basin: Implications for Acadian foreland basin evolution[J]. AAPG Bulletin, 2011,95(1):61-103. |
[15] | SLATT R M, RODRIGUEZ N D. Comparative sequence stratigraphy and organic geochemistry of gas shales: Commonality or coincidence?[J]. Journal of Natural Gas Science and Engineering, 2012,8:68-84. |
[16] | TURNER B W, MOLINARES-BLANCO C E, SLATT R M. Chemostratigraphic, palynostratigraphic, and sequence stratigraphic analysis of the Woodford Shale,Wyche Farm Quarry, Pontotoc County, Oklahoma[J]. Interpretation, 2015,3(1):1-9. |
[17] | PAN S Q, ZOU C N, YANG Z, et al. Methods for shale gas play assessment: A comparison between Silurian Longmaxi shale and Mississippian Barnett shale[J]. Journal of Earth Science, 2015,26(2):285-294. |
[18] | 李一凡, 樊太亮, 高志前, 等. 渝东南地区志留系黑色页岩层序地层研究[J]. 天然气地球科学, 2012,23(2):299-306. |
[19] | CHEN L, LU Y C, JIANG S, et al. Heterogeneity of the Lower Silurian Longmaxi marine shale in the Southeast Sichuan Basin of China[J]. Marine and Petroleum Geology, 2015,65:232-246. |
[20] | WANG Y M, DONG D Z, LI X J, et al. Stratigraphic sequence and sedimentary characteristics of Lower Silurian Longmaxi Formation in Sichuan Basin and its peripheral areas[J]. Natural Gas Industry B, 2015,2(2/3):222-232. |
[21] | 王同, 杨克明, 熊亮, 等. 川南地区五峰组—龙马溪组页岩层序地层及其对储层的控制[J]. 石油学报, 2015,36(8):915-925. |
[22] | HAQ B U, HARDENBOL J, VAIL P R. Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change[M] //WILGUS C K, HASTINGS B S, KENDALL C, et al. Sea Level Changes—An Integrated Approach. New York: Society of Economic Paleontologists and Mineralogists (SEPM), Special Publication, 1988,42:71-108. |
[23] |
HAQ B U, SCHUTTER S R. A chronology of Paleozoic sea-level changes[J]. Science, 2008,322:64-68.
DOI URL PMID |
[24] | POSAMENTIER H W, VAIL P R. Eustatic controls on clastic deposition II — sequence and systems tract models[M] //WILGUS C K, HASTINGS B S, KENDALL C, et al. Sea Level Changes — An Integrated Approach. New York: Society of Economic Paleontologists and Mineralogists (SEPM), Special Publication, 1988,42:125-154. |
[25] | CATUNEANU O, ABREU V, BHATTACHARYA J P, et al. Towards the standardization of sequence stratigraphy[J]. Earth-Science Reviews, 2009,92(1/2):1-33. |
[26] | ZHAI G, LI J, JIAO Y, et al. Applications of chemostratigraphy in a characterization of shale gas sedimentary microfacies and predictions of sweet spots —taking the Cambrian black shales in Western Hubei as an example[J]. Marine and Petroleum Geology, 2019,109:547-560. |
[27] | MARTÍN-FERNÁNDEZ J A, BARCELÓ-VIDAL C, PAWLOWSKY-GLAHN V, et al. Subcompositional patterns in Cenozoic volcanic rocks of Hungary[J]. Mathematical Geology , 2005,37(7):729-752. |
[28] | MARTIN-FERNANDEZ J A, BARCELO-VIDAL C, PAWLOWSKY-GLAHN V. Dealing with zeros and missing values in compositional data sets using nonparametric imputation[J]. Mathematical Geology, 2003,35(3):253-278. |
[29] | PALAREA-ALBALADEJO J, MARTÍN-FERNÁNDEZ J A, GÓMEZ-GARCÍA J. A parametric approach for dealing with compositional rounded zeros[J]. Mathematical Geology, 2007,39(7):625-645. |
[30] | PALAREA-ALBALADEJO J MARTÍN-FERNÁNDEZ J A. A modified EM alr-algorithm for replacing rounded zeros in compositional data sets[J]. Computers & Geosciences, 2008,34:902-917. |
[31] | SANDFORD R F, PIERSON C T, CROVELLI R A. An objective replacement method for censored geochemical data[J]. Mathematical Geology, 1993,25(1):59-80. |
[32] | PISON G, ROUSSEEUW P, FILZMOSER P, et al. Robust factor analysis[J]. Journal of Multivariate Analysis, 2003,84:145-172. |
[33] | FILZMOSER P, HRON K. Outlier detection for compositional data using robust methods[J]. Mathematical Geosciences, 2008,40(3):233-248. |
