Geoscience ›› 2024, Vol. 38 ›› Issue (02): 427-436.DOI: 10.19657/j.geoscience.1000-8527.2023.105
• Hydrogeology, Engineering Geology and Environmental Geology • Previous Articles Next Articles
SHAO Yuxiang1(), YAN Buqing1,2(
), LIU Xu3, JIANG Qin1, CHEN Wenbin1, GONG Kang1, YI Haiyang1, LI Bo3
Received:
2023-05-11
Revised:
2023-09-21
Online:
2024-04-10
Published:
2024-05-22
CLC Number:
SHAO Yuxiang, YAN Buqing, LIU Xu, JIANG Qin, CHEN Wenbin, GONG Kang, YI Haiyang, LI Bo. Characteristics and Influencing Factors of the Hydrogen and Oxygen Isotopes in Summer Water Bodies in the Bangong Lake Basin, Northwest Tibetan Plateau[J]. Geoscience, 2024, 38(02): 427-436.
Fig.1 Schematic map showing the location of Bangong Lake basin and the extent of modern monsoon influence (a) and sampling locations of various water bodies in Bangong Lake Basin (b)
类别 | 样品 编号 | 高程(m) | δ18O (VSMOW) (‰) | δ2H (VSMOW) (‰) | 氘盈余 (‰) | 矿化度 TDS (mg/L) | 温度 (℃) | 河源距离 S (km) | |
---|---|---|---|---|---|---|---|---|---|
玛卡藏布 | M1 | 4381 | -12.84 | -96.18 | 6.58 | 166 | 15.9 | 0 | |
M2 | 4372 | -8.97 | -78.53 | -6.74 | 172 | 13.7 | 11 | ||
M3 | 4353 | -12.13 | -98.93 | -1.89 | 333 | 13.3 | 26 | ||
M4 | 4345 | -8.99 | -81.38 | -9.44 | 167 | 15.5 | 34 | ||
M5 | 4340 | -9.24 | -83.60 | -9.64 | 177 | 15.7 | 45 | ||
M6 | 4262 | -8.41 | -84.39 | -17.09 | 134 | 17.8 | 56 | ||
M7 | 4218 | -7.44 | -76.87 | -17.32 | 421 | 14.8 | 62 | ||
多玛河 | D1 | 4806 | -12.35 | -94.75 | 4.07 | 81 | 13.4 | 0 | |
D2 | 4660 | -11.77 | -92.54 | 1.66 | 185 | 12.9 | 20 | ||
D3 | 4512 | -11.10 | -88.09 | 0.67 | 267 | 12.5 | 27 | ||
D4 | 4478 | -10.95 | -89.66 | -2.06 | 434 | 15.1 | 52 | ||
D5 | 4407 | -12.19 | -92.57 | 4.92 | 323 | 11.1 | 68 | ||
D6 | 4384 | -11.14 | -90.91 | -1.75 | 321 | 15.6 | 78 | ||
D7 | 4328 | -10.97 | -83.78 | 3.99 | 329 | 16.3 | 87 | ||
D8 | 4320 | -10.10 | -79.10 | 1.68 | 369 | 15.9 | 97 | ||
D9 | 4260 | -11.10 | -88.09 | 0.67 | 357 | 13.3 | 105 | ||
班公湖 | B1 | 4253 | -1.34 | -42.70 | -31.95 | 619 | 15.7 | 0 | |
B2 | 4255 | -1.25 | -37.95 | -27.95 | 663 | 16.6 | 9 | ||
B3 | 4256 | -2.85 | -44.70 | -21.89 | 554 | 17.0 | 23 | ||
B4 | 4266 | -0.53 | -34.86 | -30.58 | 1553 | 17.2 | 40 | ||
B5 | 4261 | 0.24 | -38.62 | -40.52 | 3123 | 17.1 | 53 | ||