[34] | REIMAN C, FILMOSER P. Normal and lognormal data distribution in geochemistry: death of a myth. Consequences for the statistical treatment of geochemical and environmental data[J]. Environmental Geology, 1999,39:1001-1014. |
[35] | 程文斌, 顾雪祥, 胡修棉, 等. 现代大洋红色黏土与白垩纪大洋红层元素地球化学对比[J]. 地质学报, 2008,82(1):37-47. |
[36] | 李关清, 程文斌, 章永梅, 等. 藏南扎西康Sb-Pb-Zn-Ag多金属矿集区下侏罗统日当组赋矿地层元素地球化学特征及地质意义[J]. 矿物岩石地球化学通报, 2014,33(5):598-608. |
[37] | PEARCE T J, MARTIN J H, COOPER D, et al. Chemostratigraphy of Upper Carboniferous (Pennsylvanian) sequences from the southern North Sea (United Kingdom)[M] //RATCLIFFE K T, ZAITLIN B A. Modern Alternative Stratigraphic Techniques, Theory and Case Histories. New York: SEPM Special Publication No.94, 2010: 109-129. |
[38] | SANO J L, RATCLIFFE K T, SPAIN D. Chemostratigraphy of the Haynesville Shale[J]. AAPG Memoir, 2013,105:137-154. |
[39] | RATCLIFFE K T, WILSON A, PAYENBERG T, et al. Ground trothing chemostratigraphic correlations in fluvial systems[J]. AAPG Bulletin, 2015,99:155-180. |
[40] | CRAIGIE N. Principles of Elemental Chemostratigraphy: A Practical User Guide[M]. Heverlee: Springer, 2018: 1-177. |
[41] | CALVERT S E, PEDERSEN T F. Geochemistry of recent oxic and anoxic sediments: implications for the geological record[J]. Marine Geology, 1993,113:67-88. |
[42] | TURGEON S, BRUMSACK H J. Anoxic vs dysoxic events reflected in sediment geochemistry during the Cenomanian-Turonian Boundary Event(Cretaceous)in the Umbria-Marche Basin of central Italy[J]. Chemical Geology, 2006,234:321-339. |
[43] | WEDEPOHL K H. The composition of the upper Earth’s crust and the natural cycles of selected metals[M] // MERIAN E. Metals and Their Compounds in the Environment. Weinheim: VCH-Verlags Gesellschaft, 1991: 3-17. |
[44] | LI Y H, SCHOONMAKER J E. Chemical composition and minera-logy of marine sediments[M] //RUDNICK R L. Treatise on Geochemistry, Sediments, Diagenesis, and Sedimentary Rocks. New York: Elsevier Sciences, 2003: 1-35. |
[45] | TRIBOVILLARD N, ALGEO T J, LYONS T, et al. Trace metals as paleoredox and paleoproductivity proxies: an update[J]. Chemical Geology , 2006,232:12-32. |
[46] | RAMKUMAR M. Chemostratigraphy:Concepts,Techniques, and Applications[M]. New York: Elsevier, 2015: 1-432. |
[47] | 林畅松, 张燕梅, 刘景彦, 等. 高精度层序地层学和储层预测[J]. 地学前缘, 2000,7(3):111-117. |
[48] | 郑荣才, 文华国, 李凤杰. 高分辨率层序地层学[M]. 北京: 地质出版社, 2010: 1-404. |
[49] | 辛仁臣, 王树恒, 梁江平, 等. 松辽盆地北部西斜坡青山口组三段四级层序格架内沉积微相分布[J]. 现代地质, 2014,28(4):782-790,798. |
[50] | 谭聪, 于炳松, 阮壮, 等. 四川盆地上三叠统须家河组高分辨率层序地层研究[J]. 现代地质, 2017,31(2):290-301. |
[51] | 李杨, 阮壮, 李中明, 等. 南华北地区及其北部邻区上石炭统—中二叠统高分辨率层序地层[J]. 现代地质, 2020,34(4):718-731. |
[1] | 李东升, 高平, 盖海峰, 刘若冰, 蔡益栋, 李刚, 周秦, 肖贤明. 川东南地区龙马溪组页岩有机质纳米孔隙结构表征[J]. 现代地质, 2023, 37(05): 1293-1305. |
[2] | 漆洋, 吕春研, 王宇慧, 唐书恒, 郗兆栋. 生物地层格架下湘西北地区五峰组—龙马溪组孔隙结构特征[J]. 现代地质, 2022, 36(05): 1292-1303. |
[3] | 黄莫, 李明, 杨振京, 邓丽婷. 湖南益阳奥陶系五峰组—志留系周家溪群笔石[J]. 现代地质, 2021, 35(05): 1343-1353. |
[4] | 饶权, 康永尚, 黄毅, 赵群, 王红岩. 蜀南地区龙马溪组页岩气工业建产区游离气和孔隙度下限讨论[J]. 现代地质, 2021, 35(04): 1054-1064. |
[5] | 蔺东林, 唐书恒, 郗兆栋, 张松航, 周淑林. 湘西北ZY3井五峰组页岩地球化学特征与有机质富集控制因素[J]. 现代地质, 2020, 34(06): 1144-1152. |
[6] | 黄宇琪, 张鹏, 张金川, 杨军伟. 湖北来凤LD-1井龙马溪组页岩孔隙结构特征分析[J]. 现代地质, 2020, 34(04): 828-836. |
[7] | 王朋飞, 姜振学, 金璨, 吕鹏, 李鑫, 张昆, 王凯, 黄璞. 渝东南下志留统龙马溪组页岩有机质孔隙发育特征:基于聚焦离子束氦离子显微镜(FIB-HIM)技术[J]. 现代地质, 2019, 33(04): 902-910. |
[8] | 王子轶, 高志前, 石文睿, 王兴志, 赵红燕. 四川盆地五峰组—龙马溪组笔石与页岩气关系探讨[J]. 现代地质, 2019, 33(02): 379-388. |
[9] | 李娟, 于炳松, 刘策, 孙梦迪. 渝东南地区黑色页岩中粘土矿物特征兼论其对储层物性的影响——以彭水县鹿角剖面为例[J]. 现代地质, 2012, 26(4): 732-740. |
[10] | 久凯, 丁文龙, 黄文辉, 张金川, 曾维特. 上扬子地区下寒武统海相富有机质页岩形成环境与主控因素分析[J]. 现代地质, 2012, 26(3): 547-554. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||