B6 | 4258 | 2.01 | -24.90 | -40.98 | 3669 | 13.8 | 62 | ||
B7 | 4256 | 1.71 | -25.20 | -38.87 | 3801 | 13.7 | 71 | ||
B8 | 4267 | -1.12 | -38.88 | -29.92 | 3842 | 13.7 | 87 | ||
B9 | 4265 | 0.15 | -33.62 | -34.85 | 4010 | 13.6 | 97 | ||
冰川 | S1 | 4906 | -13.47 | -104.08 | 3.70 | 83 | 3.7 | - | |
S2 | 5285 | -13.92 | -105.46 | 5.90 | 25 | 3.8 | - | ||
S3 | 5518 | -14.50 | -106.84 | 9.20 | 21 | 5.7 | - | ||
S4 | 5088 | -14.84 | -112.37 | 6.37 | 22 | 6.6 | - | ||
S5 | 4949 | -13.05 | -96.29 | 8.07 | 43 | 15.5 | - | ||
地下水 | G1 | 4259 | -13.43 | -106.96 | 0.49 | 703 | 13.5 | - | |
G2 | 4243 | -6.85 | -66.34 | -11.56 | 703 | 13.7 | - | ||
G3 | 4267 | -12.57 | -96.59 | 3.95 | 413 | 16.3 | - | ||
G4 | 4301 | -11.90 | -93.03 | 2.17 | 785 | 11.1 | - | ||
青藏高原 北部降雨[ | - | - | -12.85~-2.55 | -92~-12 | 9.02±1.52 | - | - | - | |
青藏高原 南部降雨[ | - | - | -18.05~-14.00 | -134~-106 | 6.78±3.87 | - | - | - | |
中国中东 部降雨[ | - | - | -9.15~-3.74 | -62.46~-19.80 | - | - | - | - |
Table 1 Results of hydrogen and oxygen stable isotopes and basic information at each sampling point of Bangong Lake basin
类别 | 样品 编号 | 高程(m) | δ18O (VSMOW) (‰) | δ2H (VSMOW) (‰) | 氘盈余 (‰) | 矿化度 TDS (mg/L) | 温度 (℃) | 河源距离 S (km) | |
---|---|---|---|---|---|---|---|---|---|
玛卡藏布 | M1 | 4381 | -12.84 | -96.18 | 6.58 | 166 | 15.9 | 0 | |
M2 | 4372 | -8.97 | -78.53 | -6.74 | 172 | 13.7 | 11 | ||
M3 | 4353 | -12.13 | -98.93 | -1.89 | 333 | 13.3 | 26 | ||
M4 | 4345 | -8.99 | -81.38 | -9.44 | 167 | 15.5 | 34 | ||
M5 | 4340 | -9.24 | -83.60 | -9.64 | 177 | 15.7 | 45 | ||
M6 | 4262 | -8.41 | -84.39 | -17.09 | 134 | 17.8 | 56 | ||
M7 | 4218 | -7.44 | -76.87 | -17.32 | 421 | 14.8 | 62 | ||
多玛河 | D1 | 4806 | -12.35 | -94.75 | 4.07 | 81 | 13.4 | 0 | |
D2 | 4660 | -11.77 | -92.54 | 1.66 | 185 | 12.9 | 20 | ||
D3 | 4512 | -11.10 | -88.09 | 0.67 | 267 | 12.5 | 27 | ||
D4 | 4478 | -10.95 | -89.66 | -2.06 | 434 | 15.1 | 52 | ||
D5 | 4407 | -12.19 | -92.57 | 4.92 | 323 | 11.1 | 68 | ||
D6 | 4384 | -11.14 | -90.91 | -1.75 | 321 | 15.6 | 78 | ||
D7 | 4328 | -10.97 | -83.78 | 3.99 | 329 | 16.3 | 87 | ||
D8 | 4320 | -10.10 | -79.10 | 1.68 | 369 | 15.9 | 97 | ||
D9 | 4260 | -11.10 | -88.09 | 0.67 | 357 | 13.3 | 105 | ||
班公湖 | B1 | 4253 | -1.34 | -42.70 | -31.95 | 619 | 15.7 | 0 | |
B2 | 4255 | -1.25 | -37.95 | -27.95 | 663 | 16.6 | 9 | ||
B3 | 4256 | -2.85 | -44.70 | -21.89 | 554 | 17.0 | 23 | ||
B4 | 4266 | -0.53 | -34.86 | -30.58 | 1553 | 17.2 | 40 | ||
B5 | 4261 | 0.24 | -38.62 | -40.52 | 3123 | 17.1 | 53 | ||
B6 | 4258 | 2.01 | -24.90 | -40.98 | 3669 | 13.8 | 62 | ||
B7 | 4256 | 1.71 | -25.20 | -38.87 | 3801 | 13.7 | 71 | ||
B8 | 4267 | -1.12 | -38.88 | -29.92 | 3842 | 13.7 | 87 | ||
B9 | 4265 | 0.15 | -33.62 | -34.85 | 4010 | 13.6 | 97 | ||
冰川 | S1 | 4906 | -13.47 | -104.08 | 3.70 | 83 | 3.7 | - | |
S2 | 5285 | -13.92 | -105.46 | 5.90 | 25 | 3.8 | - | ||
S3 | 5518 | -14.50 | -106.84 | 9.20 | 21 | 5.7 | - | ||
S4 | 5088 | -14.84 | -112.37 | 6.37 | 22 | 6.6 | - | ||
S5 | 4949 | -13.05 | -96.29 | 8.07 | 43 | 15.5 | - | ||
地下水 | G1 | 4259 | -13.43 | -106.96 | 0.49 | 703 | 13.5 | - | |
G2 | 4243 | -6.85 | -66.34 | -11.56 | 703 | 13.7 | - | ||
G3 | 4267 | -12.57 | -96.59 | 3.95 | 413 | 16.3 | - | ||
G4 | 4301 | -11.90 | -93.03 | 2.17 | 785 | 11.1 | - | ||
青藏高原 北部降雨[ | - | - | -12.85~-2.55 | -92~-12 | 9.02±1.52 | - | - | - | |
青藏高原 南部降雨[ | - | - | -18.05~-14.00 | -134~-106 | 6.78±3.87 | - | - | - | |
中国中东 部降雨[ | - | - | -9.15~-3.74 | -62.46~-19.80 | - | - | - | - |
Fig.3 δ2H (a) and δ18O (b) variation characteristics in Bangong Lake basin (δ2H and δ18O ranges of glacier and groundwater in the figure are the limit range of samples collected in this study)
Fig.7 Bubble diagrams of relationship between δ2H (a), δ18O (b), and latitude and longitude of each water body in Bangong Lake basin (bubble area represents the value of hydrogen and oxygen isotopes after homogenization)
[1] | 高德强, 张蓓蓓, 徐庆, 等. 氢氧稳定同位素在淡水湿地森林水文过程研究中的应用[J]. 世界林业研究, 2017, 30(2): 20-25. |
[2] | 徐庆, 左海军. 稳定同位素在流域生态系统水文过程研究中的应用[J]. 世界林业研究, 2020, 33(1): 8-13. |
[3] | 张志才, 陈喜, 程勤波, 等. 流域示踪水文模型研究综述[J]. 水文, 2020, 40(6): 1-9. |
[4] | 张春潮, 李向全, 马剑飞, 等. 基于水化学及稳定同位素的西藏察雅地下热水成因研究[J]. 现代地质, 2021, 35(1): 199-208. |
[5] |
CRAIG H. Isotopic variations in meteoric waters[J]. Science, 1961, 133: 1702-1703.
PMID |
[6] | 冯盛楠, 刘兴起, 李华淑. 中国西部湖泊水体δD与δ18O的空间变化特征及其影响因素[J]. 湖泊科学, 2020, 32(4): 1199-1211. |
[7] |
雷义珍, 曹生奎, 曹广超, 等. 基于氢氧稳定同位素和水化学的青藏高原高寒内陆流域水文过程示踪研究[J]. 地理研究, 2021, 40(5): 1239-1252.
DOI |
[8] | 臧娅琳. 羊卓雍错流域水体氢氧稳定同位素时空变化特征研究[D]. 重庆: 西南大学, 2014. |
[9] | 孙琦, 余翔, 周训, 等. 中国西北干旱区多级洼地地下水环境同位素分布特征及指示意义[J]. 现代地质, 2011, 25(6): 1195-1200. |
[10] | LIN L, DONG L, WANG Z, et al. Hydrochemical composition, distribution, and sources of typical organic pollutants and metals in Lake Bangong Co, Tibet[J]. Environmental Science and Pollution Research, 2021, 28(8): 9877-9888. |
[11] | WAN W, XIAO P F, FENG X Z, et al. Monitoring lake changes of Qinghai-Tibetan Plateau over the past 30 years using satellite remote sensing data[J]. Chinese Science Bulletin, 2014, 59(10): 1021-1035. |
[12] | 闾利, 张廷斌, 易桂花, 等. 2000年以来青藏高原湖泊面积变化与气候要素的响应关系[J]. 湖泊科学, 2019, 31(2): 573-589. |
[13] | HU M M, WANG Y C, DU P C, et al. Tracing the sources of nitrate in the rivers and lakes of the southern areas of the Tibetan Plateau using dual nitrate isotopes[J]. Science of the Total Environment, 2019, 658: 132-140. |
[14] | WANG M D, HOU J Z, LEI Y B. Classification of Tibetan lakes based on variations in seasonal lake water temperature[J]. Chinese Science Bulletin, 2014, 59(34): 4847-4855. |
[15] | ZHAO W, ZHENG M P, XU X Z, et al. Biological and ecological features of saline lakes in northern Tibet, China[J]. Hydrobiologia, 2005, 541(1): 189-203. |
[16] | 杨惠安, 李忠勤, 叶柏生, 等. 中国班公湖流域区冰川补充编目及冰川特征[J]. 冰川冻土, 2003, 25(6): 685-691. |
[17] | YIN A, HARRISON T M. Geologic evolution of the Himalayan-TibetanOrogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280. |
[18] | ZHAO B, SHI R D, ZOU H B, et al. Intra-continental boninite-series volcanic rocks from the Bangong-Nujiang Suture Zone, Central Tibet[J]. Lithos, 2021, 386/387: 106024. |
[19] | 董志文, 秦大河, 任贾文, 等. 祁连山西段冰川积雪中大气粉尘沉积特征[J]. 地理学报, 2013, 68(1): 25-35. |
[20] | 王彩霞, 张杰, 董志文, 等. 基于氢氧同位素和水化学的祁连山老虎沟冰川区径流过程分析[J]. 干旱区地理, 2015, 38(5): 927-935. |
[21] | 张蓓蓓, 徐庆, 高德强, 等. 中国亚热带大气降水氢氧稳定同位素特征及其影响因素[J]. 陆地生态系统与保护学报, 2022, 2(4): 13-20. |
[22] | GIBSON J J, EDWARDS T W D, BIRKS S J, et al. Progress in isotope tracer hydrology in Canada[J]. Hydrological Processes, 2005, 19(1): 303-327. |
[23] | 秦欢欢, 高柏, 陈益平, 等. 拉萨河夏季氢氧同位素空间分布特征及分析[J]. 地球与环境, 2021, 49(3): 277-284. |
[24] | 顾慰祖. 同位素水文学[M]. 北京: 科学出版社, 2011. |
[25] | 李继荣, 赵健宇, 杨乐, 等. 西藏雨季主要水体氢、氧同位素特征[J]. 干旱区研究, 2017, 34(2): 411-415. |
[26] | KIM Y, RHO T, KANG D J. Oxygen isotope composition of seawater and salinity in the western Indian Ocean: Implications for water mass mixing[J]. Marine Chemistry, 2021, 237: 104035. |
[27] | 沈吉, 曹建廷. 岱海湖水盐度与氧同位素定量关系的建立[J]. 第四纪研究, 2000, 20(2): 211. |
[28] | ZHU S D, ZHANG F, ZHANG Z Y, et al. Hydrogen and oxygen isotope composition and water quality evaluation for different water bodies in the ebinur lake watershed, northwestern China[J]. Water, 2019, 11(10): 2067. |
[29] | 史晓宜, 蒲焘, 何元庆, 等. 典型温冰川区湖泊的稳定同位素空间分布特征[J]. 环境科学, 2016, 37(5): 1685-1691. |
[30] | TRIPTI M, LAMBS L, MOUSSA I, et al. Evidence of elevation effect on stable isotopes of water alongHighlands of a humid tropical mountain belt (Western Ghats, India) experiencing monsoonal climate[J]. Journal of Hydrology, 2019, 573: 469-485. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||